Journal/Paper.thy
changeset 256 acbae3a11fb5
parent 254 c21aaf7723a0
child 257 f512026d5d6e
equal deleted inserted replaced
255:871df606526a 256:acbae3a11fb5
  2152   Higman's Lemma, which is already proved in the Isabelle/HOL library 
  2152   Higman's Lemma, which is already proved in the Isabelle/HOL library 
  2153   \cite{Berghofer03}.\footnote{Unfortunately, Berghofer's formalisation of Higman's Lemma 
  2153   \cite{Berghofer03}.\footnote{Unfortunately, Berghofer's formalisation of Higman's Lemma 
  2154   is restricted to 2-letter alphabets,
  2154   is restricted to 2-letter alphabets,
  2155   which means also our formalisation of Theorem~\ref{subseqreg} is `tainted' with 
  2155   which means also our formalisation of Theorem~\ref{subseqreg} is `tainted' with 
  2156   this constraint. However our methodology is applicable to any alphabet of finite size.} 
  2156   this constraint. However our methodology is applicable to any alphabet of finite size.} 
  2157   Higman's Lemma allows us to infer that every set @{text A} of antichains, satisfying
  2157   Higman's Lemma allows us to infer that every language @{text A} of antichains, satisfying
  2158 
  2158 
  2159   \begin{equation}\label{higman}
  2159   \begin{equation}\label{higman}
  2160   @{text "\<forall>x, y \<in> A."}~@{term "x \<noteq> y \<longrightarrow> \<not>(x \<preceq> y) \<and> \<not>(y \<preceq> x)"}
  2160   @{text "\<forall>x, y \<in> A."}~@{term "x \<noteq> y \<longrightarrow> \<not>(x \<preceq> y) \<and> \<not>(y \<preceq> x)"}
  2161   \end{equation} 
  2161   \end{equation} 
  2162 
  2162