Closures2.thy
changeset 348 bea94f1e6771
parent 233 e2dc11e12e0b
child 368 2d6beddb6fa6
equal deleted inserted replaced
347:73127f5db18f 348:bea94f1e6771
     1 theory Closures2
     1 theory Closures2
     2 imports 
     2 imports 
     3   Closures
     3   Closures
     4   Higman
     4   Higman
     5   (* "~~/src/HOL/Proofs/Extraction/Higman" *)
       
     6 begin
     5 begin
     7 
     6 
     8 section {* Closure under @{text SUBSEQ} and @{text SUPSEQ} *}
     7 section {* Closure under @{text SUBSEQ} and @{text SUPSEQ} *}
     9 
     8 
    10 (* compatibility with Higman theory by Stefan *)
     9 (* compatibility with Higman theory by Stefan *)
   118   have "{(x, y). x \<preceq> y \<and> x \<noteq> y} \<subseteq> measure length"
   117   have "{(x, y). x \<preceq> y \<and> x \<noteq> y} \<subseteq> measure length"
   119     unfolding measure_def by (auto simp add: emb_strict_length)
   118     unfolding measure_def by (auto simp add: emb_strict_length)
   120   ultimately 
   119   ultimately 
   121   show "wf {(x, y). x \<preceq> y \<and> x \<noteq> y}" by (rule wf_subset)
   120   show "wf {(x, y). x \<preceq> y \<and> x \<noteq> y}" by (rule wf_subset)
   122 qed
   121 qed
       
   122 
   123 
   123 
   124 subsection {* Sub- and Supsequences *}
   124 subsection {* Sub- and Supsequences *}
   125 
   125 
   126 definition
   126 definition
   127  "SUBSEQ A \<equiv> {x. \<exists>y \<in> A. x \<preceq> y}"
   127  "SUBSEQ A \<equiv> {x. \<exists>y \<in> A. x \<preceq> y}"