|
1 (*<*) |
|
2 theory Slides4 |
|
3 imports "~~/src/HOL/Library/LaTeXsugar" |
|
4 begin |
|
5 |
|
6 notation (latex output) |
|
7 set ("_") and |
|
8 Cons ("_::/_" [66,65] 65) |
|
9 |
|
10 (*>*) |
|
11 |
|
12 |
|
13 text_raw {* |
|
14 \renewcommand{\slidecaption}{Edinburgh, 21 February 2012} |
|
15 \newcommand{\bl}[1]{\textcolor{blue}{#1}} |
|
16 \newcommand{\sout}[1]{\tikz[baseline=(X.base), inner sep=-0.1pt, outer sep=0pt] |
|
17 \node [cross out,red, ultra thick, draw] (X) {\textcolor{black}{#1}};} |
|
18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
19 \mode<presentation>{ |
|
20 \begin{frame} |
|
21 \frametitle{% |
|
22 \begin{tabular}{@ {}c@ {}} |
|
23 \LARGE Formalising\\[-3mm] |
|
24 \LARGE Regular Language Theory\\[-3mm] |
|
25 \LARGE with Regular Expressions,\\[-3mm] |
|
26 \LARGE \alert<2>{Only}\\[0mm] |
|
27 \end{tabular}} |
|
28 |
|
29 \begin{center} |
|
30 Christian Urban\\ |
|
31 \small King's College London |
|
32 \end{center}\bigskip |
|
33 |
|
34 \begin{center} |
|
35 \small joint work with Chunhan Wu and Xingyuan Zhang from the PLA |
|
36 University of Science and Technology in Nanjing |
|
37 \end{center} |
|
38 |
|
39 \end{frame}} |
|
40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
41 *} |
|
42 |
|
43 text_raw {* |
|
44 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
45 \mode<presentation>{ |
|
46 \begin{frame}<1->[c] |
|
47 \frametitle{} |
|
48 |
|
49 \mbox{}\\[-10mm] |
|
50 \begin{itemize} |
|
51 \item My background is in |
|
52 \begin{itemize} |
|
53 \item \normalsize theorem provers |
|
54 \item \normalsize develop Nominal Isabelle |
|
55 \end{itemize}\bigskip\bigskip |
|
56 |
|
57 \item<1->to formalise and mechanically check proofs from |
|
58 programming language research and TCS\bigskip |
|
59 |
|
60 \item<2->our biggest success story \ldots |
|
61 \end{itemize} |
|
62 |
|
63 \only<1->{ |
|
64 \begin{textblock}{6}(10.9,3.5) |
|
65 \includegraphics[scale=0.23]{isabelle1.png} |
|
66 \end{textblock}} |
|
67 |
|
68 |
|
69 |
|
70 \end{frame}} |
|
71 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
72 *} |
|
73 |
|
74 |
|
75 |
|
76 |
|
77 text_raw {* |
|
78 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
79 \mode<presentation>{ |
|
80 \begin{frame}[c] |
|
81 \frametitle{} |
|
82 |
|
83 \begin{tabular}{c@ {\hspace{2mm}}c} |
|
84 \\[6mm] |
|
85 \begin{tabular}{c} |
|
86 \includegraphics[scale=0.11]{harper.jpg}\\[-2mm] |
|
87 {\footnotesize Bob Harper}\\[-2.5mm] |
|
88 {\footnotesize (CMU)} |
|
89 \end{tabular} |
|
90 \begin{tabular}{c} |
|
91 \includegraphics[scale=0.37]{pfenning.jpg}\\[-2mm] |
|
92 {\footnotesize Frank Pfenning}\\[-2.5mm] |
|
93 {\footnotesize (CMU)} |
|
94 \end{tabular} & |
|
95 |
|
96 \begin{tabular}{p{6cm}} |
|
97 \raggedright |
|
98 \color{gray}{published a proof in\\ {\bf ACM Transactions on Computational Logic}, 2005, |
|
99 $\sim$31pp} |
|
100 \end{tabular}\\ |
|
101 |
|
102 \pause |
|
103 \\[0mm] |
|
104 |
|
105 \begin{tabular}{c} |
|
106 \includegraphics[scale=0.36]{appel.jpg}\\[-2mm] |
|
107 {\footnotesize Andrew Appel}\\[-2.5mm] |
|
108 {\footnotesize (Princeton)} |
|
109 \end{tabular} & |
|
110 |
|
111 \begin{tabular}{p{6cm}} |
|
112 \raggedright |
|
113 \color{gray}{relied on their proof in a\\ {\bf security} critical application} |
|
114 \end{tabular} |
|
115 \end{tabular} |
|
116 |
|
117 |
|
118 |
|
119 \end{frame}} |
|
120 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
121 *} |
|
122 |
|
123 |
|
124 |
|
125 text {* |
|
126 \tikzstyle{every node}=[node distance=25mm,text height=1.5ex, text depth=.25ex] |
|
127 \tikzstyle{node1}=[rectangle, minimum size=10mm, rounded corners=3mm, very thick, |
|
128 draw=black!50, top color=white, bottom color=black!20] |
|
129 \tikzstyle{node2}=[rectangle, minimum size=12mm, rounded corners=3mm, very thick, |
|
130 draw=red!70, top color=white, bottom color=red!50!black!20] |
|
131 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
132 \mode<presentation>{ |
|
133 \begin{frame}<2->[squeeze] |
|
134 \frametitle{} |
|
135 |
|
136 \begin{columns} |
|
137 |
|
138 \begin{column}{0.8\textwidth} |
|
139 \begin{textblock}{0}(1,2) |
|
140 |
|
141 \begin{tikzpicture} |
|
142 \matrix[ampersand replacement=\&,column sep=7mm, row sep=5mm] |
|
143 { \&[-10mm] |
|
144 \node (def1) [node1] {\large\hspace{1mm}Spec\hspace{1mm}\mbox{}}; \& |
|
145 \node (proof1) [node1] {\large Proof}; \& |
|
146 \node (alg1) [node1] {\large\hspace{1mm}Alg\hspace{1mm}\mbox{}}; \\ |
|
147 |
|
148 \onslide<4->{\node {\begin{tabular}{c}\small 1st\\[-2.5mm] \footnotesize solution\end{tabular}};} \& |
|
149 \onslide<4->{\node (def2) [node2] {\large Spec$^\text{+ex}$};} \& |
|
150 \onslide<4->{\node (proof2) [node1] {\large Proof};} \& |
|
151 \onslide<4->{\node (alg2) [node1] {\large\hspace{1mm}Alg\hspace{1mm}\mbox{}};} \\ |
|
152 |
|
153 \onslide<5->{\node {\begin{tabular}{c}\small 2nd\\[-2.5mm] \footnotesize solution\end{tabular}};} \& |
|
154 \onslide<5->{\node (def3) [node1] {\large\hspace{1mm}Spec\hspace{1mm}\mbox{}};} \& |
|
155 \onslide<5->{\node (proof3) [node1] {\large Proof};} \& |
|
156 \onslide<5->{\node (alg3) [node2] {\large Alg$^\text{-ex}$};} \\ |
|
157 |
|
158 \onslide<6->{\node {\begin{tabular}{c}\small 3rd\\[-2.5mm] \footnotesize solution\end{tabular}};} \& |
|
159 \onslide<6->{\node (def4) [node1] {\large\hspace{1mm}Spec\hspace{1mm}\mbox{}};} \& |
|
160 \onslide<6->{\node (proof4) [node2] {\large\hspace{1mm}Proof\hspace{1mm}};} \& |
|
161 \onslide<6->{\node (alg4) [node1] {\large\hspace{1mm}Alg\hspace{1mm}\mbox{}};} \\ |
|
162 }; |
|
163 |
|
164 \draw[->,black!50,line width=2mm] (proof1) -- (def1); |
|
165 \draw[->,black!50,line width=2mm] (proof1) -- (alg1); |
|
166 |
|
167 \onslide<4->{\draw[->,black!50,line width=2mm] (proof2) -- (def2);} |
|
168 \onslide<4->{\draw[->,black!50,line width=2mm] (proof2) -- (alg2);} |
|
169 |
|
170 \onslide<5->{\draw[->,black!50,line width=2mm] (proof3) -- (def3);} |
|
171 \onslide<5->{\draw[->,black!50,line width=2mm] (proof3) -- (alg3);} |
|
172 |
|
173 \onslide<6->{\draw[->,black!50,line width=2mm] (proof4) -- (def4);} |
|
174 \onslide<6->{\draw[->,black!50,line width=2mm] (proof4) -- (alg4);} |
|
175 |
|
176 \onslide<3->{\draw[white,line width=1mm] (1.1,3.2) -- (0.9,2.85) -- (1.1,2.35) -- (0.9,2.0);} |
|
177 \end{tikzpicture} |
|
178 |
|
179 \end{textblock} |
|
180 \end{column} |
|
181 \end{columns} |
|
182 |
|
183 |
|
184 \begin{textblock}{3}(12,3.6) |
|
185 \onslide<4->{ |
|
186 \begin{tikzpicture} |
|
187 \node at (0,0) [single arrow, shape border rotate=270, fill=red,text=white]{2h}; |
|
188 \end{tikzpicture}} |
|
189 \end{textblock} |
|
190 |
|
191 \end{frame}} |
|
192 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
193 |
|
194 *} |
|
195 |
|
196 |
|
197 text_raw {* |
|
198 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
199 \mode<presentation>{ |
|
200 \begin{frame}[c] |
|
201 \frametitle{} |
|
202 |
|
203 \begin{itemize} |
|
204 \item I also found fixable errors in my Ph.D.-thesis about cut-elimination |
|
205 (examined by Henk Barendregt and Andy Pitts) |
|
206 \item flaws in PIP (OS); a theorem without a shred of evidence (algorithms) |
|
207 \end{itemize}\bigskip\bigskip |
|
208 |
|
209 |
|
210 {\bf Conclusion:}\smallskip |
|
211 |
|
212 Pencil-and-paper proofs in TCS are not foolproof, |
|
213 not even expertproof. |
|
214 |
|
215 \end{frame}} |
|
216 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
217 *} |
|
218 |
|
219 |
|
220 text_raw {* |
|
221 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
222 \mode<presentation>{ |
|
223 \begin{frame}[t] |
|
224 \frametitle{\begin{tabular}{@ {}c@ {}} |
|
225 \large Nipkow about Teaching Proofs in TCS:\hspace{3cm}\mbox{}\\[-4mm] |
|
226 \large \textcolor{red}{``London Underground Phenomenon''}\\[-18mm]\mbox{} |
|
227 \end{tabular}} |
|
228 |
|
229 \begin{center} |
|
230 \begin{tabular}{ccc} |
|
231 students & \;\;\raisebox{-8mm}{\includegraphics[scale=0.16]{gap.jpg}}\;\; & proofs |
|
232 \end{tabular} |
|
233 \end{center} |
|
234 |
|
235 \small Scott Aaronson (Berkeley/MIT):\\[-7mm]\mbox{} |
|
236 \begin{center} |
|
237 \begin{block}{} |
|
238 \color{gray} |
|
239 \small |
|
240 ``I still remember having to grade hundreds of exams where the |
|
241 students started out by assuming what had to be proved, or filled |
|
242 page after page with gibberish in the hope that, somewhere in the |
|
243 mess, they might accidentally have said something |
|
244 correct. \ldots{}innumerable examples of ``parrot proofs'' --- |
|
245 NP-completeness reductions done in the wrong direction, arguments |
|
246 that look more like LSD trips than coherent chains of logic \ldots{}'' |
|
247 \end{block} |
|
248 \end{center} |
|
249 |
|
250 \end{frame}} |
|
251 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
252 *} |
|
253 |
|
254 text_raw {* |
|
255 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
256 \mode<presentation>{ |
|
257 \begin{frame}[c] |
|
258 \frametitle{} |
|
259 |
|
260 \begin{itemize} |
|
261 \item part of the problem is teaching the obvious\medskip |
|
262 \begin{center} |
|
263 \smath{\infer{A \vdash A}{}} |
|
264 \end{center}\bigskip\bigskip |
|
265 \item teach proofs, not logic |
|
266 \item students having too little practice and no good literature for how to do proofs\\ |
|
267 \textcolor{gray}{\small(Velleman is too mathematics oriented)} |
|
268 \bigskip\bigskip\pause |
|
269 |
|
270 \item proof assistants lead to abundant practice because they are |
|
271 addictive like video games (Nipkow, Pierce)\\ |
|
272 \textcolor{gray}{\small(in the past they were just frustrating, but they got much better)} |
|
273 \end{itemize} |
|
274 |
|
275 |
|
276 |
|
277 \end{frame}} |
|
278 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
279 *} |
|
280 |
|
281 text_raw {* |
|
282 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
283 \mode<presentation>{ |
|
284 \begin{frame}<1->[t] |
|
285 \frametitle{Regular Expressions} |
|
286 |
|
287 \begin{textblock}{6}(2,4) |
|
288 \begin{tabular}{@ {}rrl} |
|
289 \bl{r} & \bl{$::=$} & \bl{$\varnothing$}\\ |
|
290 & \bl{$\mid$} & \bl{[]}\\ |
|
291 & \bl{$\mid$} & \bl{c}\\ |
|
292 & \bl{$\mid$} & \bl{r$_1$ $\cdot$ r$_2$}\\ |
|
293 & \bl{$\mid$} & \bl{r$_1$ + r$_2$}\\ |
|
294 & \bl{$\mid$} & \bl{r$^*$}\\ |
|
295 \end{tabular} |
|
296 \end{textblock} |
|
297 |
|
298 \begin{textblock}{6}(8,3.5) |
|
299 \includegraphics[scale=0.35]{Screen1.png} |
|
300 \end{textblock} |
|
301 |
|
302 \begin{textblock}{6}(10.2,2.8) |
|
303 \footnotesize Isabelle: |
|
304 \end{textblock} |
|
305 |
|
306 \begin{textblock}{6}(7,12) |
|
307 \footnotesize\textcolor{gray}{students have seen them and can be motivated about them} |
|
308 \end{textblock} |
|
309 |
|
310 \end{frame}} |
|
311 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
312 *} |
|
313 |
|
314 text_raw {* |
|
315 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
316 \mode<presentation>{ |
|
317 \begin{frame}<1->[t] |
|
318 |
|
319 \mbox{}\\[-2mm] |
|
320 |
|
321 \small |
|
322 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}ll@ {}} |
|
323 \bl{nullable (NULL)} & \bl{$=$} & \bl{false} &\\ |
|
324 \bl{nullable (EMPTY)} & \bl{$=$} & \bl{true} &\\ |
|
325 \bl{nullable (CHAR c)} & \bl{$=$} & \bl{false} &\\ |
|
326 \bl{nullable (ALT r$_1$ r$_2$)} & \bl{$=$} & \bl{(nullable r$_1$) $\vee$ (nullable r$_2$)} & \\ |
|
327 \bl{nullable (SEQ r$_1$ r$_2$)} & \bl{$=$} & \bl{(nullable r$_1$) $\wedge$ (nullable r$_2$)} & \\ |
|
328 \bl{nullable (STAR r)} & \bl{$=$} & \bl{true} & \\ |
|
329 \end{tabular}\medskip\pause |
|
330 |
|
331 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}} |
|
332 \bl{der c (NULL)} & \bl{$=$} & \bl{NULL} & \\ |
|
333 \bl{der c (EMPTY)} & \bl{$=$} & \bl{NULL} & \\ |
|
334 \bl{der c (CHAR d)} & \bl{$=$} & \bl{if c $=$ d then EMPTY else NULL} & \\ |
|
335 \bl{der c (ALT r$_1$ r$_2$)} & \bl{$=$} & \bl{ALT (der c r$_1$) (der c r$_2$)} & \\ |
|
336 \bl{der c (SEQ r$_1$ r$_2$)} & \bl{$=$} & \bl{ALT (SEQ (der c r$_1$) r$_2$)} & \\ |
|
337 & & \bl{\phantom{ALT} (if nullable r$_1$ then der c r$_2$ else NULL)}\\ |
|
338 \bl{der c (STAR r)} & \bl{$=$} & \bl{SEQ (der c r) (STAR r)} &\smallskip\\\pause |
|
339 |
|
340 \bl{derivative [] r} & \bl{$=$} & \bl{r} & \\ |
|
341 \bl{derivative (c::s) r} & \bl{$=$} & \bl{derivative s (der c r)} & \\ |
|
342 \end{tabular}\medskip |
|
343 |
|
344 \bl{matches r s $=$ nullable (derivative s r)} |
|
345 |
|
346 \end{frame}} |
|
347 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
348 *} |
|
349 |
|
350 |
|
351 text_raw {* |
|
352 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
353 \mode<presentation>{ |
|
354 \begin{frame}[t] |
|
355 \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}} |
|
356 \mbox{}\\[-15mm]\mbox{} |
|
357 |
|
358 \begin{center} |
|
359 \huge\bf\textcolor{gray}{in Theorem Provers}\\ |
|
360 \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots} |
|
361 \end{center} |
|
362 |
|
363 \begin{itemize} |
|
364 \item automata @{text "\<Rightarrow>"} graphs, matrices, functions |
|
365 \item<2-> combining automata / graphs |
|
366 |
|
367 \onslide<2->{ |
|
368 \begin{center} |
|
369 \begin{tabular}{ccc} |
|
370 \begin{tikzpicture}[scale=1] |
|
371 %\draw[step=2mm] (-1,-1) grid (1,1); |
|
372 |
|
373 \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3); |
|
374 \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3); |
|
375 |
|
376 \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
377 \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
378 |
|
379 \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
380 \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
381 |
|
382 \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
383 \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
384 \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
385 |
|
386 \draw (-0.6,0.0) node {\small$A_1$}; |
|
387 \draw ( 0.6,0.0) node {\small$A_2$}; |
|
388 \end{tikzpicture}} |
|
389 |
|
390 & |
|
391 |
|
392 \onslide<3->{\raisebox{1.1mm}{\bf\Large$\;\Rightarrow\,$}} |
|
393 |
|
394 & |
|
395 |
|
396 \onslide<3->{\begin{tikzpicture}[scale=1] |
|
397 %\draw[step=2mm] (-1,-1) grid (1,1); |
|
398 |
|
399 \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3); |
|
400 \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3); |
|
401 |
|
402 \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
403 \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
404 |
|
405 \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
406 \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
407 |
|
408 \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
409 \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
410 \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
411 |
|
412 \draw [very thick, red] (C) to [bend left=45] (B); |
|
413 \draw [very thick, red] (D) to [bend right=45] (B); |
|
414 |
|
415 \draw (-0.6,0.0) node {\small$A_1$}; |
|
416 \draw ( 0.6,0.0) node {\small$A_2$}; |
|
417 \end{tikzpicture}} |
|
418 |
|
419 \end{tabular} |
|
420 \end{center}\medskip |
|
421 |
|
422 \only<4-5>{ |
|
423 \begin{tabular}{@ {\hspace{-5mm}}l@ {}} |
|
424 disjoint union:\\[2mm] |
|
425 \smath{A_1\uplus A_2 \dn \{(1, x)\,|\, x \in A_1\} \,\cup\, \{(2, y)\,|\, y \in A_2\}} |
|
426 \end{tabular}} |
|
427 \end{itemize} |
|
428 |
|
429 \only<5>{ |
|
430 \begin{textblock}{13.9}(0.7,7.7) |
|
431 \begin{block}{} |
|
432 \medskip |
|
433 \begin{minipage}{14cm}\raggedright |
|
434 Problems with definition for regularity:\bigskip\\ |
|
435 \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}\bigskip |
|
436 \end{minipage} |
|
437 \end{block} |
|
438 \end{textblock}} |
|
439 \medskip |
|
440 |
|
441 \only<6->{\underline{A solution}:\;\;use \smath{\text{nat}}s \;@{text "\<Rightarrow>"}\; state nodes\medskip} |
|
442 |
|
443 \only<7->{You have to \alert{rename} states!} |
|
444 |
|
445 \end{frame}} |
|
446 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
447 *} |
|
448 |
|
449 text_raw {* |
|
450 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
451 \mode<presentation>{ |
|
452 \begin{frame}[t] |
|
453 \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}} |
|
454 \mbox{}\\[-15mm]\mbox{} |
|
455 |
|
456 \begin{center} |
|
457 \huge\bf\textcolor{gray}{in Theorem Provers}\\ |
|
458 \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots} |
|
459 \end{center} |
|
460 |
|
461 \begin{itemize} |
|
462 \item Kozen's paper proof of Myhill-Nerode:\\ |
|
463 requires absence of \alert{inaccessible states} |
|
464 \item complementation of automata only works for \alert{complete} automata |
|
465 (need sink states)\medskip |
|
466 \end{itemize}\bigskip\bigskip |
|
467 |
|
468 \begin{center} |
|
469 \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A} |
|
470 \end{center} |
|
471 |
|
472 |
|
473 \end{frame}} |
|
474 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
475 *} |
|
476 |
|
477 text_raw {* |
|
478 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
479 \mode<presentation>{ |
|
480 \begin{frame}[t] |
|
481 \frametitle{} |
|
482 \mbox{}\\[25mm]\mbox{} |
|
483 |
|
484 \begin{textblock}{13.9}(0.7,1.2) |
|
485 \begin{block}{} |
|
486 \begin{minipage}{13.4cm}\raggedright |
|
487 {\bf Definition:}\smallskip\\ |
|
488 |
|
489 A language \smath{A} is \alert{regular}, provided there exists a\\ |
|
490 \alert{regular expression} that matches all strings of \smath{A}. |
|
491 \end{minipage} |
|
492 \end{block} |
|
493 \end{textblock}\pause |
|
494 |
|
495 {\noindent\large\bf\alert{\ldots{}and forget about automata}}\bigskip\bigskip\pause |
|
496 |
|
497 Infrastructure for free. But do we lose anything?\medskip\pause |
|
498 |
|
499 \begin{minipage}{1.1\textwidth} |
|
500 \begin{itemize} |
|
501 \item pumping lemma\pause |
|
502 \item closure under complementation\pause |
|
503 \item \only<6>{regular expression matching}% |
|
504 \only<7->{\sout{regular expression matching} |
|
505 {\footnotesize(@{text "\<Rightarrow>"}Brozowski'64, Owens et al '09)}} |
|
506 \item<8-> most textbooks are about automata |
|
507 \end{itemize} |
|
508 \end{minipage} |
|
509 |
|
510 |
|
511 \end{frame}} |
|
512 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
513 |
|
514 *} |
|
515 |
|
516 |
|
517 text_raw {* |
|
518 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
519 \mode<presentation>{ |
|
520 \begin{frame}[c] |
|
521 \frametitle{\LARGE The Myhill-Nerode Theorem} |
|
522 |
|
523 \begin{itemize} |
|
524 \item provides necessary and suf\!ficient conditions\\ for a language |
|
525 being regular\\ \textcolor{gray}{(pumping lemma only necessary)}\bigskip |
|
526 |
|
527 \item key is the equivalence relation:\medskip |
|
528 \begin{center} |
|
529 \smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A} |
|
530 \end{center} |
|
531 \end{itemize} |
|
532 |
|
533 |
|
534 \end{frame}} |
|
535 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
536 |
|
537 *} |
|
538 |
|
539 text_raw {* |
|
540 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
541 \mode<presentation>{ |
|
542 \begin{frame}[c] |
|
543 \frametitle{\LARGE The Myhill-Nerode Theorem} |
|
544 |
|
545 \begin{center} |
|
546 \only<1>{% |
|
547 \begin{tikzpicture}[scale=3] |
|
548 \draw[very thick] (0.5,0.5) circle (.6cm); |
|
549 \end{tikzpicture}}% |
|
550 \only<2->{% |
|
551 \begin{tikzpicture}[scale=3] |
|
552 \draw[very thick] (0.5,0.5) circle (.6cm); |
|
553 \clip[draw] (0.5,0.5) circle (.6cm); |
|
554 \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4); |
|
555 \end{tikzpicture}} |
|
556 \end{center} |
|
557 |
|
558 \begin{itemize} |
|
559 \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}} |
|
560 \end{itemize} |
|
561 |
|
562 \begin{textblock}{5}(2.1,5.3) |
|
563 \begin{tikzpicture} |
|
564 \node at (0,0) [single arrow, fill=red,text=white, minimum height=2cm] |
|
565 {$U\!N\!IV$}; |
|
566 \draw (-0.3,-1.1) node {\begin{tabular}{l}set of all\\[-1mm] strings\end{tabular}}; |
|
567 \end{tikzpicture} |
|
568 \end{textblock} |
|
569 |
|
570 \only<2->{% |
|
571 \begin{textblock}{5}(9.1,7.2) |
|
572 \begin{tikzpicture} |
|
573 \node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm] |
|
574 {@{text "\<lbrakk>s\<rbrakk>"}$_{\approx_{A}}$}; |
|
575 \draw (0.9,-1.1) node {\begin{tabular}{l}an equivalence class\end{tabular}}; |
|
576 \end{tikzpicture} |
|
577 \end{textblock}} |
|
578 |
|
579 \only<3->{ |
|
580 \begin{textblock}{11.9}(1.7,3) |
|
581 \begin{block}{} |
|
582 \begin{minipage}{11.4cm}\raggedright |
|
583 Two directions:\medskip\\ |
|
584 \begin{tabular}{@ {}ll} |
|
585 1.)\;finite $\Rightarrow$ regular\\ |
|
586 \;\;\;\smath{\text{finite}\,(U\!N\!IV /\!/ \approx_A) \Rightarrow \exists r.\;A = {\cal L}(r)}\\[3mm] |
|
587 2.)\;regular $\Rightarrow$ finite\\ |
|
588 \;\;\;\smath{\text{finite}\, (U\!N\!IV /\!/ \approx_{{\cal L}(r)})} |
|
589 \end{tabular} |
|
590 |
|
591 \end{minipage} |
|
592 \end{block} |
|
593 \end{textblock}} |
|
594 |
|
595 \end{frame}} |
|
596 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
597 |
|
598 *} |
|
599 |
|
600 |
|
601 text_raw {* |
|
602 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
603 \mode<presentation>{ |
|
604 \begin{frame}[c] |
|
605 \frametitle{\LARGE Initial and Final {\sout{\textcolor{gray}{States}}}} |
|
606 |
|
607 \begin{textblock}{8}(10, 2) |
|
608 \textcolor{black}{Equivalence Classes} |
|
609 \end{textblock} |
|
610 |
|
611 |
|
612 \begin{center} |
|
613 \begin{tikzpicture}[scale=3] |
|
614 \draw[very thick] (0.5,0.5) circle (.6cm); |
|
615 \clip[draw] (0.5,0.5) circle (.6cm); |
|
616 \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4); |
|
617 \only<2->{\draw[blue, fill] (0.0, 0.6) rectangle (0.2, 0.8);} |
|
618 \only<3->{\draw[red, fill] (0.2, 0.2) rectangle (0.4, 0.4); |
|
619 \draw[red, fill] (0.4, 0.8) rectangle (0.6, 1.0); |
|
620 \draw[red, fill] (0.6, 0.0) rectangle (0.8, 0.2); |
|
621 \draw[red, fill] (0.8, 0.4) rectangle (1.0, 0.6);} |
|
622 \end{tikzpicture} |
|
623 \end{center} |
|
624 |
|
625 \begin{itemize} |
|
626 \item \smath{\text{finals}\,A\,\dn \{[\!|s|\!]_{\approx_{A}}\;|\;s \in A\}} |
|
627 \smallskip |
|
628 \item we can prove: \smath{A = \bigcup \text{finals}\,A} |
|
629 \end{itemize} |
|
630 |
|
631 \only<2->{% |
|
632 \begin{textblock}{5}(2.1,4.6) |
|
633 \begin{tikzpicture} |
|
634 \node at (0,0) [single arrow, fill=blue,text=white, minimum height=2cm] |
|
635 {$[] \in X$}; |
|
636 \end{tikzpicture} |
|
637 \end{textblock}} |
|
638 |
|
639 \only<3->{% |
|
640 \begin{textblock}{5}(10,7.4) |
|
641 \begin{tikzpicture} |
|
642 \node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm] |
|
643 {a final}; |
|
644 \end{tikzpicture} |
|
645 \end{textblock}} |
|
646 |
|
647 \end{frame}} |
|
648 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
649 *} |
|
650 |
|
651 |
|
652 text_raw {* |
|
653 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
654 \mode<presentation>{ |
|
655 \begin{frame}<-1>[c] |
|
656 \frametitle{\begin{tabular}{@ {}l}\LARGE% |
|
657 Transitions between Eq-Classes\end{tabular}} |
|
658 |
|
659 \begin{center} |
|
660 \begin{tikzpicture}[scale=3] |
|
661 \draw[very thick] (0.5,0.5) circle (.6cm); |
|
662 \clip[draw] (0.5,0.5) circle (.6cm); |
|
663 \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4); |
|
664 \draw[blue, fill] (0.0, 0.6) rectangle (0.2, 0.8); |
|
665 \draw[blue, fill] (0.8, 0.4) rectangle (1.0, 0.6); |
|
666 \draw[white] (0.1,0.7) node (X) {$X$}; |
|
667 \draw[white] (0.9,0.5) node (Y) {$Y$}; |
|
668 \draw[blue, ->, line width = 2mm, bend left=45] (X) -- (Y); |
|
669 \node [inner sep=1pt,label=above:\textcolor{blue}{$c$}] at ($ (X)!.5!(Y) $) {}; |
|
670 \end{tikzpicture} |
|
671 \end{center} |
|
672 |
|
673 \begin{center} |
|
674 \smath{X \stackrel{c}{\longrightarrow} Y \;\dn\; X ; c \subseteq Y} |
|
675 \end{center} |
|
676 |
|
677 \onslide<8>{ |
|
678 \begin{tabular}{c} |
|
679 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick] |
|
680 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
681 \node[state,initial] (q_0) {$R_1$}; |
|
682 \end{tikzpicture} |
|
683 \end{tabular}} |
|
684 |
|
685 \end{frame}} |
|
686 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
687 *} |
|
688 |
|
689 |
|
690 text_raw {* |
|
691 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
692 \mode<presentation>{ |
|
693 \begin{frame}[c] |
|
694 \frametitle{\LARGE Systems of Equations} |
|
695 |
|
696 Inspired by a method of Brzozowski\;'64:\bigskip\bigskip |
|
697 |
|
698 \begin{center} |
|
699 \begin{tabular}{@ {\hspace{-20mm}}c} |
|
700 \\[-13mm] |
|
701 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick] |
|
702 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
703 |
|
704 %\draw[help lines] (0,0) grid (3,2); |
|
705 |
|
706 \node[state,initial] (p_0) {$X_1$}; |
|
707 \node[state,accepting] (p_1) [right of=q_0] {$X_2$}; |
|
708 |
|
709 \path[->] (p_0) edge [bend left] node {a} (p_1) |
|
710 edge [loop above] node {b} () |
|
711 (p_1) edge [loop above] node {a} () |
|
712 edge [bend left] node {b} (p_0); |
|
713 \end{tikzpicture}\\ |
|
714 \\[-13mm] |
|
715 \end{tabular} |
|
716 \end{center} |
|
717 |
|
718 \begin{center} |
|
719 \begin{tabular}{@ {\hspace{-6mm}}ll@ {\hspace{1mm}}c@ {\hspace{1mm}}l} |
|
720 & \smath{X_1} & \smath{=} & \smath{X_1;b + X_2;b \onslide<2->{\alert<2>{+ \lambda;[]}}}\\ |
|
721 & \smath{X_2} & \smath{=} & \smath{X_1;a + X_2;a}\medskip\\ |
|
722 \end{tabular} |
|
723 \end{center} |
|
724 |
|
725 \end{frame}} |
|
726 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
727 *} |
|
728 |
|
729 text_raw {* |
|
730 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
731 \mode<presentation>{ |
|
732 \begin{frame}<1>[t] |
|
733 \small |
|
734 |
|
735 \begin{center} |
|
736 \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll} |
|
737 \onslide<1->{\smath{X_1}} & \onslide<1->{\smath{=}} |
|
738 & \onslide<1->{\smath{X_1; b + X_2; b + \lambda;[]}}\\ |
|
739 \onslide<1->{\smath{X_2}} & \onslide<1->{\smath{=}} |
|
740 & \onslide<1->{\smath{X_1; a + X_2; a}}\\ |
|
741 |
|
742 & & & \onslide<2->{by Arden}\\ |
|
743 |
|
744 \onslide<2->{\smath{X_1}} & \onslide<2->{\smath{=}} |
|
745 & \onslide<2->{\smath{X_1; b + X_2; b + \lambda;[]}}\\ |
|
746 \onslide<2->{\smath{X_2}} & \onslide<2->{\smath{=}} |
|
747 & \only<2->{\smath{X_1; a\cdot a^\star}}\\ |
|
748 |
|
749 & & & \onslide<4->{by Arden}\\ |
|
750 |
|
751 \onslide<4->{\smath{X_1}} & \onslide<4->{\smath{=}} |
|
752 & \onslide<4->{\smath{X_2; b \cdot b^\star+ \lambda;b^\star}}\\ |
|
753 \onslide<4->{\smath{X_2}} & \onslide<4->{\smath{=}} |
|
754 & \onslide<4->{\smath{X_1; a\cdot a^\star}}\\ |
|
755 |
|
756 & & & \onslide<5->{by substitution}\\ |
|
757 |
|
758 \onslide<5->{\smath{X_1}} & \onslide<5->{\smath{=}} |
|
759 & \onslide<5->{\smath{X_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\ |
|
760 \onslide<5->{\smath{X_2}} & \onslide<5->{\smath{=}} |
|
761 & \onslide<5->{\smath{X_1; a\cdot a^\star}}\\ |
|
762 |
|
763 & & & \onslide<6->{by Arden}\\ |
|
764 |
|
765 \onslide<6->{\smath{X_1}} & \onslide<6->{\smath{=}} |
|
766 & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
767 \onslide<6->{\smath{X_2}} & \onslide<6->{\smath{=}} |
|
768 & \onslide<6->{\smath{X_1; a\cdot a^\star}}\\ |
|
769 |
|
770 & & & \onslide<7->{by substitution}\\ |
|
771 |
|
772 \onslide<7->{\smath{X_1}} & \onslide<7->{\smath{=}} |
|
773 & \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
774 \onslide<7->{\smath{X_2}} & \onslide<7->{\smath{=}} |
|
775 & \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star |
|
776 \cdot a\cdot a^\star}}\\ |
|
777 \end{tabular} |
|
778 \end{center} |
|
779 |
|
780 \only<8->{ |
|
781 \begin{textblock}{6}(2.5,4) |
|
782 \begin{block}{} |
|
783 \begin{minipage}{8cm}\raggedright |
|
784 |
|
785 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick, inner sep=1mm] |
|
786 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
787 |
|
788 %\draw[help lines] (0,0) grid (3,2); |
|
789 |
|
790 \node[state,initial] (p_0) {$X_1$}; |
|
791 \node[state,accepting] (p_1) [right of=q_0] {$X_2$}; |
|
792 |
|
793 \path[->] (p_0) edge [bend left] node {a} (p_1) |
|
794 edge [loop above] node {b} () |
|
795 (p_1) edge [loop above] node {a} () |
|
796 edge [bend left] node {b} (p_0); |
|
797 \end{tikzpicture} |
|
798 |
|
799 \end{minipage} |
|
800 \end{block} |
|
801 \end{textblock}} |
|
802 |
|
803 \only<1,2>{% |
|
804 \begin{textblock}{3}(0.6,1.2) |
|
805 \begin{tikzpicture} |
|
806 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
807 {\textcolor{red}{a}}; |
|
808 \end{tikzpicture} |
|
809 \end{textblock}} |
|
810 \only<2>{% |
|
811 \begin{textblock}{3}(0.6,3.6) |
|
812 \begin{tikzpicture} |
|
813 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
814 {\textcolor{red}{a}}; |
|
815 \end{tikzpicture} |
|
816 \end{textblock}} |
|
817 \only<4>{% |
|
818 \begin{textblock}{3}(0.6,2.9) |
|
819 \begin{tikzpicture} |
|
820 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
821 {\textcolor{red}{a}}; |
|
822 \end{tikzpicture} |
|
823 \end{textblock}} |
|
824 \only<4>{% |
|
825 \begin{textblock}{3}(0.6,5.3) |
|
826 \begin{tikzpicture} |
|
827 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
828 {\textcolor{red}{a}}; |
|
829 \end{tikzpicture} |
|
830 \end{textblock}} |
|
831 \only<5>{% |
|
832 \begin{textblock}{3}(1.0,5.6) |
|
833 \begin{tikzpicture} |
|
834 \node at (0,0) (A) {}; |
|
835 \node at (0,1) (B) {}; |
|
836 \draw[<-, line width=2mm, red] (B) to (A); |
|
837 \end{tikzpicture} |
|
838 \end{textblock}} |
|
839 \only<5,6>{% |
|
840 \begin{textblock}{3}(0.6,7.7) |
|
841 \begin{tikzpicture} |
|
842 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
843 {\textcolor{red}{a}}; |
|
844 \end{tikzpicture} |
|
845 \end{textblock}} |
|
846 \only<6>{% |
|
847 \begin{textblock}{3}(0.6,10.1) |
|
848 \begin{tikzpicture} |
|
849 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
850 {\textcolor{red}{a}}; |
|
851 \end{tikzpicture} |
|
852 \end{textblock}} |
|
853 \only<7>{% |
|
854 \begin{textblock}{3}(1.0,10.3) |
|
855 \begin{tikzpicture} |
|
856 \node at (0,0) (A) {}; |
|
857 \node at (0,1) (B) {}; |
|
858 \draw[->, line width=2mm, red] (B) to (A); |
|
859 \end{tikzpicture} |
|
860 \end{textblock}} |
|
861 |
|
862 \end{frame}} |
|
863 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
864 *} |
|
865 |
|
866 |
|
867 text_raw {* |
|
868 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
869 \mode<presentation>{ |
|
870 \begin{frame}[c] |
|
871 \frametitle{\LARGE A Variant of Arden's Lemma} |
|
872 |
|
873 {\bf Arden's Lemma:}\smallskip |
|
874 |
|
875 If \smath{[] \not\in A} then |
|
876 \begin{center} |
|
877 \smath{X = X; A + \text{something}} |
|
878 \end{center} |
|
879 has the (unique) solution |
|
880 \begin{center} |
|
881 \smath{X = \text{something} ; A^\star} |
|
882 \end{center} |
|
883 |
|
884 |
|
885 \end{frame}} |
|
886 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
887 *} |
|
888 |
|
889 |
|
890 text_raw {* |
|
891 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
892 \mode<presentation>{ |
|
893 \begin{frame}<1-2,4->[t] |
|
894 \small |
|
895 |
|
896 \begin{center} |
|
897 \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll} |
|
898 \onslide<1->{\smath{X_1}} & \onslide<1->{\smath{=}} |
|
899 & \onslide<1->{\smath{X_1; b + X_2; b + \lambda;[]}}\\ |
|
900 \onslide<1->{\smath{X_2}} & \onslide<1->{\smath{=}} |
|
901 & \onslide<1->{\smath{X_1; a + X_2; a}}\\ |
|
902 |
|
903 & & & \onslide<2->{by Arden}\\ |
|
904 |
|
905 \onslide<2->{\smath{X_1}} & \onslide<2->{\smath{=}} |
|
906 & \onslide<2->{\smath{X_1; b + X_2; b + \lambda;[]}}\\ |
|
907 \onslide<2->{\smath{X_2}} & \onslide<2->{\smath{=}} |
|
908 & \only<2->{\smath{X_1; a\cdot a^\star}}\\ |
|
909 |
|
910 & & & \onslide<4->{by Arden}\\ |
|
911 |
|
912 \onslide<4->{\smath{X_1}} & \onslide<4->{\smath{=}} |
|
913 & \onslide<4->{\smath{X_2; b \cdot b^\star+ \lambda;b^\star}}\\ |
|
914 \onslide<4->{\smath{X_2}} & \onslide<4->{\smath{=}} |
|
915 & \onslide<4->{\smath{X_1; a\cdot a^\star}}\\ |
|
916 |
|
917 & & & \onslide<5->{by substitution}\\ |
|
918 |
|
919 \onslide<5->{\smath{X_1}} & \onslide<5->{\smath{=}} |
|
920 & \onslide<5->{\smath{X_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\ |
|
921 \onslide<5->{\smath{X_2}} & \onslide<5->{\smath{=}} |
|
922 & \onslide<5->{\smath{X_1; a\cdot a^\star}}\\ |
|
923 |
|
924 & & & \onslide<6->{by Arden}\\ |
|
925 |
|
926 \onslide<6->{\smath{X_1}} & \onslide<6->{\smath{=}} |
|
927 & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
928 \onslide<6->{\smath{X_2}} & \onslide<6->{\smath{=}} |
|
929 & \onslide<6->{\smath{X_1; a\cdot a^\star}}\\ |
|
930 |
|
931 & & & \onslide<7->{by substitution}\\ |
|
932 |
|
933 \onslide<7->{\smath{X_1}} & \onslide<7->{\smath{=}} |
|
934 & \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
935 \onslide<7->{\smath{X_2}} & \onslide<7->{\smath{=}} |
|
936 & \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star |
|
937 \cdot a\cdot a^\star}}\\ |
|
938 \end{tabular} |
|
939 \end{center} |
|
940 |
|
941 \only<8->{ |
|
942 \begin{textblock}{6}(2.5,4) |
|
943 \begin{block}{} |
|
944 \begin{minipage}{8cm}\raggedright |
|
945 |
|
946 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick, inner sep=1mm] |
|
947 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
948 |
|
949 %\draw[help lines] (0,0) grid (3,2); |
|
950 |
|
951 \node[state,initial] (p_0) {$X_1$}; |
|
952 \node[state,accepting] (p_1) [right of=q_0] {$X_2$}; |
|
953 |
|
954 \path[->] (p_0) edge [bend left] node {a} (p_1) |
|
955 edge [loop above] node {b} () |
|
956 (p_1) edge [loop above] node {a} () |
|
957 edge [bend left] node {b} (p_0); |
|
958 \end{tikzpicture} |
|
959 |
|
960 \end{minipage} |
|
961 \end{block} |
|
962 \end{textblock}} |
|
963 |
|
964 \only<1,2>{% |
|
965 \begin{textblock}{3}(0.6,1.2) |
|
966 \begin{tikzpicture} |
|
967 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
968 {\textcolor{red}{a}}; |
|
969 \end{tikzpicture} |
|
970 \end{textblock}} |
|
971 \only<2>{% |
|
972 \begin{textblock}{3}(0.6,3.6) |
|
973 \begin{tikzpicture} |
|
974 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
975 {\textcolor{red}{a}}; |
|
976 \end{tikzpicture} |
|
977 \end{textblock}} |
|
978 \only<4>{% |
|
979 \begin{textblock}{3}(0.6,2.9) |
|
980 \begin{tikzpicture} |
|
981 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
982 {\textcolor{red}{a}}; |
|
983 \end{tikzpicture} |
|
984 \end{textblock}} |
|
985 \only<4>{% |
|
986 \begin{textblock}{3}(0.6,5.3) |
|
987 \begin{tikzpicture} |
|
988 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
989 {\textcolor{red}{a}}; |
|
990 \end{tikzpicture} |
|
991 \end{textblock}} |
|
992 \only<5>{% |
|
993 \begin{textblock}{3}(1.0,5.6) |
|
994 \begin{tikzpicture} |
|
995 \node at (0,0) (A) {}; |
|
996 \node at (0,1) (B) {}; |
|
997 \draw[<-, line width=2mm, red] (B) to (A); |
|
998 \end{tikzpicture} |
|
999 \end{textblock}} |
|
1000 \only<5,6>{% |
|
1001 \begin{textblock}{3}(0.6,7.7) |
|
1002 \begin{tikzpicture} |
|
1003 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
1004 {\textcolor{red}{a}}; |
|
1005 \end{tikzpicture} |
|
1006 \end{textblock}} |
|
1007 \only<6>{% |
|
1008 \begin{textblock}{3}(0.6,10.1) |
|
1009 \begin{tikzpicture} |
|
1010 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
1011 {\textcolor{red}{a}}; |
|
1012 \end{tikzpicture} |
|
1013 \end{textblock}} |
|
1014 \only<7>{% |
|
1015 \begin{textblock}{3}(1.0,10.3) |
|
1016 \begin{tikzpicture} |
|
1017 \node at (0,0) (A) {}; |
|
1018 \node at (0,1) (B) {}; |
|
1019 \draw[->, line width=2mm, red] (B) to (A); |
|
1020 \end{tikzpicture} |
|
1021 \end{textblock}} |
|
1022 |
|
1023 \end{frame}} |
|
1024 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1025 *} |
|
1026 |
|
1027 |
|
1028 text_raw {* |
|
1029 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1030 \mode<presentation>{ |
|
1031 \begin{frame}[c] |
|
1032 \frametitle{\LARGE The Other Direction} |
|
1033 |
|
1034 One has to prove |
|
1035 |
|
1036 \begin{center} |
|
1037 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})} |
|
1038 \end{center} |
|
1039 |
|
1040 by induction on \smath{r}. Not trivial, but after a bit |
|
1041 of thinking, one can find a \alert{refined} relation:\bigskip |
|
1042 |
|
1043 |
|
1044 \begin{center} |
|
1045 \mbox{\begin{tabular}{c@ {\hspace{7mm}}c@ {\hspace{7mm}}c} |
|
1046 \begin{tikzpicture}[scale=1.1] |
|
1047 %Circle |
|
1048 \draw[thick] (0,0) circle (1.1); |
|
1049 \end{tikzpicture} |
|
1050 & |
|
1051 \begin{tikzpicture}[scale=1.1] |
|
1052 %Circle |
|
1053 \draw[thick] (0,0) circle (1.1); |
|
1054 %Main rays |
|
1055 \foreach \a in {0, 90,...,359} |
|
1056 \draw[very thick] (0, 0) -- (\a:1.1); |
|
1057 \foreach \a / \l in {45/1, 135/2, 225/3, 315/4} |
|
1058 \draw (\a: 0.65) node {\small$a_\l$}; |
|
1059 \end{tikzpicture} |
|
1060 & |
|
1061 \begin{tikzpicture}[scale=1.1] |
|
1062 %Circle |
|
1063 \draw[red, thick] (0,0) circle (1.1); |
|
1064 %Main rays |
|
1065 \foreach \a in {0, 45,...,359} |
|
1066 \draw[red, very thick] (0, 0) -- (\a:1.1); |
|
1067 \foreach \a / \l in {22.5/1.1, 67.5/1.2, 112.5/2.1, 157.5/2.2, 202.4/3.1, 247.5/3.2, 292.5/4.1, 337.5/4.2} |
|
1068 \draw (\a: 0.77) node {\textcolor{red}{\footnotesize$a_{\l}$}}; |
|
1069 \end{tikzpicture}\\ |
|
1070 \small\smath{U\!N\!IV} & |
|
1071 \small\smath{U\!N\!IV /\!/ \approx_{{\cal L}(r)}} & |
|
1072 \small\smath{U\!N\!IV /\!/ \alert{R}} |
|
1073 \end{tabular}} |
|
1074 \end{center} |
|
1075 |
|
1076 \begin{textblock}{5}(9.8,2.6) |
|
1077 \begin{tikzpicture} |
|
1078 \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}}; |
|
1079 \end{tikzpicture} |
|
1080 \end{textblock} |
|
1081 |
|
1082 |
|
1083 \end{frame}} |
|
1084 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1085 *} |
|
1086 |
|
1087 text_raw {* |
|
1088 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1089 \mode<presentation>{ |
|
1090 \begin{frame}[t] |
|
1091 \frametitle{\LARGE\begin{tabular}{c}Derivatives of RExps\end{tabular}} |
|
1092 |
|
1093 \begin{itemize} |
|
1094 \item introduced by Brozowski~'64 |
|
1095 \item produces a regular expression after a character has been parsed\\[-18mm]\mbox{} |
|
1096 \end{itemize} |
|
1097 |
|
1098 \only<1->{% |
|
1099 \textcolor{blue}{% |
|
1100 \begin{center} |
|
1101 \begin{tabular}{@ {}lc@ {\hspace{3mm}}l@ {}} |
|
1102 der c $\varnothing$ & $\dn$ & $\varnothing$\\ |
|
1103 der c [] & $\dn$ & $\varnothing$\\ |
|
1104 der c d & $\dn$ & if c $=$ d then [] else $\varnothing$\\ |
|
1105 der c ($r_1 + r_2$) & $\dn$ & (der c $r_1$) $+$ (der c $r_2$)\\ |
|
1106 der c ($r^\star$) & $\dn$ & (der c $r$) $\cdot$ $r^\star$\\ |
|
1107 der c ($r_1 \cdot r_2$) & $\dn$ & if nullable $r_1$\\ |
|
1108 & & then (der c $r_1$) $\cdot$ $r_2$ $+$ (der c $r_2$)\\ |
|
1109 & & else (der c $r_1$) $\cdot$ $r_2$\\ |
|
1110 \end{tabular} |
|
1111 \end{center}}} |
|
1112 |
|
1113 \only<2>{ |
|
1114 \begin{textblock}{13}(1.5,5.7) |
|
1115 \begin{block}{} |
|
1116 \begin{quote} |
|
1117 \begin{minipage}{13cm}\raggedright |
|
1118 derivatives refine \smath{x \approx_{{\cal{L}}(r)} y}\bigskip |
|
1119 \begin{center} |
|
1120 \smath{\text{der}~x~r = \text{der}~y~r \Longrightarrow x \approx_{L(r)} y} |
|
1121 \end{center}\bigskip |
|
1122 \ |
|
1123 \smath{\text{finite}(\text{ders}~A~r)}, but only modulo ACI |
|
1124 |
|
1125 \begin{center} |
|
1126 \begin{tabular}{@ {\hspace{-10mm}}rcl} |
|
1127 \smath{(r_1 + r_2) + r_3} & \smath{\equiv} & \smath{r_1 + (r_2 + r_3)}\\ |
|
1128 \smath{r_1 + r_2} & \smath{\equiv} & \smath{r_2 + r_1}\\ |
|
1129 \smath{r + r} & \smath{\equiv} & \smath{r}\\ |
|
1130 \end{tabular} |
|
1131 \end{center} |
|
1132 \end{minipage} |
|
1133 \end{quote} |
|
1134 \end{block} |
|
1135 \end{textblock}} |
|
1136 |
|
1137 \end{frame}} |
|
1138 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1139 *} |
|
1140 |
|
1141 text_raw {* |
|
1142 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1143 \mode<presentation>{ |
|
1144 \begin{frame}<2>[t] |
|
1145 \frametitle{\LARGE\begin{tabular}{c}Derivatives of RExps\end{tabular}} |
|
1146 |
|
1147 |
|
1148 \only<2>{% |
|
1149 \textcolor{blue}{% |
|
1150 \begin{center} |
|
1151 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} |
|
1152 pder c $\varnothing$ & $\dn$ & \alert{$\{\}$}\\ |
|
1153 pder c [] & $\dn$ & \alert{$\{\}$}\\ |
|
1154 pder c d & $\dn$ & if c $=$ d then $\{$[]$\}$ else $\{\}$\\ |
|
1155 pder c ($r_1 + r_2$) & $\dn$ & (pder c $r_1$) \alert{$\cup$} (der c $r_2$)\\ |
|
1156 pder c ($r^\star$) & $\dn$ & (pder c $r$) $\cdot$ $r^\star$\\ |
|
1157 pder c ($r_1 \cdot r_2$) & $\dn$ & if nullable $r_1$\\ |
|
1158 & & then (pder c $r_1$) $\cdot$ $r_2$ \alert{$\cup$} (pder c $r_2$)\\ |
|
1159 & & else (pder c $r_1$) $\cdot$ $r_2$\\ |
|
1160 \end{tabular} |
|
1161 \end{center}}} |
|
1162 |
|
1163 \only<2>{ |
|
1164 \begin{textblock}{6}(8.5,2.7) |
|
1165 \begin{block}{} |
|
1166 \begin{quote} |
|
1167 \begin{minipage}{6cm}\raggedright |
|
1168 \begin{itemize} |
|
1169 \item partial derivatives |
|
1170 \item by Antimirov~'95 |
|
1171 \end{itemize} |
|
1172 \end{minipage} |
|
1173 \end{quote} |
|
1174 \end{block} |
|
1175 \end{textblock}} |
|
1176 |
|
1177 \end{frame}} |
|
1178 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1179 *} |
|
1180 |
|
1181 text_raw {* |
|
1182 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1183 \mode<presentation>{ |
|
1184 \begin{frame}[t] |
|
1185 \frametitle{\LARGE Partial Derivatives} |
|
1186 |
|
1187 \mbox{}\\[0mm]\mbox{} |
|
1188 |
|
1189 \begin{itemize} |
|
1190 |
|
1191 \item \alt<1>{\smath{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}} |
|
1192 {\smath{\underbrace{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}_{R}}} |
|
1193 refines \textcolor{blue}{$x$ $\approx_{{\cal L}(r)}$ $y$}\\[16mm]\pause |
|
1194 \item \smath{\text{finite} (U\!N\!IV /\!/ R)} \bigskip\pause |
|
1195 \item Therefore \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}. Qed. |
|
1196 \end{itemize} |
|
1197 |
|
1198 \only<2->{% |
|
1199 \begin{textblock}{5}(3.9,7.2) |
|
1200 \begin{tikzpicture} |
|
1201 \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}}; |
|
1202 \draw (2.2,0) node {Antimirov '95}; |
|
1203 \end{tikzpicture} |
|
1204 \end{textblock}} |
|
1205 |
|
1206 \end{frame}} |
|
1207 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1208 *} |
|
1209 |
|
1210 |
|
1211 |
|
1212 text_raw {* |
|
1213 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1214 \mode<presentation>{ |
|
1215 \begin{frame}[t] |
|
1216 \frametitle{\LARGE What Have We Achieved?} |
|
1217 |
|
1218 \begin{itemize} |
|
1219 \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}} |
|
1220 \medskip\pause |
|
1221 \item regular languages are closed under complementation; this is now easy |
|
1222 \begin{center} |
|
1223 \smath{U\!N\!IV /\!/ \approx_A \;\;=\;\; U\!N\!IV /\!/ \approx_{\overline{A}}} |
|
1224 \end{center}\pause\medskip |
|
1225 |
|
1226 \item non-regularity (\smath{a^nb^n})\medskip\pause\pause |
|
1227 |
|
1228 \item take \alert{\bf any} language\\ build the language of substrings\\ |
|
1229 \pause |
|
1230 |
|
1231 then this language \alert{\bf is} regular\;\; (\smath{a^nb^n} $\Rightarrow$ \smath{a^\star{}b^\star}) |
|
1232 |
|
1233 \end{itemize} |
|
1234 |
|
1235 \only<2>{ |
|
1236 \begin{textblock}{10}(4,14) |
|
1237 \small |
|
1238 \smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A} |
|
1239 \end{textblock}} |
|
1240 |
|
1241 \only<4>{ |
|
1242 \begin{textblock}{5}(2,8.6) |
|
1243 \begin{minipage}{8.8cm} |
|
1244 \begin{block}{} |
|
1245 \begin{minipage}{8.6cm} |
|
1246 If there exists a sufficiently large set \smath{B} (for example infinitely large), |
|
1247 such that |
|
1248 |
|
1249 \begin{center} |
|
1250 \smath{\forall x,y \in B.\; x \not= y \;\Rightarrow\; x \not\approx_{A} y}. |
|
1251 \end{center} |
|
1252 |
|
1253 then \smath{A} is not regular.\hspace{1.3cm}\small(\smath{B \dn \bigcup_n a^n}) |
|
1254 \end{minipage} |
|
1255 \end{block} |
|
1256 \end{minipage} |
|
1257 \end{textblock} |
|
1258 } |
|
1259 |
|
1260 \end{frame}} |
|
1261 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1262 *} |
|
1263 |
|
1264 text_raw {* |
|
1265 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1266 \mode<presentation>{ |
|
1267 \begin{frame}[c] |
|
1268 \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}} |
|
1269 |
|
1270 \begin{center} |
|
1271 \huge\bf\textcolor{gray}{in Nuprl} |
|
1272 \end{center} |
|
1273 |
|
1274 \begin{itemize} |
|
1275 \item Constable, Jackson, Naumov, Uribe\medskip |
|
1276 \item \alert{18 months} for automata theory from Hopcroft \& Ullman chapters 1--11 (including Myhill-Nerode) |
|
1277 \end{itemize} |
|
1278 |
|
1279 \end{frame}} |
|
1280 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1281 |
|
1282 *} |
|
1283 |
|
1284 text_raw {* |
|
1285 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1286 \mode<presentation>{ |
|
1287 \begin{frame}[c] |
|
1288 \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}} |
|
1289 |
|
1290 \begin{center} |
|
1291 \huge\bf\textcolor{gray}{in Coq} |
|
1292 \end{center} |
|
1293 |
|
1294 \begin{itemize} |
|
1295 \item Filli\^atre, Briais, Braibant and others |
|
1296 \item multi-year effort; a number of results in automata theory, e.g.\medskip |
|
1297 \begin{itemize} |
|
1298 \item Kleene's thm.~by Filli\^atre (\alert{``rather big''}) |
|
1299 \item automata theory by Briais (5400 loc) |
|
1300 \item Braibant ATBR library, including Myhill-Nerode\\ ($>$7000 loc) |
|
1301 \item Mirkin's partial derivative automaton construction (10600 loc) |
|
1302 \end{itemize} |
|
1303 \end{itemize} |
|
1304 |
|
1305 \end{frame}} |
|
1306 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1307 *} |
|
1308 |
|
1309 text_raw {* |
|
1310 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1311 \mode<presentation>{ |
|
1312 \begin{frame}<1->[c] |
|
1313 \frametitle{} |
|
1314 |
|
1315 \begin{center} |
|
1316 \includegraphics[scale=2.9]{numerals.jpg} |
|
1317 \end{center} |
|
1318 |
|
1319 |
|
1320 |
|
1321 \end{frame}} |
|
1322 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1323 *} |
|
1324 |
|
1325 |
|
1326 text_raw {* |
|
1327 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1328 \mode<presentation>{ |
|
1329 \begin{frame}[c] |
|
1330 \frametitle{\LARGE Conclusion} |
|
1331 |
|
1332 \begin{itemize} |
|
1333 \item We have never seen a proof of Myhill-Nerode based on |
|
1334 regular expressions.\smallskip\pause |
|
1335 |
|
1336 \item great source of examples (inductions)\smallskip\pause |
|
1337 |
|
1338 \item no need to fight the theorem prover:\\ |
|
1339 \begin{itemize} |
|
1340 \item first direction (790 loc)\\ |
|
1341 \item second direction (400 / 390 loc) |
|
1342 \end{itemize} |
|
1343 |
|
1344 \item I am not saying automata are bad; just formal proofs about |
|
1345 them are shockingly difficult. |
|
1346 \end{itemize} |
|
1347 |
|
1348 \only<4->{ |
|
1349 \begin{textblock}{13.8}(1,4) |
|
1350 \begin{block}{}\mbox{}\hspace{3mm} |
|
1351 \begin{minipage}{11cm}\raggedright |
|
1352 \large |
|
1353 |
|
1354 {\bf Bold Claim: }\alert{(not proved!)}\medskip |
|
1355 |
|
1356 {\bf 95\%} of regular language theory can be done without |
|
1357 automata!\medskip\\\ldots and this is much more tasteful ;o) |
|
1358 |
|
1359 \end{minipage} |
|
1360 \end{block} |
|
1361 \end{textblock}} |
|
1362 |
|
1363 \end{frame}} |
|
1364 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1365 *} |
|
1366 |
|
1367 |
|
1368 |
|
1369 |
|
1370 text_raw {* |
|
1371 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1372 \mode<presentation>{ |
|
1373 \begin{frame}[b] |
|
1374 \frametitle{\mbox{}\\[2cm]\textcolor{red}{Thank you very much!\\[5mm]Questions?}} |
|
1375 |
|
1376 \end{frame}} |
|
1377 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1378 *} |
|
1379 |
|
1380 (*<*) |
|
1381 end |
|
1382 (*>*) |