|
1 theory Derivs |
|
2 imports Myhill_2 |
|
3 begin |
|
4 |
|
5 section {* Left-Quotients and Derivatives *} |
|
6 |
|
7 subsection {* Left-Quotients *} |
|
8 |
|
9 definition |
|
10 Delta :: "lang \<Rightarrow> lang" |
|
11 where |
|
12 "Delta A = (if [] \<in> A then {[]} else {})" |
|
13 |
|
14 definition |
|
15 Der :: "char \<Rightarrow> lang \<Rightarrow> lang" |
|
16 where |
|
17 "Der c A \<equiv> {s. [c] @ s \<in> A}" |
|
18 |
|
19 definition |
|
20 Ders :: "string \<Rightarrow> lang \<Rightarrow> lang" |
|
21 where |
|
22 "Ders s A \<equiv> {s'. s @ s' \<in> A}" |
|
23 |
|
24 definition |
|
25 Ders_set :: "lang \<Rightarrow> lang \<Rightarrow> lang" |
|
26 where |
|
27 "Ders_set A B \<equiv> {s' | s s'. s @ s' \<in> B \<and> s \<in> A}" |
|
28 |
|
29 lemma Ders_set_Ders: |
|
30 shows "Ders_set A B = (\<Union>s \<in> A. Ders s B)" |
|
31 unfolding Ders_set_def Ders_def |
|
32 by auto |
|
33 |
|
34 lemma Der_null [simp]: |
|
35 shows "Der c {} = {}" |
|
36 unfolding Der_def |
|
37 by auto |
|
38 |
|
39 lemma Der_empty [simp]: |
|
40 shows "Der c {[]} = {}" |
|
41 unfolding Der_def |
|
42 by auto |
|
43 |
|
44 lemma Der_char [simp]: |
|
45 shows "Der c {[d]} = (if c = d then {[]} else {})" |
|
46 unfolding Der_def |
|
47 by auto |
|
48 |
|
49 lemma Der_union [simp]: |
|
50 shows "Der c (A \<union> B) = Der c A \<union> Der c B" |
|
51 unfolding Der_def |
|
52 by auto |
|
53 |
|
54 lemma Der_seq [simp]: |
|
55 shows "Der c (A \<cdot> B) = (Der c A) \<cdot> B \<union> (Delta A \<cdot> Der c B)" |
|
56 unfolding Der_def Delta_def |
|
57 unfolding Seq_def |
|
58 by (auto simp add: Cons_eq_append_conv) |
|
59 |
|
60 lemma Der_star [simp]: |
|
61 shows "Der c (A\<star>) = (Der c A) \<cdot> A\<star>" |
|
62 proof - |
|
63 have incl: "Delta A \<cdot> Der c (A\<star>) \<subseteq> (Der c A) \<cdot> A\<star>" |
|
64 unfolding Der_def Delta_def Seq_def |
|
65 apply(auto) |
|
66 apply(drule star_decom) |
|
67 apply(auto simp add: Cons_eq_append_conv) |
|
68 done |
|
69 |
|
70 have "Der c (A\<star>) = Der c ({[]} \<union> A \<cdot> A\<star>)" |
|
71 by (simp only: star_cases[symmetric]) |
|
72 also have "... = Der c (A \<cdot> A\<star>)" |
|
73 by (simp only: Der_union Der_empty) (simp) |
|
74 also have "... = (Der c A) \<cdot> A\<star> \<union> (Delta A \<cdot> Der c (A\<star>))" |
|
75 by simp |
|
76 also have "... = (Der c A) \<cdot> A\<star>" |
|
77 using incl by auto |
|
78 finally show "Der c (A\<star>) = (Der c A) \<cdot> A\<star>" . |
|
79 qed |
|
80 |
|
81 |
|
82 lemma Ders_singleton: |
|
83 shows "Ders [c] A = Der c A" |
|
84 unfolding Der_def Ders_def |
|
85 by simp |
|
86 |
|
87 lemma Ders_append: |
|
88 shows "Ders (s1 @ s2) A = Ders s2 (Ders s1 A)" |
|
89 unfolding Ders_def by simp |
|
90 |
|
91 lemma MN_Rel_Ders: |
|
92 shows "x \<approx>A y \<longleftrightarrow> Ders x A = Ders y A" |
|
93 unfolding Ders_def str_eq_def str_eq_rel_def |
|
94 by auto |
|
95 |
|
96 subsection {* Brozowsky's derivatives of regular expressions *} |
|
97 |
|
98 fun |
|
99 nullable :: "rexp \<Rightarrow> bool" |
|
100 where |
|
101 "nullable (NULL) = False" |
|
102 | "nullable (EMPTY) = True" |
|
103 | "nullable (CHAR c) = False" |
|
104 | "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)" |
|
105 | "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)" |
|
106 | "nullable (STAR r) = True" |
|
107 |
|
108 fun |
|
109 der :: "char \<Rightarrow> rexp \<Rightarrow> rexp" |
|
110 where |
|
111 "der c (NULL) = NULL" |
|
112 | "der c (EMPTY) = NULL" |
|
113 | "der c (CHAR c') = (if c = c' then EMPTY else NULL)" |
|
114 | "der c (ALT r1 r2) = ALT (der c r1) (der c r2)" |
|
115 | "der c (SEQ r1 r2) = ALT (SEQ (der c r1) r2) (if nullable r1 then der c r2 else NULL)" |
|
116 | "der c (STAR r) = SEQ (der c r) (STAR r)" |
|
117 |
|
118 function |
|
119 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp" |
|
120 where |
|
121 "ders [] r = r" |
|
122 | "ders (s @ [c]) r = der c (ders s r)" |
|
123 by (auto) (metis rev_cases) |
|
124 |
|
125 termination |
|
126 by (relation "measure (length o fst)") (auto) |
|
127 |
|
128 lemma Delta_nullable: |
|
129 shows "Delta (L_rexp r) = (if nullable r then {[]} else {})" |
|
130 unfolding Delta_def |
|
131 by (induct r) (auto simp add: Seq_def split: if_splits) |
|
132 |
|
133 lemma Der_der: |
|
134 fixes r::rexp |
|
135 shows "Der c (L_rexp r) = L_rexp (der c r)" |
|
136 by (induct r) (simp_all add: Delta_nullable) |
|
137 |
|
138 lemma Ders_ders: |
|
139 fixes r::rexp |
|
140 shows "Ders s (L_rexp r) = L_rexp (ders s r)" |
|
141 apply(induct s rule: rev_induct) |
|
142 apply(simp add: Ders_def) |
|
143 apply(simp only: ders.simps) |
|
144 apply(simp only: Ders_append) |
|
145 apply(simp only: Ders_singleton) |
|
146 apply(simp only: Der_der) |
|
147 done |
|
148 |
|
149 |
|
150 subsection {* Antimirov's Partial Derivatives *} |
|
151 |
|
152 abbreviation |
|
153 "SEQS R r \<equiv> {SEQ r' r | r'. r' \<in> R}" |
|
154 |
|
155 fun |
|
156 pder :: "char \<Rightarrow> rexp \<Rightarrow> rexp set" |
|
157 where |
|
158 "pder c NULL = {NULL}" |
|
159 | "pder c EMPTY = {NULL}" |
|
160 | "pder c (CHAR c') = (if c = c' then {EMPTY} else {NULL})" |
|
161 | "pder c (ALT r1 r2) = (pder c r1) \<union> (pder c r2)" |
|
162 | "pder c (SEQ r1 r2) = SEQS (pder c r1) r2 \<union> (if nullable r1 then pder c r2 else {})" |
|
163 | "pder c (STAR r) = SEQS (pder c r) (STAR r)" |
|
164 |
|
165 abbreviation |
|
166 "pder_set c R \<equiv> \<Union>r \<in> R. pder c r" |
|
167 |
|
168 function |
|
169 pders :: "string \<Rightarrow> rexp \<Rightarrow> rexp set" |
|
170 where |
|
171 "pders [] r = {r}" |
|
172 | "pders (s @ [c]) r = pder_set c (pders s r)" |
|
173 by (auto) (metis rev_cases) |
|
174 |
|
175 termination |
|
176 by (relation "measure (length o fst)") (auto) |
|
177 |
|
178 abbreviation |
|
179 "pders_set A r \<equiv> \<Union>s \<in> A. pders s r" |
|
180 |
|
181 lemma pders_append: |
|
182 "pders (s1 @ s2) r = \<Union> (pders s2) ` (pders s1 r)" |
|
183 apply(induct s2 arbitrary: s1 r rule: rev_induct) |
|
184 apply(simp) |
|
185 apply(subst append_assoc[symmetric]) |
|
186 apply(simp only: pders.simps) |
|
187 apply(auto) |
|
188 done |
|
189 |
|
190 lemma pders_singleton: |
|
191 "pders [c] r = pder c r" |
|
192 apply(subst append_Nil[symmetric]) |
|
193 apply(simp only: pders.simps) |
|
194 apply(simp) |
|
195 done |
|
196 |
|
197 lemma pder_set_lang: |
|
198 shows "(\<Union> (L_rexp ` pder_set c R)) = (\<Union>r \<in> R. (\<Union>L_rexp ` (pder c r)))" |
|
199 unfolding image_def |
|
200 by auto |
|
201 |
|
202 lemma |
|
203 shows seq_UNION_left: "B \<cdot> (\<Union>n\<in>C. A n) = (\<Union>n\<in>C. B \<cdot> A n)" |
|
204 and seq_UNION_right: "(\<Union>n\<in>C. A n) \<cdot> B = (\<Union>n\<in>C. A n \<cdot> B)" |
|
205 unfolding Seq_def by auto |
|
206 |
|
207 lemma Der_pder: |
|
208 fixes r::rexp |
|
209 shows "Der c (L_rexp r) = \<Union> L_rexp ` (pder c r)" |
|
210 by (induct r) (auto simp add: Delta_nullable seq_UNION_right) |
|
211 |
|
212 lemma Ders_pders: |
|
213 fixes r::rexp |
|
214 shows "Ders s (L_rexp r) = \<Union> L_rexp ` (pders s r)" |
|
215 proof (induct s rule: rev_induct) |
|
216 case (snoc c s) |
|
217 have ih: "Ders s (L_rexp r) = \<Union> L_rexp ` (pders s r)" by fact |
|
218 have "Ders (s @ [c]) (L_rexp r) = Ders [c] (Ders s (L_rexp r))" |
|
219 by (simp add: Ders_append) |
|
220 also have "\<dots> = Der c (\<Union> L_rexp ` (pders s r))" using ih |
|
221 by (simp add: Ders_singleton) |
|
222 also have "\<dots> = (\<Union>r\<in>pders s r. Der c (L_rexp r))" |
|
223 unfolding Der_def image_def by auto |
|
224 also have "\<dots> = (\<Union>r\<in>pders s r. (\<Union> L_rexp ` (pder c r)))" |
|
225 by (simp add: Der_pder) |
|
226 also have "\<dots> = (\<Union>L_rexp ` (pder_set c (pders s r)))" |
|
227 by (simp add: pder_set_lang) |
|
228 also have "\<dots> = (\<Union>L_rexp ` (pders (s @ [c]) r))" |
|
229 by simp |
|
230 finally show "Ders (s @ [c]) (L_rexp r) = \<Union> L_rexp ` pders (s @ [c]) r" . |
|
231 qed (simp add: Ders_def) |
|
232 |
|
233 lemma Ders_set_pders_set: |
|
234 fixes r::rexp |
|
235 shows "Ders_set A (L_rexp r) = (\<Union> L_rexp ` (pders_set A r))" |
|
236 by (simp add: Ders_set_Ders Ders_pders) |
|
237 |
|
238 lemma pders_NULL [simp]: |
|
239 shows "pders s NULL = {NULL}" |
|
240 by (induct s rule: rev_induct) (simp_all) |
|
241 |
|
242 lemma pders_EMPTY [simp]: |
|
243 shows "pders s EMPTY = (if s = [] then {EMPTY} else {NULL})" |
|
244 by (induct s rule: rev_induct) (auto) |
|
245 |
|
246 lemma pders_CHAR [simp]: |
|
247 shows "pders s (CHAR c) = (if s = [] then {CHAR c} else (if s = [c] then {EMPTY} else {NULL}))" |
|
248 by (induct s rule: rev_induct) (auto) |
|
249 |
|
250 lemma pders_ALT [simp]: |
|
251 shows "pders s (ALT r1 r2) = (if s = [] then {ALT r1 r2} else (pders s r1) \<union> (pders s r2))" |
|
252 by (induct s rule: rev_induct) (auto) |
|
253 |
|
254 definition |
|
255 "Suf s \<equiv> {v. v \<noteq> [] \<and> (\<exists>u. u @ v = s)}" |
|
256 |
|
257 lemma Suf: |
|
258 shows "Suf (s @ [c]) = (Suf s) \<cdot> {[c]} \<union> {[c]}" |
|
259 unfolding Suf_def Seq_def |
|
260 by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv) |
|
261 |
|
262 lemma Suf_Union: |
|
263 shows "(\<Union>v \<in> Suf s \<cdot> {[c]}. P v) = (\<Union>v \<in> Suf s. P (v @ [c]))" |
|
264 by (auto simp add: Seq_def) |
|
265 |
|
266 lemma inclusion1: |
|
267 shows "pder_set c (SEQS R r2) \<subseteq> SEQS (pder_set c R) r2 \<union> (pder c r2)" |
|
268 apply(auto simp add: if_splits) |
|
269 apply(blast) |
|
270 done |
|
271 |
|
272 lemma pders_SEQ: |
|
273 shows "pders s (SEQ r1 r2) \<subseteq> SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2)" |
|
274 proof (induct s rule: rev_induct) |
|
275 case (snoc c s) |
|
276 have ih: "pders s (SEQ r1 r2) \<subseteq> SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2)" |
|
277 by fact |
|
278 have "pders (s @ [c]) (SEQ r1 r2) = pder_set c (pders s (SEQ r1 r2))" by simp |
|
279 also have "\<dots> \<subseteq> pder_set c (SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2))" |
|
280 using ih by (auto) (blast) |
|
281 also have "\<dots> = pder_set c (SEQS (pders s r1) r2) \<union> pder_set c (\<Union>v \<in> Suf s. pders v r2)" |
|
282 by (simp) |
|
283 also have "\<dots> = pder_set c (SEQS (pders s r1) r2) \<union> (\<Union>v \<in> Suf s. pder_set c (pders v r2))" |
|
284 by (simp) |
|
285 also have "\<dots> \<subseteq> pder_set c (SEQS (pders s r1) r2) \<union> (pder c r2) \<union> (\<Union>v \<in> Suf s. pders (v @ [c]) r2)" |
|
286 by (auto) |
|
287 also have "\<dots> \<subseteq> SEQS (pder_set c (pders s r1)) r2 \<union> (pder c r2) \<union> (\<Union>v \<in> Suf s. pders (v @ [c]) r2)" |
|
288 using inclusion1 by blast |
|
289 also have "\<dots> = SEQS (pders (s @ [c]) r1) r2 \<union> (\<Union>v \<in> Suf (s @ [c]). pders v r2)" |
|
290 apply(subst (2) pders.simps) |
|
291 apply(simp only: Suf) |
|
292 apply(simp add: Suf_Union pders_singleton) |
|
293 apply(auto) |
|
294 done |
|
295 finally show ?case . |
|
296 qed (simp) |
|
297 |
|
298 lemma pders_STAR: |
|
299 assumes a: "s \<noteq> []" |
|
300 shows "pders s (STAR r) \<subseteq> (\<Union>v \<in> Suf s. SEQS (pders v r) (STAR r))" |
|
301 using a |
|
302 proof (induct s rule: rev_induct) |
|
303 case (snoc c s) |
|
304 have ih: "s \<noteq> [] \<Longrightarrow> pders s (STAR r) \<subseteq> (\<Union>v\<in>Suf s. SEQS (pders v r) (STAR r))" by fact |
|
305 { assume asm: "s \<noteq> []" |
|
306 have "pders (s @ [c]) (STAR r) = pder_set c (pders s (STAR r))" by simp |
|
307 also have "\<dots> \<subseteq> (pder_set c (\<Union>v\<in>Suf s. SEQS (pders v r) (STAR r)))" |
|
308 using ih[OF asm] by blast |
|
309 also have "\<dots> = (\<Union>v\<in>Suf s. pder_set c (SEQS (pders v r) (STAR r)))" |
|
310 by simp |
|
311 also have "\<dots> \<subseteq> (\<Union>v\<in>Suf s. (SEQS (pder_set c (pders v r)) (STAR r) \<union> pder c (STAR r)))" |
|
312 using inclusion1 by (auto split: if_splits) |
|
313 also have "\<dots> = (\<Union>v\<in>Suf s. (SEQS (pder_set c (pders v r)) (STAR r))) \<union> pder c (STAR r)" |
|
314 using asm by (auto simp add: Suf_def) |
|
315 also have "\<dots> = (\<Union>v\<in>Suf s. (SEQS (pders (v @ [c]) r) (STAR r))) \<union> (SEQS (pder c r) (STAR r))" |
|
316 by simp |
|
317 also have "\<dots> = (\<Union>v\<in>Suf (s @ [c]). (SEQS (pders v r) (STAR r)))" |
|
318 apply(simp only: Suf) |
|
319 apply(simp add: Suf_Union pders_singleton) |
|
320 apply(auto) |
|
321 done |
|
322 finally have ?case . |
|
323 } |
|
324 moreover |
|
325 { assume asm: "s = []" |
|
326 then have ?case |
|
327 apply(simp add: pders_singleton Suf_def) |
|
328 apply(auto) |
|
329 apply(rule_tac x="[c]" in exI) |
|
330 apply(simp add: pders_singleton) |
|
331 done |
|
332 } |
|
333 ultimately show ?case by blast |
|
334 qed (simp) |
|
335 |
|
336 abbreviation |
|
337 "UNIV1 \<equiv> UNIV - {[]}" |
|
338 |
|
339 lemma pders_set_NULL: |
|
340 shows "pders_set UNIV1 NULL = {NULL}" |
|
341 by auto |
|
342 |
|
343 lemma pders_set_EMPTY: |
|
344 shows "pders_set UNIV1 EMPTY = {NULL}" |
|
345 by (auto split: if_splits) |
|
346 |
|
347 lemma pders_set_CHAR: |
|
348 shows "pders_set UNIV1 (CHAR c) \<subseteq> {EMPTY, NULL}" |
|
349 by (auto split: if_splits) |
|
350 |
|
351 lemma pders_set_ALT: |
|
352 shows "pders_set UNIV1 (ALT r1 r2) = pders_set UNIV1 r1 \<union> pders_set UNIV1 r2" |
|
353 by auto |
|
354 |
|
355 lemma pders_set_SEQ_aux: |
|
356 assumes a: "s \<in> UNIV1" |
|
357 shows "pders_set (Suf s) r2 \<subseteq> pders_set UNIV1 r2" |
|
358 using a by (auto simp add: Suf_def) |
|
359 |
|
360 lemma pders_set_SEQ: |
|
361 shows "pders_set UNIV1 (SEQ r1 r2) \<subseteq> SEQS (pders_set UNIV1 r1) r2 \<union> pders_set UNIV1 r2" |
|
362 apply(rule UN_least) |
|
363 apply(rule subset_trans) |
|
364 apply(rule pders_SEQ) |
|
365 apply(simp) |
|
366 apply(rule conjI) |
|
367 apply(auto)[1] |
|
368 apply(rule subset_trans) |
|
369 apply(rule pders_set_SEQ_aux) |
|
370 apply(auto) |
|
371 done |
|
372 |
|
373 lemma pders_set_STAR: |
|
374 shows "pders_set UNIV1 (STAR r) \<subseteq> SEQS (pders_set UNIV1 r) (STAR r)" |
|
375 apply(rule UN_least) |
|
376 apply(rule subset_trans) |
|
377 apply(rule pders_STAR) |
|
378 apply(simp) |
|
379 apply(simp add: Suf_def) |
|
380 apply(auto) |
|
381 done |
|
382 |
|
383 lemma finite_SEQS: |
|
384 assumes a: "finite A" |
|
385 shows "finite (SEQS A r)" |
|
386 using a by (auto) |
|
387 |
|
388 lemma finite_pders_set_UNIV1: |
|
389 shows "finite (pders_set UNIV1 r)" |
|
390 apply(induct r) |
|
391 apply(simp) |
|
392 apply(simp only: pders_set_EMPTY) |
|
393 apply(simp) |
|
394 apply(rule finite_subset) |
|
395 apply(rule pders_set_CHAR) |
|
396 apply(simp) |
|
397 apply(rule finite_subset) |
|
398 apply(rule pders_set_SEQ) |
|
399 apply(simp only: finite_SEQS finite_Un) |
|
400 apply(simp) |
|
401 apply(simp only: pders_set_ALT) |
|
402 apply(simp) |
|
403 apply(rule finite_subset) |
|
404 apply(rule pders_set_STAR) |
|
405 apply(simp only: finite_SEQS) |
|
406 done |
|
407 |
|
408 lemma pders_set_UNIV_UNIV1: |
|
409 shows "pders_set UNIV r = pders [] r \<union> pders_set UNIV1 r" |
|
410 apply(auto) |
|
411 apply(rule_tac x="[]" in exI) |
|
412 apply(simp) |
|
413 done |
|
414 |
|
415 lemma finite_pders_set_UNIV: |
|
416 shows "finite (pders_set UNIV r)" |
|
417 unfolding pders_set_UNIV_UNIV1 |
|
418 by (simp add: finite_pders_set_UNIV1) |
|
419 |
|
420 lemma finite_pders_set: |
|
421 shows "finite (pders_set A r)" |
|
422 apply(rule rev_finite_subset) |
|
423 apply(rule_tac r="r" in finite_pders_set_UNIV) |
|
424 apply(auto) |
|
425 done |
|
426 |
|
427 lemma finite_pders: |
|
428 shows "finite (pders s r)" |
|
429 using finite_pders_set[where A="{s}" and r="r"] |
|
430 by simp |
|
431 |
|
432 lemma finite_pders2: |
|
433 shows "finite {pders s r | s. s \<in> A}" |
|
434 proof - |
|
435 have "{pders s r | s. s \<in> A} \<subseteq> Pow (pders_set A r)" by auto |
|
436 moreover |
|
437 have "finite (Pow (pders_set A r))" |
|
438 using finite_pders_set by simp |
|
439 ultimately |
|
440 show "finite {pders s r | s. s \<in> A}" |
|
441 by(rule finite_subset) |
|
442 qed |
|
443 |
|
444 |
|
445 lemma Myhill_Nerode3: |
|
446 fixes r::"rexp" |
|
447 shows "finite (UNIV // \<approx>(L_rexp r))" |
|
448 proof - |
|
449 have "finite (UNIV // =(\<lambda>x. pders x r)=)" |
|
450 proof - |
|
451 have "range (\<lambda>x. pders x r) = {pders s r | s. s \<in> UNIV}" by auto |
|
452 moreover |
|
453 have "finite {pders s r | s. s \<in> UNIV}" by (rule finite_pders2) |
|
454 ultimately |
|
455 have "finite (range (\<lambda>x. pders x r))" |
|
456 by simp |
|
457 then show "finite (UNIV // =(\<lambda>x. pders x r)=)" |
|
458 by (rule finite_eq_tag_rel) |
|
459 qed |
|
460 moreover |
|
461 have "=(\<lambda>x. pders x r)= \<subseteq> \<approx>(L_rexp r)" |
|
462 unfolding tag_eq_rel_def |
|
463 unfolding str_eq_def2 |
|
464 unfolding MN_Rel_Ders |
|
465 unfolding Ders_pders |
|
466 by auto |
|
467 moreover |
|
468 have "equiv UNIV =(\<lambda>x. pders x r)=" |
|
469 unfolding equiv_def refl_on_def sym_def trans_def |
|
470 unfolding tag_eq_rel_def |
|
471 by auto |
|
472 moreover |
|
473 have "equiv UNIV (\<approx>(L_rexp r))" |
|
474 unfolding equiv_def refl_on_def sym_def trans_def |
|
475 unfolding str_eq_rel_def |
|
476 by auto |
|
477 ultimately show "finite (UNIV // \<approx>(L_rexp r))" |
|
478 by (rule refined_partition_finite) |
|
479 qed |
|
480 |
|
481 |
|
482 section {* Relating derivatives and partial derivatives *} |
|
483 |
|
484 lemma |
|
485 shows "(\<Union> L_rexp ` (pder c r)) = L_rexp (der c r)" |
|
486 unfolding Der_der[symmetric] Der_pder by simp |
|
487 |
|
488 lemma |
|
489 shows "(\<Union> L_rexp ` (pders s r)) = L_rexp (ders s r)" |
|
490 unfolding Ders_ders[symmetric] Ders_pders by simp |
|
491 |
|
492 end |