|         |      1 theory Myhill_2 | 
|         |      2   imports Myhill_1 Prefix_subtract | 
|         |      3           "~~/src/HOL/Library/List_Prefix" | 
|         |      4 begin | 
|         |      5  | 
|         |      6 section {* Direction @{text "regular language \<Rightarrow> finite partition"} *} | 
|         |      7  | 
|         |      8 definition | 
|         |      9   str_eq :: "string \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> bool" ("_ \<approx>_ _") | 
|         |     10 where | 
|         |     11   "x \<approx>A y \<equiv> (x, y) \<in> (\<approx>A)" | 
|         |     12  | 
|         |     13 lemma str_eq_def2: | 
|         |     14   shows "\<approx>A = {(x, y) | x y. x \<approx>A y}" | 
|         |     15 unfolding str_eq_def | 
|         |     16 by simp | 
|         |     17  | 
|         |     18 definition  | 
|         |     19    tag_eq_rel :: "(string \<Rightarrow> 'b) \<Rightarrow> (string \<times> string) set" ("=_=") | 
|         |     20 where | 
|         |     21    "=tag= \<equiv> {(x, y). tag x = tag y}" | 
|         |     22  | 
|         |     23 lemma finite_eq_tag_rel: | 
|         |     24   assumes rng_fnt: "finite (range tag)" | 
|         |     25   shows "finite (UNIV // =tag=)" | 
|         |     26 proof - | 
|         |     27   let "?f" =  "\<lambda>X. tag ` X" and ?A = "(UNIV // =tag=)" | 
|         |     28   have "finite (?f ` ?A)"  | 
|         |     29   proof - | 
|         |     30     have "range ?f \<subseteq> (Pow (range tag))" unfolding Pow_def by auto | 
|         |     31     moreover  | 
|         |     32     have "finite (Pow (range tag))" using rng_fnt by simp | 
|         |     33     ultimately  | 
|         |     34     have "finite (range ?f)" unfolding image_def by (blast intro: finite_subset) | 
|         |     35     moreover | 
|         |     36     have "?f ` ?A \<subseteq> range ?f" by auto | 
|         |     37     ultimately show "finite (?f ` ?A)" by (rule rev_finite_subset)  | 
|         |     38   qed | 
|         |     39   moreover | 
|         |     40   have "inj_on ?f ?A" | 
|         |     41   proof - | 
|         |     42     { fix X Y | 
|         |     43       assume X_in: "X \<in> ?A" | 
|         |     44         and  Y_in: "Y \<in> ?A" | 
|         |     45         and  tag_eq: "?f X = ?f Y" | 
|         |     46       then obtain x y  | 
|         |     47         where "x \<in> X" "y \<in> Y" "tag x = tag y" | 
|         |     48         unfolding quotient_def Image_def image_def tag_eq_rel_def | 
|         |     49         by (simp) (blast) | 
|         |     50       with X_in Y_in  | 
|         |     51       have "X = Y" | 
|         |     52 	unfolding quotient_def tag_eq_rel_def by auto | 
|         |     53     }  | 
|         |     54     then show "inj_on ?f ?A" unfolding inj_on_def by auto | 
|         |     55   qed | 
|         |     56   ultimately show "finite (UNIV // =tag=)" by (rule finite_imageD) | 
|         |     57 qed | 
|         |     58  | 
|         |     59 lemma refined_partition_finite: | 
|         |     60   assumes fnt: "finite (UNIV // R1)" | 
|         |     61   and refined: "R1 \<subseteq> R2" | 
|         |     62   and eq1: "equiv UNIV R1" and eq2: "equiv UNIV R2" | 
|         |     63   shows "finite (UNIV // R2)" | 
|         |     64 proof - | 
|         |     65   let ?f = "\<lambda>X. {R1 `` {x} | x. x \<in> X}"  | 
|         |     66     and ?A = "UNIV // R2" and ?B = "UNIV // R1" | 
|         |     67   have "?f ` ?A \<subseteq> Pow ?B" | 
|         |     68     unfolding image_def Pow_def quotient_def by auto | 
|         |     69   moreover | 
|         |     70   have "finite (Pow ?B)" using fnt by simp | 
|         |     71   ultimately   | 
|         |     72   have "finite (?f ` ?A)" by (rule finite_subset) | 
|         |     73   moreover | 
|         |     74   have "inj_on ?f ?A" | 
|         |     75   proof - | 
|         |     76     { fix X Y | 
|         |     77       assume X_in: "X \<in> ?A" and Y_in: "Y \<in> ?A" and eq_f: "?f X = ?f Y" | 
|         |     78       from quotientE [OF X_in] | 
|         |     79       obtain x where "X = R2 `` {x}" by blast | 
|         |     80       with equiv_class_self[OF eq2] have x_in: "x \<in> X" by simp | 
|         |     81       then have "R1 ``{x} \<in> ?f X" by auto | 
|         |     82       with eq_f have "R1 `` {x} \<in> ?f Y" by simp | 
|         |     83       then obtain y  | 
|         |     84         where y_in: "y \<in> Y" and eq_r1_xy: "R1 `` {x} = R1 `` {y}" by auto | 
|         |     85       with eq_equiv_class[OF _ eq1]  | 
|         |     86       have "(x, y) \<in> R1" by blast | 
|         |     87       with refined have "(x, y) \<in> R2" by auto | 
|         |     88       with quotient_eqI [OF eq2 X_in Y_in x_in y_in] | 
|         |     89       have "X = Y" . | 
|         |     90     }  | 
|         |     91     then show "inj_on ?f ?A" unfolding inj_on_def by blast  | 
|         |     92   qed | 
|         |     93   ultimately show "finite (UNIV // R2)" by (rule finite_imageD) | 
|         |     94 qed | 
|         |     95  | 
|         |     96 lemma tag_finite_imageD: | 
|         |     97   assumes rng_fnt: "finite (range tag)"  | 
|         |     98   and same_tag_eqvt: "\<And>m n. tag m = tag n \<Longrightarrow> m \<approx>A n" | 
|         |     99   shows "finite (UNIV // \<approx>A)" | 
|         |    100 proof (rule_tac refined_partition_finite [of "=tag="]) | 
|         |    101   show "finite (UNIV // =tag=)" by (rule finite_eq_tag_rel[OF rng_fnt]) | 
|         |    102 next | 
|         |    103   from same_tag_eqvt | 
|         |    104   show "=tag= \<subseteq> \<approx>A" unfolding tag_eq_rel_def str_eq_def | 
|         |    105     by auto | 
|         |    106 next | 
|         |    107   show "equiv UNIV =tag=" | 
|         |    108     unfolding equiv_def tag_eq_rel_def refl_on_def sym_def trans_def | 
|         |    109     by auto | 
|         |    110 next | 
|         |    111   show "equiv UNIV (\<approx>A)"  | 
|         |    112     unfolding equiv_def str_eq_rel_def sym_def refl_on_def trans_def | 
|         |    113     by blast | 
|         |    114 qed | 
|         |    115  | 
|         |    116  | 
|         |    117 subsection {* The proof *} | 
|         |    118  | 
|         |    119 subsubsection {* The base case for @{const "NULL"} *} | 
|         |    120  | 
|         |    121 lemma quot_null_eq: | 
|         |    122   shows "UNIV // \<approx>{} = {UNIV}" | 
|         |    123 unfolding quotient_def Image_def str_eq_rel_def by auto | 
|         |    124  | 
|         |    125 lemma quot_null_finiteI [intro]: | 
|         |    126   shows "finite (UNIV // \<approx>{})" | 
|         |    127 unfolding quot_null_eq by simp | 
|         |    128  | 
|         |    129  | 
|         |    130 subsubsection {* The base case for @{const "EMPTY"} *} | 
|         |    131  | 
|         |    132 lemma quot_empty_subset: | 
|         |    133   shows "UNIV // \<approx>{[]} \<subseteq> {{[]}, UNIV - {[]}}" | 
|         |    134 proof | 
|         |    135   fix x | 
|         |    136   assume "x \<in> UNIV // \<approx>{[]}" | 
|         |    137   then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[]}}"  | 
|         |    138     unfolding quotient_def Image_def by blast | 
|         |    139   show "x \<in> {{[]}, UNIV - {[]}}" | 
|         |    140   proof (cases "y = []") | 
|         |    141     case True with h | 
|         |    142     have "x = {[]}" by (auto simp: str_eq_rel_def) | 
|         |    143     thus ?thesis by simp | 
|         |    144   next | 
|         |    145     case False with h | 
|         |    146     have "x = UNIV - {[]}" by (auto simp: str_eq_rel_def) | 
|         |    147     thus ?thesis by simp | 
|         |    148   qed | 
|         |    149 qed | 
|         |    150  | 
|         |    151 lemma quot_empty_finiteI [intro]: | 
|         |    152   shows "finite (UNIV // \<approx>{[]})" | 
|         |    153 by (rule finite_subset[OF quot_empty_subset]) (simp) | 
|         |    154  | 
|         |    155  | 
|         |    156 subsubsection {* The base case for @{const "CHAR"} *} | 
|         |    157  | 
|         |    158 lemma quot_char_subset: | 
|         |    159   "UNIV // (\<approx>{[c]}) \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}" | 
|         |    160 proof  | 
|         |    161   fix x  | 
|         |    162   assume "x \<in> UNIV // \<approx>{[c]}" | 
|         |    163   then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[c]}}"  | 
|         |    164     unfolding quotient_def Image_def by blast | 
|         |    165   show "x \<in> {{[]},{[c]}, UNIV - {[], [c]}}" | 
|         |    166   proof - | 
|         |    167     { assume "y = []" hence "x = {[]}" using h  | 
|         |    168         by (auto simp:str_eq_rel_def) }  | 
|         |    169     moreover  | 
|         |    170     { assume "y = [c]" hence "x = {[c]}" using h  | 
|         |    171         by (auto dest!:spec[where x = "[]"] simp:str_eq_rel_def) }  | 
|         |    172     moreover  | 
|         |    173     { assume "y \<noteq> []" and "y \<noteq> [c]" | 
|         |    174       hence "\<forall> z. (y @ z) \<noteq> [c]" by (case_tac y, auto) | 
|         |    175       moreover have "\<And> p. (p \<noteq> [] \<and> p \<noteq> [c]) = (\<forall> q. p @ q \<noteq> [c])"  | 
|         |    176         by (case_tac p, auto) | 
|         |    177       ultimately have "x = UNIV - {[],[c]}" using h | 
|         |    178         by (auto simp add:str_eq_rel_def) | 
|         |    179     }  | 
|         |    180     ultimately show ?thesis by blast | 
|         |    181   qed | 
|         |    182 qed | 
|         |    183  | 
|         |    184 lemma quot_char_finiteI [intro]: | 
|         |    185   shows "finite (UNIV // \<approx>{[c]})" | 
|         |    186 by (rule finite_subset[OF quot_char_subset]) (simp) | 
|         |    187  | 
|         |    188  | 
|         |    189 subsubsection {* The inductive case for @{const ALT} *} | 
|         |    190  | 
|         |    191 definition  | 
|         |    192   tag_str_ALT :: "lang \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> (lang \<times> lang)" | 
|         |    193 where | 
|         |    194   "tag_str_ALT A B \<equiv> (\<lambda>x. (\<approx>A `` {x}, \<approx>B `` {x}))" | 
|         |    195  | 
|         |    196 lemma quot_union_finiteI [intro]: | 
|         |    197   assumes finite1: "finite (UNIV // \<approx>A)" | 
|         |    198   and     finite2: "finite (UNIV // \<approx>B)" | 
|         |    199   shows "finite (UNIV // \<approx>(A \<union> B))" | 
|         |    200 proof (rule_tac tag = "tag_str_ALT A B" in tag_finite_imageD) | 
|         |    201   have "finite ((UNIV // \<approx>A) \<times> (UNIV // \<approx>B))"  | 
|         |    202     using finite1 finite2 by auto | 
|         |    203   then show "finite (range (tag_str_ALT A B))" | 
|         |    204     unfolding tag_str_ALT_def quotient_def | 
|         |    205     by (rule rev_finite_subset) (auto) | 
|         |    206 next | 
|         |    207   show "\<And>x y. tag_str_ALT A B x = tag_str_ALT A B y \<Longrightarrow> x \<approx>(A \<union> B) y" | 
|         |    208     unfolding tag_str_ALT_def | 
|         |    209     unfolding str_eq_def | 
|         |    210     unfolding str_eq_rel_def | 
|         |    211     by auto | 
|         |    212 qed | 
|         |    213  | 
|         |    214  | 
|         |    215 subsubsection {* The inductive case for @{text "SEQ"}*} | 
|         |    216  | 
|         |    217 definition  | 
|         |    218   tag_str_SEQ :: "lang \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> (lang \<times> lang set)" | 
|         |    219 where | 
|         |    220   "tag_str_SEQ L1 L2 \<equiv> | 
|         |    221      (\<lambda>x. (\<approx>L1 `` {x}, {(\<approx>L2 `` {x - xa}) | xa.  xa \<le> x \<and> xa \<in> L1}))" | 
|         |    222  | 
|         |    223 lemma Seq_in_cases: | 
|         |    224   assumes "x @ z \<in> A \<cdot> B" | 
|         |    225   shows "(\<exists> x' \<le> x. x' \<in> A \<and> (x - x') @ z \<in> B) \<or>  | 
|         |    226          (\<exists> z' \<le> z. (x @ z') \<in> A \<and> (z - z') \<in> B)" | 
|         |    227 using assms | 
|         |    228 unfolding Seq_def prefix_def | 
|         |    229 by (auto simp add: append_eq_append_conv2) | 
|         |    230  | 
|         |    231 lemma tag_str_SEQ_injI: | 
|         |    232   assumes eq_tag: "tag_str_SEQ A B x = tag_str_SEQ A B y"  | 
|         |    233   shows "x \<approx>(A \<cdot> B) y" | 
|         |    234 proof - | 
|         |    235   { fix x y z | 
|         |    236     assume xz_in_seq: "x @ z \<in> A \<cdot> B" | 
|         |    237     and tag_xy: "tag_str_SEQ A B x = tag_str_SEQ A B y" | 
|         |    238     have"y @ z \<in> A \<cdot> B"  | 
|         |    239     proof - | 
|         |    240       { (* first case with x' in A and (x - x') @ z in B *) | 
|         |    241         fix x' | 
|         |    242         assume h1: "x' \<le> x" and h2: "x' \<in> A" and h3: "(x - x') @ z \<in> B" | 
|         |    243         obtain y'  | 
|         |    244           where "y' \<le> y"  | 
|         |    245           and "y' \<in> A"  | 
|         |    246           and "(y - y') @ z \<in> B" | 
|         |    247         proof - | 
|         |    248           have "{\<approx>B `` {x - x'} |x'. x' \<le> x \<and> x' \<in> A} =  | 
|         |    249                 {\<approx>B `` {y - y'} |y'. y' \<le> y \<and> y' \<in> A}" (is "?Left = ?Right") | 
|         |    250             using tag_xy unfolding tag_str_SEQ_def by simp | 
|         |    251           moreover  | 
|         |    252 	  have "\<approx>B `` {x - x'} \<in> ?Left" using h1 h2 by auto | 
|         |    253           ultimately  | 
|         |    254 	  have "\<approx>B `` {x - x'} \<in> ?Right" by simp | 
|         |    255           then obtain y'  | 
|         |    256             where eq_xy': "\<approx>B `` {x - x'} = \<approx>B `` {y - y'}"  | 
|         |    257             and pref_y': "y' \<le> y" and y'_in: "y' \<in> A" | 
|         |    258             by simp blast | 
|         |    259 	   | 
|         |    260 	  have "(x - x')  \<approx>B (y - y')" using eq_xy' | 
|         |    261             unfolding Image_def str_eq_rel_def str_eq_def by auto | 
|         |    262           with h3 have "(y - y') @ z \<in> B"  | 
|         |    263 	    unfolding str_eq_rel_def str_eq_def by simp | 
|         |    264           with pref_y' y'_in  | 
|         |    265           show ?thesis using that by blast | 
|         |    266         qed | 
|         |    267 	then have "y @ z \<in> A \<cdot> B" by (erule_tac prefixE) (auto simp: Seq_def) | 
|         |    268       }  | 
|         |    269       moreover  | 
|         |    270       { (* second case with x @ z' in A and z - z' in B *) | 
|         |    271         fix z' | 
|         |    272         assume h1: "z' \<le> z" and h2: "(x @ z') \<in> A" and h3: "z - z' \<in> B" | 
|         |    273 	 have "\<approx>A `` {x} = \<approx>A `` {y}"  | 
|         |    274            using tag_xy unfolding tag_str_SEQ_def by simp | 
|         |    275          with h2 have "y @ z' \<in> A" | 
|         |    276             unfolding Image_def str_eq_rel_def str_eq_def by auto | 
|         |    277         with h1 h3 have "y @ z \<in> A \<cdot> B" | 
|         |    278 	  unfolding prefix_def Seq_def | 
|         |    279 	  by (auto) (metis append_assoc) | 
|         |    280       } | 
|         |    281       ultimately show "y @ z \<in> A \<cdot> B"  | 
|         |    282 	using Seq_in_cases [OF xz_in_seq] by blast | 
|         |    283     qed | 
|         |    284   } | 
|         |    285   from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]] | 
|         |    286     show "x \<approx>(A \<cdot> B) y" unfolding str_eq_def str_eq_rel_def by blast | 
|         |    287 qed  | 
|         |    288  | 
|         |    289 lemma quot_seq_finiteI [intro]: | 
|         |    290   fixes L1 L2::"lang" | 
|         |    291   assumes fin1: "finite (UNIV // \<approx>L1)"  | 
|         |    292   and     fin2: "finite (UNIV // \<approx>L2)"  | 
|         |    293   shows "finite (UNIV // \<approx>(L1 \<cdot> L2))" | 
|         |    294 proof (rule_tac tag = "tag_str_SEQ L1 L2" in tag_finite_imageD) | 
|         |    295   show "\<And>x y. tag_str_SEQ L1 L2 x = tag_str_SEQ L1 L2 y \<Longrightarrow> x \<approx>(L1 \<cdot> L2) y" | 
|         |    296     by (rule tag_str_SEQ_injI) | 
|         |    297 next | 
|         |    298   have *: "finite ((UNIV // \<approx>L1) \<times> (Pow (UNIV // \<approx>L2)))"  | 
|         |    299     using fin1 fin2 by auto | 
|         |    300   show "finite (range (tag_str_SEQ L1 L2))"  | 
|         |    301     unfolding tag_str_SEQ_def | 
|         |    302     apply(rule finite_subset[OF _ *]) | 
|         |    303     unfolding quotient_def | 
|         |    304     by auto | 
|         |    305 qed | 
|         |    306  | 
|         |    307  | 
|         |    308 subsubsection {* The inductive case for @{const "STAR"} *} | 
|         |    309  | 
|         |    310 definition  | 
|         |    311   tag_str_STAR :: "lang \<Rightarrow> string \<Rightarrow> lang set" | 
|         |    312 where | 
|         |    313   "tag_str_STAR L1 \<equiv> (\<lambda>x. {\<approx>L1 `` {x - xa} | xa. xa < x \<and> xa \<in> L1\<star>})" | 
|         |    314  | 
|         |    315 text {* A technical lemma. *} | 
|         |    316 lemma finite_set_has_max: "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow>  | 
|         |    317            (\<exists> max \<in> A. \<forall> a \<in> A. f a <= (f max :: nat))" | 
|         |    318 proof (induct rule:finite.induct) | 
|         |    319   case emptyI thus ?case by simp | 
|         |    320 next | 
|         |    321   case (insertI A a) | 
|         |    322   show ?case | 
|         |    323   proof (cases "A = {}") | 
|         |    324     case True thus ?thesis by (rule_tac x = a in bexI, auto) | 
|         |    325   next | 
|         |    326     case False | 
|         |    327     with insertI.hyps and False   | 
|         |    328     obtain max  | 
|         |    329       where h1: "max \<in> A"  | 
|         |    330       and h2: "\<forall>a\<in>A. f a \<le> f max" by blast | 
|         |    331     show ?thesis | 
|         |    332     proof (cases "f a \<le> f max") | 
|         |    333       assume "f a \<le> f max" | 
|         |    334       with h1 h2 show ?thesis by (rule_tac x = max in bexI, auto) | 
|         |    335     next | 
|         |    336       assume "\<not> (f a \<le> f max)" | 
|         |    337       thus ?thesis using h2 by (rule_tac x = a in bexI, auto) | 
|         |    338     qed | 
|         |    339   qed | 
|         |    340 qed | 
|         |    341  | 
|         |    342  | 
|         |    343 text {* The following is a technical lemma, which helps to show the range finiteness of tag function. *} | 
|         |    344  | 
|         |    345 lemma finite_strict_prefix_set: "finite {xa. xa < (x::string)}" | 
|         |    346 apply (induct x rule:rev_induct, simp) | 
|         |    347 apply (subgoal_tac "{xa. xa < xs @ [x]} = {xa. xa < xs} \<union> {xs}") | 
|         |    348 by (auto simp:strict_prefix_def) | 
|         |    349  | 
|         |    350  | 
|         |    351 lemma tag_str_STAR_injI: | 
|         |    352   assumes eq_tag: "tag_str_STAR L\<^isub>1 v = tag_str_STAR L\<^isub>1 w" | 
|         |    353   shows "v \<approx>(L\<^isub>1\<star>) w" | 
|         |    354 proof- | 
|         |    355   { fix x y z | 
|         |    356     assume xz_in_star: "x @ z \<in> L\<^isub>1\<star>"  | 
|         |    357       and tag_xy: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y" | 
|         |    358     have "y @ z \<in> L\<^isub>1\<star>" | 
|         |    359     proof(cases "x = []") | 
|         |    360       case True | 
|         |    361       with tag_xy have "y = []"  | 
|         |    362         by (auto simp add: tag_str_STAR_def strict_prefix_def) | 
|         |    363       thus ?thesis using xz_in_star True by simp | 
|         |    364     next | 
|         |    365       case False | 
|         |    366       let ?S = "{xa. xa < x \<and> xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star>}" | 
|         |    367       have "finite ?S" | 
|         |    368         by (rule_tac B = "{xa. xa < x}" in finite_subset,  | 
|         |    369           auto simp:finite_strict_prefix_set) | 
|         |    370       moreover have "?S \<noteq> {}" using False xz_in_star | 
|         |    371         by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def) | 
|         |    372       ultimately have "\<exists> xa_max \<in> ?S. \<forall> xa \<in> ?S. length xa \<le> length xa_max"  | 
|         |    373         using finite_set_has_max by blast | 
|         |    374       then obtain xa_max  | 
|         |    375         where h1: "xa_max < x"  | 
|         |    376         and h2: "xa_max \<in> L\<^isub>1\<star>"  | 
|         |    377         and h3: "(x - xa_max) @ z \<in> L\<^isub>1\<star>"  | 
|         |    378         and h4:"\<forall> xa < x. xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star>   | 
|         |    379                                      \<longrightarrow> length xa \<le> length xa_max" | 
|         |    380         by blast | 
|         |    381       obtain ya  | 
|         |    382         where h5: "ya < y" and h6: "ya \<in> L\<^isub>1\<star>"  | 
|         |    383         and eq_xya: "(x - xa_max) \<approx>L\<^isub>1 (y - ya)" | 
|         |    384       proof- | 
|         |    385         from tag_xy have "{\<approx>L\<^isub>1 `` {x - xa} |xa. xa < x \<and> xa \<in> L\<^isub>1\<star>} =  | 
|         |    386           {\<approx>L\<^isub>1 `` {y - xa} |xa. xa < y \<and> xa \<in> L\<^isub>1\<star>}" (is "?left = ?right") | 
|         |    387           by (auto simp:tag_str_STAR_def) | 
|         |    388         moreover have "\<approx>L\<^isub>1 `` {x - xa_max} \<in> ?left" using h1 h2 by auto | 
|         |    389         ultimately have "\<approx>L\<^isub>1 `` {x - xa_max} \<in> ?right" by simp | 
|         |    390         thus ?thesis using that  | 
|         |    391           apply (simp add:Image_def str_eq_rel_def str_eq_def) by blast | 
|         |    392       qed  | 
|         |    393       have "(y - ya) @ z \<in> L\<^isub>1\<star>"  | 
|         |    394       proof- | 
|         |    395         obtain za zb where eq_zab: "z = za @ zb"  | 
|         |    396           and l_za: "(y - ya)@za \<in> L\<^isub>1" and ls_zb: "zb \<in> L\<^isub>1\<star>" | 
|         |    397         proof - | 
|         |    398           from h1 have "(x - xa_max) @ z \<noteq> []"  | 
|         |    399             by (auto simp:strict_prefix_def elim:prefixE) | 
|         |    400           from star_decom [OF h3 this] | 
|         |    401           obtain a b where a_in: "a \<in> L\<^isub>1"  | 
|         |    402             and a_neq: "a \<noteq> []" and b_in: "b \<in> L\<^isub>1\<star>"  | 
|         |    403             and ab_max: "(x - xa_max) @ z = a @ b" by blast | 
|         |    404           let ?za = "a - (x - xa_max)" and ?zb = "b" | 
|         |    405           have pfx: "(x - xa_max) \<le> a" (is "?P1")  | 
|         |    406             and eq_z: "z = ?za @ ?zb" (is "?P2") | 
|         |    407           proof - | 
|         |    408             have "((x - xa_max) \<le> a \<and> (a - (x - xa_max)) @ b = z) \<or>  | 
|         |    409               (a < (x - xa_max) \<and> ((x - xa_max) - a) @ z = b)"  | 
|         |    410               using append_eq_dest[OF ab_max] by (auto simp:strict_prefix_def) | 
|         |    411             moreover { | 
|         |    412               assume np: "a < (x - xa_max)"  | 
|         |    413                 and b_eqs: "((x - xa_max) - a) @ z = b" | 
|         |    414               have "False" | 
|         |    415               proof - | 
|         |    416                 let ?xa_max' = "xa_max @ a" | 
|         |    417                 have "?xa_max' < x"  | 
|         |    418                   using np h1 by (clarsimp simp:strict_prefix_def diff_prefix)  | 
|         |    419                 moreover have "?xa_max' \<in> L\<^isub>1\<star>"  | 
|         |    420                   using a_in h2 by (simp add:star_intro3)  | 
|         |    421                 moreover have "(x - ?xa_max') @ z \<in> L\<^isub>1\<star>"  | 
|         |    422                   using b_eqs b_in np h1 by (simp add:diff_diff_append) | 
|         |    423                 moreover have "\<not> (length ?xa_max' \<le> length xa_max)"  | 
|         |    424                   using a_neq by simp | 
|         |    425                 ultimately show ?thesis using h4 by blast | 
|         |    426               qed } | 
|         |    427             ultimately show ?P1 and ?P2 by auto | 
|         |    428           qed | 
|         |    429           hence "(x - xa_max)@?za \<in> L\<^isub>1" using a_in by (auto elim:prefixE) | 
|         |    430           with eq_xya have "(y - ya) @ ?za \<in> L\<^isub>1"  | 
|         |    431             by (auto simp:str_eq_def str_eq_rel_def) | 
|         |    432            with eq_z and b_in  | 
|         |    433           show ?thesis using that by blast | 
|         |    434         qed | 
|         |    435         have "((y - ya) @ za) @ zb \<in> L\<^isub>1\<star>" using  l_za ls_zb by blast | 
|         |    436         with eq_zab show ?thesis by simp | 
|         |    437       qed | 
|         |    438       with h5 h6 show ?thesis  | 
|         |    439         by (drule_tac star_intro1) (auto simp:strict_prefix_def elim: prefixE) | 
|         |    440     qed | 
|         |    441   }  | 
|         |    442   from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]] | 
|         |    443     show  ?thesis unfolding str_eq_def str_eq_rel_def by blast | 
|         |    444 qed | 
|         |    445  | 
|         |    446 lemma quot_star_finiteI [intro]: | 
|         |    447   assumes finite1: "finite (UNIV // \<approx>A)" | 
|         |    448   shows "finite (UNIV // \<approx>(A\<star>))" | 
|         |    449 proof (rule_tac tag = "tag_str_STAR A" in tag_finite_imageD) | 
|         |    450   show "\<And>x y. tag_str_STAR A x = tag_str_STAR A y \<Longrightarrow> x \<approx>(A\<star>) y" | 
|         |    451     by (rule tag_str_STAR_injI) | 
|         |    452 next | 
|         |    453   have *: "finite (Pow (UNIV // \<approx>A))"  | 
|         |    454     using finite1 by auto | 
|         |    455   show "finite (range (tag_str_STAR A))" | 
|         |    456     unfolding tag_str_STAR_def | 
|         |    457     apply(rule finite_subset[OF _ *]) | 
|         |    458     unfolding quotient_def | 
|         |    459     by auto | 
|         |    460 qed | 
|         |    461  | 
|         |    462 subsubsection{* The conclusion *} | 
|         |    463  | 
|         |    464 lemma Myhill_Nerode2: | 
|         |    465   shows "finite (UNIV // \<approx>(L_rexp r))" | 
|         |    466 by (induct r) (auto) | 
|         |    467  | 
|         |    468  | 
|         |    469 theorem Myhill_Nerode: | 
|         |    470   shows "(\<exists>r. A = L_rexp r) \<longleftrightarrow> finite (UNIV // \<approx>A)" | 
|         |    471 using Myhill_Nerode1 Myhill_Nerode2 by auto | 
|         |    472  | 
|         |    473 end |