|
1 theory MyhillNerode |
|
2 imports "Main" "List_Prefix" |
|
3 begin |
|
4 |
|
5 text {* sequential composition of languages *} |
|
6 definition |
|
7 Seq :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100) |
|
8 where |
|
9 "L1 ;; L2 = {s1 @ s2 | s1 s2. s1 \<in> L1 \<and> s2 \<in> L2}" |
|
10 |
|
11 inductive_set |
|
12 Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102) |
|
13 for L :: "string set" |
|
14 where |
|
15 start[intro]: "[] \<in> L\<star>" |
|
16 | step[intro]: "\<lbrakk>s1 \<in> L; s2 \<in> L\<star>\<rbrakk> \<Longrightarrow> s1@s2 \<in> L\<star>" |
|
17 |
|
18 theorem ardens_revised: |
|
19 assumes nemp: "[] \<notin> A" |
|
20 shows "(X = X ;; A \<union> B) \<longleftrightarrow> (X = B ;; A\<star>)" |
|
21 proof |
|
22 assume eq: "X = B ;; A\<star>" |
|
23 have "A\<star> = {[]} \<union> A\<star> ;; A" sorry |
|
24 then have "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)" unfolding Seq_def by simp |
|
25 also have "\<dots> = B \<union> B ;; (A\<star> ;; A)" unfolding Seq_def by auto |
|
26 also have "\<dots> = B \<union> (B ;; A\<star>) ;; A" unfolding Seq_def |
|
27 by (auto) (metis append_assoc)+ |
|
28 finally show "X = X ;; A \<union> B" using eq by auto |
|
29 next |
|
30 assume "X = X ;; A \<union> B" |
|
31 then have "B \<subseteq> X" "X ;; A \<subseteq> X" by auto |
|
32 show "X = B ;; A\<star>" sorry |
|
33 qed |
|
34 |
|
35 datatype rexp = |
|
36 NULL |
|
37 | EMPTY |
|
38 | CHAR char |
|
39 | SEQ rexp rexp |
|
40 | ALT rexp rexp |
|
41 | STAR rexp |
|
42 |
|
43 consts L:: "'a \<Rightarrow> string set" |
|
44 |
|
45 overloading L_rexp \<equiv> "L:: rexp \<Rightarrow> string set" |
|
46 begin |
|
47 |
|
48 fun |
|
49 L_rexp :: "rexp \<Rightarrow> string set" |
|
50 where |
|
51 "L_rexp (NULL) = {}" |
|
52 | "L_rexp (EMPTY) = {[]}" |
|
53 | "L_rexp (CHAR c) = {[c]}" |
|
54 | "L_rexp (SEQ r1 r2) = (L_rexp r1) ;; (L_rexp r2)" |
|
55 | "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)" |
|
56 | "L_rexp (STAR r) = (L_rexp r)\<star>" |
|
57 end |
|
58 |
|
59 definition |
|
60 folds :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b" |
|
61 where |
|
62 "folds f z S \<equiv> SOME x. fold_graph f z S x" |
|
63 |
|
64 lemma folds_simp_null [simp]: |
|
65 "finite rs \<Longrightarrow> x \<in> L (folds ALT NULL rs) \<longleftrightarrow> (\<exists>r \<in> rs. x \<in> L r)" |
|
66 apply (simp add: folds_def) |
|
67 apply (rule someI2_ex) |
|
68 apply (erule finite_imp_fold_graph) |
|
69 apply (erule fold_graph.induct) |
|
70 apply (auto) |
|
71 done |
|
72 |
|
73 lemma [simp]: |
|
74 shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y" |
|
75 by simp |
|
76 |
|
77 definition |
|
78 str_eq ("_ \<approx>_ _") |
|
79 where |
|
80 "x \<approx>Lang y \<equiv> (\<forall>z. x @ z \<in> Lang \<longleftrightarrow> y @ z \<in> Lang)" |
|
81 |
|
82 definition |
|
83 str_eq_rel ("\<approx>_") |
|
84 where |
|
85 "\<approx>Lang \<equiv> {(x, y). x \<approx>Lang y}" |
|
86 |
|
87 |
|
88 |
|
89 section {* finite \<Rightarrow> regular *} |
|
90 |
|
91 definition |
|
92 transitions :: "string set \<Rightarrow> string set \<Rightarrow> rexp set" ("_\<Turnstile>\<Rightarrow>_") |
|
93 where |
|
94 "Y \<Turnstile>\<Rightarrow> X \<equiv> {CHAR c | c. Y ;; {[c]} \<subseteq> X}" |
|
95 |
|
96 definition |
|
97 transitions_rexp ("_ \<turnstile>\<rightarrow> _") |
|
98 where |
|
99 "Y \<turnstile>\<rightarrow> X \<equiv> folds ALT NULL (Y \<Turnstile>\<Rightarrow>X)" |
|
100 |
|
101 definition |
|
102 "init_rhs CS X \<equiv> if X = {[]} |
|
103 then {({[]}, EMPTY)} |
|
104 else if ([] \<in> X) |
|
105 then insert ({[]}, EMPTY) {(Y, Y \<turnstile>\<rightarrow>X) | Y. Y \<in> CS} |
|
106 else {(Y, Y \<turnstile>\<rightarrow>X) | Y. Y \<in> CS}" |
|
107 |
|
108 overloading L_rhs \<equiv> "L:: (string set \<times> rexp) set \<Rightarrow> string set" |
|
109 begin |
|
110 fun L_rhs:: "(string set \<times> rexp) set \<Rightarrow> string set" |
|
111 where |
|
112 "L_rhs rhs = \<Union> {(Y;; L r) | Y r . (Y, r) \<in> rhs}" |
|
113 end |
|
114 |
|
115 definition |
|
116 "eqs CS \<equiv> (\<Union>X \<in> CS. {(X, init_rhs CS X)})" |
|
117 |
|
118 lemma [simp]: |
|
119 shows "finite (Y \<Turnstile>\<Rightarrow> X)" |
|
120 unfolding transitions_def |
|
121 by auto |
|
122 |
|
123 lemma defined_by_str: |
|
124 assumes "s \<in> X" |
|
125 and "X \<in> UNIV // (\<approx>Lang)" |
|
126 shows "X = (\<approx>Lang) `` {s}" |
|
127 using assms |
|
128 unfolding quotient_def Image_def |
|
129 unfolding str_eq_rel_def str_eq_def |
|
130 by auto |
|
131 |
|
132 |
|
133 |
|
134 (************ arden's lemma variation ********************) |
|
135 definition |
|
136 "rexp_of rhs X \<equiv> folds ALT NULL {r. (X, r) \<in> rhs}" |
|
137 |
|
138 definition |
|
139 "arden_variate X rhs \<equiv> {(Y, SEQ r (STAR (rexp_of rhs X)))| Y r. (Y, r) \<in> rhs \<and> Y \<noteq> X}" |
|
140 |
|
141 (************* rhs/equations property **************) |
|
142 |
|
143 definition |
|
144 "distinct_equas ES \<equiv> \<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'" |
|
145 |
|
146 (*********** substitution of ES *************) |
|
147 |
|
148 text {* rhs_subst rhs X xrhs: substitude all occurence of X in rhs with xrhs *} |
|
149 definition |
|
150 "rhs_subst rhs X xrhs \<equiv> {(Y, r) | Y r. Y \<noteq> X \<and> (Y, r) \<in> rhs} \<union> |
|
151 {(X, SEQ r\<^isub>1 r\<^isub>2 ) | r\<^isub>1 r\<^isub>2. (X, r\<^isub>1) \<in> xrhs \<and> (X, r\<^isub>2) \<in> rhs}" |
|
152 |
|
153 definition |
|
154 "eqs_subst ES X xrhs \<equiv> {(Y, rhs_subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}" |
|
155 |
|
156 text {* |
|
157 Inv: Invairance of the equation-system, during the decrease of the equation-system, Inv holds. |
|
158 *} |
|
159 |
|
160 definition |
|
161 "ardenable ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> ([] \<notin> L (rexp_of rhs X)) \<and> X = L rhs" |
|
162 |
|
163 definition |
|
164 "non_empty ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> X \<noteq> {}" |
|
165 |
|
166 definition |
|
167 "self_contained ES \<equiv> \<forall> X xrhs. (X, xrhs) \<in> ES |
|
168 \<longrightarrow> (\<forall> Y r.(Y, r) \<in> xrhs \<and> Y \<noteq> {[]} \<longrightarrow> (\<exists> yrhs. (Y, yrhs) \<in> ES))" |
|
169 |
|
170 definition |
|
171 "Inv ES \<equiv> finite ES \<and> distinct_equas ES \<and> ardenable ES \<and> non_empty ES \<and> self_contained ES" |
|
172 |
|
173 lemma wf_iter [rule_format]: |
|
174 fixes f |
|
175 assumes step: "\<And> e. \<lbrakk>P e; \<not> Q e\<rbrakk> \<Longrightarrow> (\<exists> e'. P e' \<and> (f(e'), f(e)) \<in> less_than)" |
|
176 shows pe: "P e \<longrightarrow> (\<exists> e'. P e' \<and> Q e')" |
|
177 proof(induct e rule: wf_induct |
|
178 [OF wf_inv_image[OF wf_less_than, where f = "f"]], clarify) |
|
179 fix x |
|
180 assume h [rule_format]: |
|
181 "\<forall>y. (y, x) \<in> inv_image less_than f \<longrightarrow> P y \<longrightarrow> (\<exists>e'. P e' \<and> Q e')" |
|
182 and px: "P x" |
|
183 show "\<exists>e'. P e' \<and> Q e'" |
|
184 proof(cases "Q x") |
|
185 assume "Q x" with px show ?thesis by blast |
|
186 next |
|
187 assume nq: "\<not> Q x" |
|
188 from step [OF px nq] |
|
189 obtain e' where pe': "P e'" and ltf: "(f e', f x) \<in> less_than" by auto |
|
190 show ?thesis |
|
191 proof(rule h) |
|
192 from ltf show "(e', x) \<in> inv_image less_than f" |
|
193 by (simp add:inv_image_def) |
|
194 next |
|
195 from pe' show "P e'" . |
|
196 qed |
|
197 qed |
|
198 qed |
|
199 |
|
200 text {* ******BEGIN: proving the initial equation-system satisfies Inv ****** *} |
|
201 |
|
202 lemma init_ES_satisfy_Inv: |
|
203 assumes finite_CS: "finite (UNIV // (\<approx>Lang))" |
|
204 and X_in_eq_cls: "X \<in> (UNIV // (\<approx>Lang))" |
|
205 shows "Inv (eqs (UNIV // (\<approx>Lang)))" |
|
206 proof - |
|
207 have "finite (eqs (UNIV // (\<approx>Lang)))" using finite_CS |
|
208 by (auto simp add:eqs_def) |
|
209 moreover have "distinct_equas (eqs (UNIV // (\<approx>Lang)))" |
|
210 by (auto simp:distinct_equas_def eqs_def) |
|
211 moreover have "ardenable (eqs (UNIV // (\<approx>Lang)))" |
|
212 proof- |
|
213 have "\<And> X rhs. (X, rhs) \<in> (eqs (UNIV // (\<approx>Lang))) \<Longrightarrow> ([] \<notin> L (rexp_of rhs X))" |
|
214 proof |
|
215 apply (auto simp:eqs_def rexp_of_def) |
|
216 sorry |
|
217 moreover have "\<forall> X rhs. (X, rhs) \<in> (eqs (UNIV // (\<approx>Lang))) \<longrightarrow> X = L rhs" |
|
218 sorry |
|
219 ultimately show ?thesis by (simp add:ardenable_def) |
|
220 qed |
|
221 moreover have "non_empty (eqs (UNIV // (\<approx>Lang)))" |
|
222 by (auto simp:non_empty_def eqs_def quotient_def Image_def str_eq_rel_def str_eq_def) |
|
223 moreover have "self_contained (eqs (UNIV // (\<approx>Lang)))" |
|
224 by (auto simp:self_contained_def eqs_def init_rhs_def) |
|
225 ultimately show ?thesis by (simp add:Inv_def) |
|
226 qed |
|
227 |
|
228 |
|
229 text {* ****** BEGIN: proving every equation-system's iteration step satisfies Inv ***** *} |
|
230 |
|
231 lemma iteration_step: |
|
232 assumes Inv_ES: "Inv ES" |
|
233 and X_in_ES: "\<exists> xrhs. (X, xrhs) \<in> ES" |
|
234 and not_T: "card ES > 1" |
|
235 shows "(\<exists> ES' xrhs'. Inv ES' \<and> (card ES', card ES) \<in> less_than \<and> (X, xrhs') \<in> ES')" |
|
236 proof - |
|
237 |
|
238 |
|
239 |
|
240 |
|
241 |
|
242 |
|
243 |
|
244 |
|
245 |
|
246 |
|
247 |
|
248 |
|
249 |
|
250 |
|
251 |
|
252 |
|
253 |
|
254 |
|
255 |
|
256 |
|
257 |
|
258 |
|
259 |
|
260 |
|
261 |
|
262 |
|
263 |
|
264 |
|
265 |
|
266 |
|
267 |
|
268 |
|
269 |
|
270 |
|
271 |
|
272 |
|
273 |
|
274 lemma distinct_rhs_equations: |
|
275 "(X, xrhs) \<in> equations (UNIV Quo Lang) \<Longrightarrow> distinct_rhs xrhs" |
|
276 by (auto simp: equations_def equation_rhs_def distinct_rhs_def empty_rhs_def dest:no_two_cls_inters) |
|
277 |
|
278 lemma every_nonempty_eqclass_has_strings: |
|
279 "\<lbrakk>X \<in> (UNIV Quo Lang); X \<noteq> {[]}\<rbrakk> \<Longrightarrow> \<exists> clist. clist \<in> X \<and> clist \<noteq> []" |
|
280 by (auto simp:quot_def equiv_class_def equiv_str_def) |
|
281 |
|
282 lemma every_eqclass_is_derived_from_empty: |
|
283 assumes not_empty: "X \<noteq> {[]}" |
|
284 shows "X \<in> (UNIV Quo Lang) \<Longrightarrow> \<exists> clist. {[]};{clist} \<subseteq> X \<and> clist \<noteq> []" |
|
285 using not_empty |
|
286 apply (drule_tac every_nonempty_eqclass_has_strings, simp) |
|
287 by (auto intro:exI[where x = clist] simp:lang_seq_def) |
|
288 |
|
289 lemma equiv_str_in_CS: |
|
290 "\<lbrakk>clist\<rbrakk>Lang \<in> (UNIV Quo Lang)" |
|
291 by (auto simp:quot_def) |
|
292 |
|
293 lemma has_str_imp_defined_by_str: |
|
294 "\<lbrakk>str \<in> X; X \<in> UNIV Quo Lang\<rbrakk> \<Longrightarrow> X = \<lbrakk>str\<rbrakk>Lang" |
|
295 by (auto simp:quot_def equiv_class_def equiv_str_def) |
|
296 |
|
297 lemma every_eqclass_has_ascendent: |
|
298 assumes has_str: "clist @ [c] \<in> X" |
|
299 and in_CS: "X \<in> UNIV Quo Lang" |
|
300 shows "\<exists> Y. Y \<in> UNIV Quo Lang \<and> Y-c\<rightarrow>X \<and> clist \<in> Y" (is "\<exists> Y. ?P Y") |
|
301 proof - |
|
302 have "?P (\<lbrakk>clist\<rbrakk>Lang)" |
|
303 proof - |
|
304 have "\<lbrakk>clist\<rbrakk>Lang \<in> UNIV Quo Lang" |
|
305 by (simp add:quot_def, rule_tac x = clist in exI, simp) |
|
306 moreover have "\<lbrakk>clist\<rbrakk>Lang-c\<rightarrow>X" |
|
307 proof - |
|
308 have "X = \<lbrakk>(clist @ [c])\<rbrakk>Lang" using has_str in_CS |
|
309 by (auto intro!:has_str_imp_defined_by_str) |
|
310 moreover have "\<forall> sl. sl \<in> \<lbrakk>clist\<rbrakk>Lang \<longrightarrow> sl @ [c] \<in> \<lbrakk>(clist @ [c])\<rbrakk>Lang" |
|
311 by (auto simp:equiv_class_def equiv_str_def) |
|
312 ultimately show ?thesis unfolding CT_def lang_seq_def |
|
313 by auto |
|
314 qed |
|
315 moreover have "clist \<in> \<lbrakk>clist\<rbrakk>Lang" |
|
316 by (auto simp:equiv_str_def equiv_class_def) |
|
317 ultimately show "?P (\<lbrakk>clist\<rbrakk>Lang)" by simp |
|
318 qed |
|
319 thus ?thesis by blast |
|
320 qed |
|
321 |
|
322 lemma finite_charset_rS: |
|
323 "finite {CHAR c |c. Y-c\<rightarrow>X}" |
|
324 by (rule_tac A = UNIV and f = CHAR in finite_surj, auto) |
|
325 |
|
326 lemma l_eq_r_in_equations: |
|
327 assumes X_in_equas: "(X, xrhs) \<in> equations (UNIV Quo Lang)" |
|
328 shows "X = L xrhs" |
|
329 proof (cases "X = {[]}") |
|
330 case True |
|
331 thus ?thesis using X_in_equas |
|
332 by (simp add:equations_def equation_rhs_def lang_seq_def) |
|
333 next |
|
334 case False |
|
335 show ?thesis |
|
336 proof |
|
337 show "X \<subseteq> L xrhs" |
|
338 proof |
|
339 fix x |
|
340 assume "(1)": "x \<in> X" |
|
341 show "x \<in> L xrhs" |
|
342 proof (cases "x = []") |
|
343 assume empty: "x = []" |
|
344 hence "x \<in> L (empty_rhs X)" using "(1)" |
|
345 by (auto simp:empty_rhs_def lang_seq_def) |
|
346 thus ?thesis using X_in_equas False empty "(1)" |
|
347 unfolding equations_def equation_rhs_def by auto |
|
348 next |
|
349 assume not_empty: "x \<noteq> []" |
|
350 hence "\<exists> clist c. x = clist @ [c]" by (case_tac x rule:rev_cases, auto) |
|
351 then obtain clist c where decom: "x = clist @ [c]" by blast |
|
352 moreover have "\<And> Y. \<lbrakk>Y \<in> UNIV Quo Lang; Y-c\<rightarrow>X; clist \<in> Y\<rbrakk> |
|
353 \<Longrightarrow> [c] \<in> L (folds ALT NULL {CHAR c |c. Y-c\<rightarrow>X})" |
|
354 proof - |
|
355 fix Y |
|
356 assume Y_is_eq_cl: "Y \<in> UNIV Quo Lang" |
|
357 and Y_CT_X: "Y-c\<rightarrow>X" |
|
358 and clist_in_Y: "clist \<in> Y" |
|
359 with finite_charset_rS |
|
360 show "[c] \<in> L (folds ALT NULL {CHAR c |c. Y-c\<rightarrow>X})" |
|
361 by (auto simp :fold_alt_null_eqs) |
|
362 qed |
|
363 hence "\<exists>Xa. Xa \<in> UNIV Quo Lang \<and> clist @ [c] \<in> Xa ; L (folds ALT NULL {CHAR c |c. Xa-c\<rightarrow>X})" |
|
364 using X_in_equas False not_empty "(1)" decom |
|
365 by (auto dest!:every_eqclass_has_ascendent simp:equations_def equation_rhs_def lang_seq_def) |
|
366 then obtain Xa where |
|
367 "Xa \<in> UNIV Quo Lang \<and> clist @ [c] \<in> Xa ; L (folds ALT NULL {CHAR c |c. Xa-c\<rightarrow>X})" by blast |
|
368 hence "x \<in> L {(S, folds ALT NULL {CHAR c |c. S-c\<rightarrow>X}) |S. S \<in> UNIV Quo Lang}" |
|
369 using X_in_equas "(1)" decom |
|
370 by (auto simp add:equations_def equation_rhs_def intro!:exI[where x = Xa]) |
|
371 thus "x \<in> L xrhs" using X_in_equas False not_empty unfolding equations_def equation_rhs_def |
|
372 by auto |
|
373 qed |
|
374 qed |
|
375 next |
|
376 show "L xrhs \<subseteq> X" |
|
377 proof |
|
378 fix x |
|
379 assume "(2)": "x \<in> L xrhs" |
|
380 have "(2_1)": "\<And> s1 s2 r Xa. \<lbrakk>s1 \<in> Xa; s2 \<in> L (folds ALT NULL {CHAR c |c. Xa-c\<rightarrow>X})\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> X" |
|
381 using finite_charset_rS |
|
382 by (auto simp:CT_def lang_seq_def fold_alt_null_eqs) |
|
383 have "(2_2)": "\<And> s1 s2 Xa r.\<lbrakk>s1 \<in> Xa; s2 \<in> L r; (Xa, r) \<in> empty_rhs X\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> X" |
|
384 by (simp add:empty_rhs_def split:if_splits) |
|
385 show "x \<in> X" using X_in_equas False "(2)" |
|
386 by (auto intro:"(2_1)" "(2_2)" simp:equations_def equation_rhs_def lang_seq_def) |
|
387 qed |
|
388 qed |
|
389 qed |
|
390 |
|
391 |
|
392 |
|
393 lemma no_EMPTY_equations: |
|
394 "(X, xrhs) \<in> equations CS \<Longrightarrow> no_EMPTY_rhs xrhs" |
|
395 apply (clarsimp simp add:equations_def equation_rhs_def) |
|
396 apply (simp add:no_EMPTY_rhs_def empty_rhs_def, auto) |
|
397 apply (subgoal_tac "finite {CHAR c |c. Xa-c\<rightarrow>X}", drule_tac x = "[]" in fold_alt_null_eqs, clarsimp, rule finite_charset_rS)+ |
|
398 done |
|
399 |
|
400 lemma init_ES_satisfy_ardenable: |
|
401 "(X, xrhs) \<in> equations (UNIV Quo Lang) \<Longrightarrow> ardenable (X, xrhs)" |
|
402 unfolding ardenable_def |
|
403 by (auto intro:distinct_rhs_equations no_EMPTY_equations simp:l_eq_r_in_equations simp del:L_rhs.simps) |
|
404 |
|
405 lemma init_ES_satisfy_Inv: |
|
406 assumes finite_CS: "finite (UNIV Quo Lang)" |
|
407 and X_in_eq_cls: "X \<in> UNIV Quo Lang" |
|
408 shows "Inv X (equations (UNIV Quo Lang))" |
|
409 proof - |
|
410 have "finite (equations (UNIV Quo Lang))" using finite_CS |
|
411 by (auto simp:equations_def) |
|
412 moreover have "\<exists>rhs. (X, rhs) \<in> equations (UNIV Quo Lang)" using X_in_eq_cls |
|
413 by (simp add:equations_def) |
|
414 moreover have "distinct_equas (equations (UNIV Quo Lang))" |
|
415 by (auto simp:distinct_equas_def equations_def) |
|
416 moreover have "\<forall>X xrhs. (X, xrhs) \<in> equations (UNIV Quo Lang) \<longrightarrow> |
|
417 rhs_eq_cls xrhs \<subseteq> insert {[]} (left_eq_cls (equations (UNIV Quo Lang)))" |
|
418 apply (simp add:left_eq_cls_def equations_def rhs_eq_cls_def equation_rhs_def) |
|
419 by (auto simp:empty_rhs_def split:if_splits) |
|
420 moreover have "\<forall>X xrhs. (X, xrhs) \<in> equations (UNIV Quo Lang) \<longrightarrow> X \<noteq> {}" |
|
421 by (clarsimp simp:equations_def empty_notin_CS intro:classical) |
|
422 moreover have "\<forall>X xrhs. (X, xrhs) \<in> equations (UNIV Quo Lang) \<longrightarrow> ardenable (X, xrhs)" |
|
423 by (auto intro!:init_ES_satisfy_ardenable) |
|
424 ultimately show ?thesis by (simp add:Inv_def) |
|
425 qed |
|
426 |
|
427 |
|
428 text {* *********** END: proving the initial equation-system satisfies Inv ******* *} |
|
429 |
|
430 |
|
431 |
|
432 |
|
433 |
|
434 |
|
435 |
|
436 |
|
437 |
|
438 |
|
439 |
|
440 |
|
441 |
|
442 |
|
443 |
|
444 text {* ****** BEGIN: proving every equation-system's iteration step satisfies Inv ***** *} |
|
445 |
|
446 lemma not_T_aux: "\<lbrakk>\<not> TCon (insert a A); x = a\<rbrakk> |
|
447 \<Longrightarrow> \<exists>y. x \<noteq> y \<and> y \<in> insert a A " |
|
448 apply (case_tac "insert a A = {a}") |
|
449 by (auto simp:TCon_def) |
|
450 |
|
451 lemma not_T_atleast_2[rule_format]: |
|
452 "finite S \<Longrightarrow> \<forall> x. x \<in> S \<and> (\<not> TCon S)\<longrightarrow> (\<exists> y. x \<noteq> y \<and> y \<in> S)" |
|
453 apply (erule finite.induct, simp) |
|
454 apply (clarify, case_tac "x = a") |
|
455 by (erule not_T_aux, auto) |
|
456 |
|
457 lemma exist_another_equa: |
|
458 "\<lbrakk>\<not> TCon ES; finite ES; distinct_equas ES; (X, rhl) \<in> ES\<rbrakk> \<Longrightarrow> \<exists> Y yrhl. (Y, yrhl) \<in> ES \<and> X \<noteq> Y" |
|
459 apply (drule not_T_atleast_2, simp) |
|
460 apply (clarsimp simp:distinct_equas_def) |
|
461 apply (drule_tac x= X in spec, drule_tac x = rhl in spec, drule_tac x = b in spec) |
|
462 by auto |
|
463 |
|
464 lemma Inv_mono_with_lambda: |
|
465 assumes Inv_ES: "Inv X ES" |
|
466 and X_noteq_Y: "X \<noteq> {[]}" |
|
467 shows "Inv X (ES - {({[]}, yrhs)})" |
|
468 proof - |
|
469 have "finite (ES - {({[]}, yrhs)})" using Inv_ES |
|
470 by (simp add:Inv_def) |
|
471 moreover have "\<exists>rhs. (X, rhs) \<in> ES - {({[]}, yrhs)}" using Inv_ES X_noteq_Y |
|
472 by (simp add:Inv_def) |
|
473 moreover have "distinct_equas (ES - {({[]}, yrhs)})" using Inv_ES X_noteq_Y |
|
474 apply (clarsimp simp:Inv_def distinct_equas_def) |
|
475 by (drule_tac x = Xa in spec, simp) |
|
476 moreover have "\<forall>X xrhs.(X, xrhs) \<in> ES - {({[]}, yrhs)} \<longrightarrow> |
|
477 ardenable (X, xrhs) \<and> X \<noteq> {}" using Inv_ES |
|
478 by (clarify, simp add:Inv_def) |
|
479 moreover |
|
480 have "insert {[]} (left_eq_cls (ES - {({[]}, yrhs)})) = insert {[]} (left_eq_cls ES)" |
|
481 by (auto simp:left_eq_cls_def) |
|
482 hence "\<forall>X xrhs.(X, xrhs) \<in> ES - {({[]}, yrhs)} \<longrightarrow> |
|
483 rhs_eq_cls xrhs \<subseteq> insert {[]} (left_eq_cls (ES - {({[]}, yrhs)}))" |
|
484 using Inv_ES by (auto simp:Inv_def) |
|
485 ultimately show ?thesis by (simp add:Inv_def) |
|
486 qed |
|
487 |
|
488 lemma non_empty_card_prop: |
|
489 "finite ES \<Longrightarrow> \<forall>e. e \<in> ES \<longrightarrow> card ES - Suc 0 < card ES" |
|
490 apply (erule finite.induct, simp) |
|
491 apply (case_tac[!] "a \<in> A") |
|
492 by (auto simp:insert_absorb) |
|
493 |
|
494 lemma ardenable_prop: |
|
495 assumes not_lambda: "Y \<noteq> {[]}" |
|
496 and ardable: "ardenable (Y, yrhs)" |
|
497 shows "\<exists> yrhs'. Y = L yrhs' \<and> distinct_rhs yrhs' \<and> rhs_eq_cls yrhs' = rhs_eq_cls yrhs - {Y}" (is "\<exists> yrhs'. ?P yrhs'") |
|
498 proof (cases "(\<exists> reg. (Y, reg) \<in> yrhs)") |
|
499 case True |
|
500 thus ?thesis |
|
501 proof |
|
502 fix reg |
|
503 assume self_contained: "(Y, reg) \<in> yrhs" |
|
504 show ?thesis |
|
505 proof - |
|
506 have "?P (arden_variate Y reg yrhs)" |
|
507 proof - |
|
508 have "Y = L (arden_variate Y reg yrhs)" |
|
509 using self_contained not_lambda ardable |
|
510 by (rule_tac arden_variate_valid, simp_all add:ardenable_def) |
|
511 moreover have "distinct_rhs (arden_variate Y reg yrhs)" |
|
512 using ardable |
|
513 by (auto simp:distinct_rhs_def arden_variate_def seq_rhs_r_def del_x_paired_def ardenable_def) |
|
514 moreover have "rhs_eq_cls (arden_variate Y reg yrhs) = rhs_eq_cls yrhs - {Y}" |
|
515 proof - |
|
516 have "\<And> rhs r. rhs_eq_cls (seq_rhs_r rhs r) = rhs_eq_cls rhs" |
|
517 apply (auto simp:rhs_eq_cls_def seq_rhs_r_def image_def) |
|
518 by (rule_tac x = "SEQ ra r" in exI, rule_tac x = "(x, ra)" in bexI, simp+) |
|
519 moreover have "\<And> rhs X. rhs_eq_cls (del_x_paired rhs X) = rhs_eq_cls rhs - {X}" |
|
520 by (auto simp:rhs_eq_cls_def del_x_paired_def) |
|
521 ultimately show ?thesis by (simp add:arden_variate_def) |
|
522 qed |
|
523 ultimately show ?thesis by simp |
|
524 qed |
|
525 thus ?thesis by (rule_tac x= "arden_variate Y reg yrhs" in exI, simp) |
|
526 qed |
|
527 qed |
|
528 next |
|
529 case False |
|
530 hence "(2)": "rhs_eq_cls yrhs - {Y} = rhs_eq_cls yrhs" |
|
531 by (auto simp:rhs_eq_cls_def) |
|
532 show ?thesis |
|
533 proof - |
|
534 have "?P yrhs" using False ardable "(2)" |
|
535 by (simp add:ardenable_def) |
|
536 thus ?thesis by blast |
|
537 qed |
|
538 qed |
|
539 |
|
540 lemma equas_subst_f_del_no_other: |
|
541 assumes self_contained: "(Y, rhs) \<in> ES" |
|
542 shows "\<exists> rhs'. (Y, rhs') \<in> (equas_subst_f X xrhs ` ES)" (is "\<exists> rhs'. ?P rhs'") |
|
543 proof - |
|
544 have "\<exists> rhs'. equas_subst_f X xrhs (Y, rhs) = (Y, rhs')" |
|
545 by (auto simp:equas_subst_f_def) |
|
546 then obtain rhs' where "equas_subst_f X xrhs (Y, rhs) = (Y, rhs')" by blast |
|
547 hence "?P rhs'" unfolding image_def using self_contained |
|
548 by (auto intro:bexI[where x = "(Y, rhs)"]) |
|
549 thus ?thesis by blast |
|
550 qed |
|
551 |
|
552 lemma del_x_paired_del_only_x: |
|
553 "\<lbrakk>X \<noteq> Y; (X, rhs) \<in> ES\<rbrakk> \<Longrightarrow> (X, rhs) \<in> del_x_paired ES Y" |
|
554 by (auto simp:del_x_paired_def) |
|
555 |
|
556 lemma equas_subst_del_no_other: |
|
557 "\<lbrakk>(X, rhs) \<in> ES; X \<noteq> Y\<rbrakk> \<Longrightarrow> (\<exists>rhs. (X, rhs) \<in> equas_subst ES Y rhs')" |
|
558 unfolding equas_subst_def |
|
559 apply (drule_tac X = Y and xrhs = rhs' in equas_subst_f_del_no_other) |
|
560 by (erule exE, drule del_x_paired_del_only_x, auto) |
|
561 |
|
562 lemma equas_subst_holds_distinct: |
|
563 "distinct_equas ES \<Longrightarrow> distinct_equas (equas_subst ES Y rhs')" |
|
564 apply (clarsimp simp add:equas_subst_def distinct_equas_def del_x_paired_def equas_subst_f_def) |
|
565 by (auto split:if_splits) |
|
566 |
|
567 lemma del_x_paired_dels: |
|
568 "(X, rhs) \<in> ES \<Longrightarrow> {Y. Y \<in> ES \<and> fst Y = X} \<inter> ES \<noteq> {}" |
|
569 by (auto) |
|
570 |
|
571 lemma del_x_paired_subset: |
|
572 "(X, rhs) \<in> ES \<Longrightarrow> ES - {Y. Y \<in> ES \<and> fst Y = X} \<subset> ES" |
|
573 apply (drule del_x_paired_dels) |
|
574 by auto |
|
575 |
|
576 lemma del_x_paired_card_less: |
|
577 "\<lbrakk>finite ES; (X, rhs) \<in> ES\<rbrakk> \<Longrightarrow> card (del_x_paired ES X) < card ES" |
|
578 apply (simp add:del_x_paired_def) |
|
579 apply (drule del_x_paired_subset) |
|
580 by (auto intro:psubset_card_mono) |
|
581 |
|
582 lemma equas_subst_card_less: |
|
583 "\<lbrakk>finite ES; (Y, yrhs) \<in> ES\<rbrakk> \<Longrightarrow> card (equas_subst ES Y rhs') < card ES" |
|
584 apply (simp add:equas_subst_def) |
|
585 apply (frule_tac h = "equas_subst_f Y rhs'" in finite_imageI) |
|
586 apply (drule_tac f = "equas_subst_f Y rhs'" in Finite_Set.card_image_le) |
|
587 apply (drule_tac X = Y and xrhs = rhs' in equas_subst_f_del_no_other,erule exE) |
|
588 by (drule del_x_paired_card_less, auto) |
|
589 |
|
590 lemma equas_subst_holds_distinct_rhs: |
|
591 assumes dist': "distinct_rhs yrhs'" |
|
592 and history: "\<forall>X xrhs. (X, xrhs) \<in> ES \<longrightarrow> ardenable (X, xrhs)" |
|
593 and X_in : "(X, xrhs) \<in> equas_subst ES Y yrhs'" |
|
594 shows "distinct_rhs xrhs" |
|
595 using X_in history |
|
596 apply (clarsimp simp:equas_subst_def del_x_paired_def) |
|
597 apply (drule_tac x = a in spec, drule_tac x = b in spec) |
|
598 apply (simp add:ardenable_def equas_subst_f_def) |
|
599 by (auto intro:rhs_subst_holds_distinct_rhs simp:dist' split:if_splits) |
|
600 |
|
601 lemma r_no_EMPTY_imp_seq_rhs_r_no_EMPTY: |
|
602 "[] \<notin> L r \<Longrightarrow> no_EMPTY_rhs (seq_rhs_r rhs r)" |
|
603 by (auto simp:no_EMPTY_rhs_def seq_rhs_r_def lang_seq_def) |
|
604 |
|
605 lemma del_x_paired_holds_no_EMPTY: |
|
606 "no_EMPTY_rhs yrhs \<Longrightarrow> no_EMPTY_rhs (del_x_paired yrhs Y)" |
|
607 by (auto simp:no_EMPTY_rhs_def del_x_paired_def) |
|
608 |
|
609 lemma rhs_subst_holds_no_EMPTY: |
|
610 "\<lbrakk>no_EMPTY_rhs yrhs; (Y, r) \<in> yrhs; Y \<noteq> {[]}\<rbrakk> \<Longrightarrow> no_EMPTY_rhs (rhs_subst yrhs Y rhs' r)" |
|
611 apply (auto simp:rhs_subst_def intro!:no_EMPTY_rhss_imp_merge_no_EMPTY r_no_EMPTY_imp_seq_rhs_r_no_EMPTY del_x_paired_holds_no_EMPTY) |
|
612 by (auto simp:no_EMPTY_rhs_def) |
|
613 |
|
614 lemma equas_subst_holds_no_EMPTY: |
|
615 assumes substor: "Y \<noteq> {[]}" |
|
616 and history: "\<forall>X xrhs. (X, xrhs) \<in> ES \<longrightarrow> ardenable (X, xrhs)" |
|
617 and X_in:"(X, xrhs) \<in> equas_subst ES Y yrhs'" |
|
618 shows "no_EMPTY_rhs xrhs" |
|
619 proof- |
|
620 from X_in have "\<exists> (Z, zrhs) \<in> ES. (X, xrhs) = equas_subst_f Y yrhs' (Z, zrhs)" |
|
621 by (auto simp add:equas_subst_def del_x_paired_def) |
|
622 then obtain Z zrhs where Z_in: "(Z, zrhs) \<in> ES" |
|
623 and X_Z: "(X, xrhs) = equas_subst_f Y yrhs' (Z, zrhs)" by blast |
|
624 hence dist_zrhs: "distinct_rhs zrhs" using history |
|
625 by (auto simp:ardenable_def) |
|
626 show ?thesis |
|
627 proof (cases "\<exists> r. (Y, r) \<in> zrhs") |
|
628 case True |
|
629 then obtain r where Y_in_zrhs: "(Y, r) \<in> zrhs" .. |
|
630 hence some: "(SOME r. (Y, r) \<in> zrhs) = r" using Z_in dist_zrhs |
|
631 by (auto simp:distinct_rhs_def) |
|
632 hence "no_EMPTY_rhs (rhs_subst zrhs Y yrhs' r)" |
|
633 using substor Y_in_zrhs history Z_in |
|
634 by (rule_tac rhs_subst_holds_no_EMPTY, auto simp:ardenable_def) |
|
635 thus ?thesis using X_Z True some |
|
636 by (simp add:equas_subst_def equas_subst_f_def) |
|
637 next |
|
638 case False |
|
639 hence "(X, xrhs) = (Z, zrhs)" using Z_in X_Z |
|
640 by (simp add:equas_subst_f_def) |
|
641 thus ?thesis using history Z_in |
|
642 by (auto simp:ardenable_def) |
|
643 qed |
|
644 qed |
|
645 |
|
646 lemma equas_subst_f_holds_left_eq_right: |
|
647 assumes substor: "Y = L rhs'" |
|
648 and history: "\<forall>X xrhs. (X, xrhs) \<in> ES \<longrightarrow> distinct_rhs xrhs \<and> X = L xrhs" |
|
649 and subst: "(X, xrhs) = equas_subst_f Y rhs' (Z, zrhs)" |
|
650 and self_contained: "(Z, zrhs) \<in> ES" |
|
651 shows "X = L xrhs" |
|
652 proof (cases "\<exists> r. (Y, r) \<in> zrhs") |
|
653 case True |
|
654 from True obtain r where "(1)":"(Y, r) \<in> zrhs" .. |
|
655 show ?thesis |
|
656 proof - |
|
657 from history self_contained |
|
658 have dist: "distinct_rhs zrhs" by auto |
|
659 hence "(SOME r. (Y, r) \<in> zrhs) = r" using self_contained "(1)" |
|
660 using distinct_rhs_def by (auto intro:some_equality) |
|
661 moreover have "L zrhs = L (rhs_subst zrhs Y rhs' r)" using substor dist "(1)" self_contained |
|
662 by (rule_tac rhs_subst_prop1, auto simp:distinct_equas_rhs_def) |
|
663 ultimately show ?thesis using subst history self_contained |
|
664 by (auto simp:equas_subst_f_def split:if_splits) |
|
665 qed |
|
666 next |
|
667 case False |
|
668 thus ?thesis using history subst self_contained |
|
669 by (auto simp:equas_subst_f_def) |
|
670 qed |
|
671 |
|
672 lemma equas_subst_holds_left_eq_right: |
|
673 assumes history: "\<forall>X xrhs. (X, xrhs) \<in> ES \<longrightarrow> ardenable (X, xrhs)" |
|
674 and substor: "Y = L rhs'" |
|
675 and X_in : "(X, xrhs) \<in> equas_subst ES Y yrhs'" |
|
676 shows "\<forall>X xrhs. (X, xrhs) \<in> equas_subst ES Y rhs' \<longrightarrow> X = L xrhs" |
|
677 apply (clarsimp simp add:equas_subst_def del_x_paired_def) |
|
678 using substor |
|
679 apply (drule_tac equas_subst_f_holds_left_eq_right) |
|
680 using history |
|
681 by (auto simp:ardenable_def) |
|
682 |
|
683 lemma equas_subst_holds_ardenable: |
|
684 assumes substor: "Y = L yrhs'" |
|
685 and history: "\<forall>X xrhs. (X, xrhs) \<in> ES \<longrightarrow> ardenable (X, xrhs)" |
|
686 and X_in:"(X, xrhs) \<in> equas_subst ES Y yrhs'" |
|
687 and dist': "distinct_rhs yrhs'" |
|
688 and not_lambda: "Y \<noteq> {[]}" |
|
689 shows "ardenable (X, xrhs)" |
|
690 proof - |
|
691 have "distinct_rhs xrhs" using history X_in dist' |
|
692 by (auto dest:equas_subst_holds_distinct_rhs) |
|
693 moreover have "no_EMPTY_rhs xrhs" using history X_in not_lambda |
|
694 by (auto intro:equas_subst_holds_no_EMPTY) |
|
695 moreover have "X = L xrhs" using history substor X_in |
|
696 by (auto dest: equas_subst_holds_left_eq_right simp del:L_rhs.simps) |
|
697 ultimately show ?thesis using ardenable_def by simp |
|
698 qed |
|
699 |
|
700 lemma equas_subst_holds_cls_defined: |
|
701 assumes X_in: "(X, xrhs) \<in> equas_subst ES Y yrhs'" |
|
702 and Inv_ES: "Inv X' ES" |
|
703 and subst: "(Y, yrhs) \<in> ES" |
|
704 and cls_holds_but_Y: "rhs_eq_cls yrhs' = rhs_eq_cls yrhs - {Y}" |
|
705 shows "rhs_eq_cls xrhs \<subseteq> insert {[]} (left_eq_cls (equas_subst ES Y yrhs'))" |
|
706 proof- |
|
707 have tac: "\<lbrakk> A \<subseteq> B; C \<subseteq> D; E \<subseteq> A \<union> B\<rbrakk> \<Longrightarrow> E \<subseteq> B \<union> D" by auto |
|
708 from X_in have "\<exists> (Z, zrhs) \<in> ES. (X, xrhs) = equas_subst_f Y yrhs' (Z, zrhs)" |
|
709 by (auto simp add:equas_subst_def del_x_paired_def) |
|
710 then obtain Z zrhs where Z_in: "(Z, zrhs) \<in> ES" |
|
711 and X_Z: "(X, xrhs) = equas_subst_f Y yrhs' (Z, zrhs)" by blast |
|
712 hence "rhs_eq_cls zrhs \<subseteq> insert {[]} (left_eq_cls ES)" using Inv_ES |
|
713 by (auto simp:Inv_def) |
|
714 moreover have "rhs_eq_cls yrhs' \<subseteq> insert {[]} (left_eq_cls ES) - {Y}" |
|
715 using Inv_ES subst cls_holds_but_Y |
|
716 by (auto simp:Inv_def) |
|
717 moreover have "rhs_eq_cls xrhs \<subseteq> rhs_eq_cls zrhs \<union> rhs_eq_cls yrhs' - {Y}" |
|
718 using X_Z cls_holds_but_Y |
|
719 apply (clarsimp simp add:equas_subst_f_def rhs_subst_def split:if_splits) |
|
720 by (auto simp:rhs_eq_cls_def merge_rhs_def del_x_paired_def seq_rhs_r_def) |
|
721 moreover have "left_eq_cls (equas_subst ES Y yrhs') = left_eq_cls ES - {Y}" using subst |
|
722 by (auto simp: left_eq_cls_def equas_subst_def del_x_paired_def equas_subst_f_def |
|
723 dest: equas_subst_f_del_no_other |
|
724 split: if_splits) |
|
725 ultimately show ?thesis by blast |
|
726 qed |
|
727 |
|
728 lemma iteration_step: |
|
729 assumes Inv_ES: "Inv X ES" |
|
730 and not_T: "\<not> TCon ES" |
|
731 shows "(\<exists> ES'. Inv X ES' \<and> (card ES', card ES) \<in> less_than)" |
|
732 proof - |
|
733 from Inv_ES not_T have another: "\<exists>Y yrhs. (Y, yrhs) \<in> ES \<and> X \<noteq> Y" unfolding Inv_def |
|
734 by (clarify, rule_tac exist_another_equa[where X = X], auto) |
|
735 then obtain Y yrhs where subst: "(Y, yrhs) \<in> ES" and not_X: " X \<noteq> Y" by blast |
|
736 show ?thesis (is "\<exists> ES'. ?P ES'") |
|
737 proof (cases "Y = {[]}") |
|
738 case True |
|
739 --"in this situation, we pick a \"\<lambda>\" equation, thus directly remove it from the equation-system" |
|
740 have "?P (ES - {(Y, yrhs)})" |
|
741 proof |
|
742 show "Inv X (ES - {(Y, yrhs)})" using True not_X |
|
743 by (simp add:Inv_ES Inv_mono_with_lambda) |
|
744 next |
|
745 show "(card (ES - {(Y, yrhs)}), card ES) \<in> less_than" using Inv_ES subst |
|
746 by (auto elim:non_empty_card_prop[rule_format] simp:Inv_def) |
|
747 qed |
|
748 thus ?thesis by blast |
|
749 next |
|
750 case False |
|
751 --"in this situation, we pick a equation and using ardenable to get a |
|
752 rhs without itself in it, then use equas_subst to form a new equation-system" |
|
753 hence "\<exists> yrhs'. Y = L yrhs' \<and> distinct_rhs yrhs' \<and> rhs_eq_cls yrhs' = rhs_eq_cls yrhs - {Y}" |
|
754 using subst Inv_ES |
|
755 by (auto intro:ardenable_prop simp add:Inv_def simp del:L_rhs.simps) |
|
756 then obtain yrhs' where Y'_l_eq_r: "Y = L yrhs'" |
|
757 and dist_Y': "distinct_rhs yrhs'" |
|
758 and cls_holds_but_Y: "rhs_eq_cls yrhs' = rhs_eq_cls yrhs - {Y}" by blast |
|
759 hence "?P (equas_subst ES Y yrhs')" |
|
760 proof - |
|
761 have finite_del: "\<And> S x. finite S \<Longrightarrow> finite (del_x_paired S x)" |
|
762 apply (rule_tac A = "del_x_paired S x" in finite_subset) |
|
763 by (auto simp:del_x_paired_def) |
|
764 have "finite (equas_subst ES Y yrhs')" using Inv_ES |
|
765 by (auto intro!:finite_del simp:equas_subst_def Inv_def) |
|
766 moreover have "\<exists>rhs. (X, rhs) \<in> equas_subst ES Y yrhs'" using Inv_ES not_X |
|
767 by (auto intro:equas_subst_del_no_other simp:Inv_def) |
|
768 moreover have "distinct_equas (equas_subst ES Y yrhs')" using Inv_ES |
|
769 by (auto intro:equas_subst_holds_distinct simp:Inv_def) |
|
770 moreover have "\<forall>X xrhs. (X, xrhs) \<in> equas_subst ES Y yrhs' \<longrightarrow> ardenable (X, xrhs)" |
|
771 using Inv_ES dist_Y' False Y'_l_eq_r |
|
772 apply (clarsimp simp:Inv_def) |
|
773 by (rule equas_subst_holds_ardenable, simp_all) |
|
774 moreover have "\<forall>X xrhs. (X, xrhs) \<in> equas_subst ES Y yrhs' \<longrightarrow> X \<noteq> {}" using Inv_ES |
|
775 by (clarsimp simp:equas_subst_def Inv_def del_x_paired_def equas_subst_f_def split:if_splits, auto) |
|
776 moreover have "\<forall>X xrhs. (X, xrhs) \<in> equas_subst ES Y yrhs' \<longrightarrow> |
|
777 rhs_eq_cls xrhs \<subseteq> insert {[]} (left_eq_cls (equas_subst ES Y yrhs'))" |
|
778 using Inv_ES subst cls_holds_but_Y |
|
779 apply (rule_tac impI | rule_tac allI)+ |
|
780 by (erule equas_subst_holds_cls_defined, auto) |
|
781 moreover have "(card (equas_subst ES Y yrhs'), card ES) \<in> less_than"using Inv_ES subst |
|
782 by (simp add:equas_subst_card_less Inv_def) |
|
783 ultimately show "?P (equas_subst ES Y yrhs')" by (auto simp:Inv_def) |
|
784 qed |
|
785 thus ?thesis by blast |
|
786 qed |
|
787 qed |
|
788 |
|
789 text {* ***** END: proving every equation-system's iteration step satisfies Inv ************** *} |
|
790 |
|
791 lemma iteration_conc: |
|
792 assumes history: "Inv X ES" |
|
793 shows "\<exists> ES'. Inv X ES' \<and> TCon ES'" (is "\<exists> ES'. ?P ES'") |
|
794 proof (cases "TCon ES") |
|
795 case True |
|
796 hence "?P ES" using history by simp |
|
797 thus ?thesis by blast |
|
798 next |
|
799 case False |
|
800 thus ?thesis using history iteration_step |
|
801 by (rule_tac f = card in wf_iter, simp_all) |
|
802 qed |
|
803 |
|
804 lemma eqset_imp_iff': "A = B \<Longrightarrow> \<forall> x. x \<in> A \<longleftrightarrow> x \<in> B" |
|
805 apply (auto simp:mem_def) |
|
806 done |
|
807 |
|
808 lemma set_cases2: |
|
809 "\<lbrakk>(A = {} \<Longrightarrow> R A); \<And> x. (A = {x}) \<Longrightarrow> R A; \<And> x y. \<lbrakk>x \<noteq> y; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> R A\<rbrakk> \<Longrightarrow> R A" |
|
810 apply (case_tac "A = {}", simp) |
|
811 by (case_tac "\<exists> x. A = {x}", clarsimp, blast) |
|
812 |
|
813 lemma rhs_aux:"\<lbrakk>distinct_rhs rhs; {Y. \<exists>r. (Y, r) \<in> rhs} = {X}\<rbrakk> \<Longrightarrow> (\<exists>r. rhs = {(X, r)})" |
|
814 apply (rule_tac A = rhs in set_cases2, simp) |
|
815 apply (drule_tac x = X in eqset_imp_iff, clarsimp) |
|
816 apply (drule eqset_imp_iff',clarsimp) |
|
817 apply (frule_tac x = a in spec, drule_tac x = aa in spec) |
|
818 by (auto simp:distinct_rhs_def) |
|
819 |
|
820 lemma every_eqcl_has_reg: |
|
821 assumes finite_CS: "finite (UNIV Quo Lang)" |
|
822 and X_in_CS: "X \<in> (UNIV Quo Lang)" |
|
823 shows "\<exists> (reg::rexp). L reg = X" (is "\<exists> r. ?E r") |
|
824 proof- |
|
825 have "\<exists>ES'. Inv X ES' \<and> TCon ES'" using finite_CS X_in_CS |
|
826 by (auto intro:init_ES_satisfy_Inv iteration_conc) |
|
827 then obtain ES' where Inv_ES': "Inv X ES'" |
|
828 and TCon_ES': "TCon ES'" by blast |
|
829 from Inv_ES' TCon_ES' |
|
830 have "\<exists> rhs. ES' = {(X, rhs)}" |
|
831 apply (clarsimp simp:Inv_def TCon_def) |
|
832 apply (rule_tac x = rhs in exI) |
|
833 by (auto dest!:card_Suc_Diff1 simp:card_eq_0_iff) |
|
834 then obtain rhs where ES'_single_equa: "ES' = {(X, rhs)}" .. |
|
835 hence X_ardenable: "ardenable (X, rhs)" using Inv_ES' |
|
836 by (simp add:Inv_def) |
|
837 |
|
838 from X_ardenable have X_l_eq_r: "X = L rhs" |
|
839 by (simp add:ardenable_def) |
|
840 hence rhs_not_empty: "rhs \<noteq> {}" using Inv_ES' ES'_single_equa |
|
841 by (auto simp:Inv_def ardenable_def) |
|
842 have rhs_eq_cls: "rhs_eq_cls rhs \<subseteq> {X, {[]}}" |
|
843 using Inv_ES' ES'_single_equa |
|
844 by (auto simp:Inv_def ardenable_def left_eq_cls_def) |
|
845 have X_not_empty: "X \<noteq> {}" using Inv_ES' ES'_single_equa |
|
846 by (auto simp:Inv_def) |
|
847 show ?thesis |
|
848 proof (cases "X = {[]}") |
|
849 case True |
|
850 hence "?E EMPTY" by (simp) |
|
851 thus ?thesis by blast |
|
852 next |
|
853 case False with X_ardenable |
|
854 have "\<exists> rhs'. X = L rhs' \<and> rhs_eq_cls rhs' = rhs_eq_cls rhs - {X} \<and> distinct_rhs rhs'" |
|
855 by (drule_tac ardenable_prop, auto) |
|
856 then obtain rhs' where X_eq_rhs': "X = L rhs'" |
|
857 and rhs'_eq_cls: "rhs_eq_cls rhs' = rhs_eq_cls rhs - {X}" |
|
858 and rhs'_dist : "distinct_rhs rhs'" by blast |
|
859 have "rhs_eq_cls rhs' \<subseteq> {{[]}}" using rhs_eq_cls False rhs'_eq_cls rhs_not_empty |
|
860 by blast |
|
861 hence "rhs_eq_cls rhs' = {{[]}}" using X_not_empty X_eq_rhs' |
|
862 by (auto simp:rhs_eq_cls_def) |
|
863 hence "\<exists> r. rhs' = {({[]}, r)}" using rhs'_dist |
|
864 by (auto intro:rhs_aux simp:rhs_eq_cls_def) |
|
865 then obtain r where "rhs' = {({[]}, r)}" .. |
|
866 hence "?E r" using X_eq_rhs' by (auto simp add:lang_seq_def) |
|
867 thus ?thesis by blast |
|
868 qed |
|
869 qed |
|
870 |
|
871 text {* definition of a regular language *} |
|
872 |
|
873 abbreviation |
|
874 reg :: "string set => bool" |
|
875 where |
|
876 "reg L1 \<equiv> (\<exists>r::rexp. L r = L1)" |
|
877 |
|
878 theorem myhill_nerode: |
|
879 assumes finite_CS: "finite (UNIV Quo Lang)" |
|
880 shows "\<exists> (reg::rexp). Lang = L reg" (is "\<exists> r. ?P r") |
|
881 proof - |
|
882 have has_r_each: "\<forall>C\<in>{X \<in> UNIV Quo Lang. \<forall>x\<in>X. x \<in> Lang}. \<exists>(r::rexp). C = L r" using finite_CS |
|
883 by (auto dest:every_eqcl_has_reg) |
|
884 have "\<exists> (rS::rexp set). finite rS \<and> |
|
885 (\<forall> C \<in> {X \<in> UNIV Quo Lang. \<forall>x\<in>X. x \<in> Lang}. \<exists> r \<in> rS. C = L r) \<and> |
|
886 (\<forall> r \<in> rS. \<exists> C \<in> {X \<in> UNIV Quo Lang. \<forall>x\<in>X. x \<in> Lang}. C = L r)" |
|
887 (is "\<exists> rS. ?Q rS") |
|
888 proof- |
|
889 have "\<And> C. C \<in> {X \<in> UNIV Quo Lang. \<forall>x\<in>X. x \<in> Lang} \<Longrightarrow> C = L (SOME (ra::rexp). C = L ra)" |
|
890 using has_r_each |
|
891 apply (erule_tac x = C in ballE, erule_tac exE) |
|
892 by (rule_tac a = r in someI2, simp+) |
|
893 hence "?Q ((\<lambda> C. SOME r. C = L r) ` {X \<in> UNIV Quo Lang. \<forall>x\<in>X. x \<in> Lang})" using has_r_each |
|
894 using finite_CS by auto |
|
895 thus ?thesis by blast |
|
896 qed |
|
897 then obtain rS where finite_rS : "finite rS" |
|
898 and has_r_each': "\<forall> C \<in> {X \<in> UNIV Quo Lang. \<forall>x\<in>X. x \<in> Lang}. \<exists> r \<in> (rS::rexp set). C = L r" |
|
899 and has_cl_each: "\<forall> r \<in> (rS::rexp set). \<exists> C \<in> {X \<in> UNIV Quo Lang. \<forall>x\<in>X. x \<in> Lang}. C = L r" by blast |
|
900 have "?P (folds ALT NULL rS)" |
|
901 proof |
|
902 show "Lang \<subseteq> L (folds ALT NULL rS)" using finite_rS lang_eqs_union_of_eqcls[of Lang] has_r_each' |
|
903 apply (clarsimp simp:fold_alt_null_eqs) by blast |
|
904 next |
|
905 show "L (folds ALT NULL rS) \<subseteq> Lang" using finite_rS lang_eqs_union_of_eqcls[of Lang] has_cl_each |
|
906 by (clarsimp simp:fold_alt_null_eqs) |
|
907 qed |
|
908 thus ?thesis by blast |
|
909 qed |
|
910 |
|
911 |
|
912 text {* tests by Christian *} |
|
913 |
|
914 (* Alternative definition for Quo *) |
|
915 definition |
|
916 QUOT :: "string set \<Rightarrow> (string set) set" |
|
917 where |
|
918 "QUOT Lang \<equiv> (\<Union>x. {\<lbrakk>x\<rbrakk>Lang})" |
|
919 |
|
920 lemma test: |
|
921 "UNIV Quo Lang = QUOT Lang" |
|
922 by (auto simp add: quot_def QUOT_def) |
|
923 |
|
924 lemma test1: |
|
925 assumes finite_CS: "finite (QUOT Lang)" |
|
926 shows "reg Lang" |
|
927 using finite_CS |
|
928 unfolding test[symmetric] |
|
929 by (auto dest: myhill_nerode) |
|
930 |
|
931 lemma cons_one: "x @ y \<in> {z} \<Longrightarrow> x @ y = z" |
|
932 by simp |
|
933 |
|
934 lemma quot_lambda: "QUOT {[]} = {{[]}, UNIV - {[]}}" |
|
935 proof |
|
936 show "QUOT {[]} \<subseteq> {{[]}, UNIV - {[]}}" |
|
937 proof |
|
938 fix x |
|
939 assume in_quot: "x \<in> QUOT {[]}" |
|
940 show "x \<in> {{[]}, UNIV - {[]}}" |
|
941 proof - |
|
942 from in_quot |
|
943 have "x = {[]} \<or> x = UNIV - {[]}" |
|
944 unfolding QUOT_def equiv_class_def |
|
945 proof |
|
946 fix xa |
|
947 assume in_univ: "xa \<in> UNIV" |
|
948 and in_eqiv: "x \<in> {{y. xa \<equiv>{[]}\<equiv> y}}" |
|
949 show "x = {[]} \<or> x = UNIV - {[]}" |
|
950 proof(cases "xa = []") |
|
951 case True |
|
952 hence "{y. xa \<equiv>{[]}\<equiv> y} = {[]}" using in_eqiv |
|
953 by (auto simp add:equiv_str_def) |
|
954 thus ?thesis using in_eqiv by (rule_tac disjI1, simp) |
|
955 next |
|
956 case False |
|
957 hence "{y. xa \<equiv>{[]}\<equiv> y} = UNIV - {[]}" using in_eqiv |
|
958 by (auto simp:equiv_str_def) |
|
959 thus ?thesis using in_eqiv by (rule_tac disjI2, simp) |
|
960 qed |
|
961 qed |
|
962 thus ?thesis by simp |
|
963 qed |
|
964 qed |
|
965 next |
|
966 show "{{[]}, UNIV - {[]}} \<subseteq> QUOT {[]}" |
|
967 proof |
|
968 fix x |
|
969 assume in_res: "x \<in> {{[]}, (UNIV::string set) - {[]}}" |
|
970 show "x \<in> (QUOT {[]})" |
|
971 proof - |
|
972 have "x = {[]} \<Longrightarrow> x \<in> QUOT {[]}" |
|
973 apply (simp add:QUOT_def equiv_class_def equiv_str_def) |
|
974 by (rule_tac x = "[]" in exI, auto) |
|
975 moreover have "x = UNIV - {[]} \<Longrightarrow> x \<in> QUOT {[]}" |
|
976 apply (simp add:QUOT_def equiv_class_def equiv_str_def) |
|
977 by (rule_tac x = "''a''" in exI, auto) |
|
978 ultimately show ?thesis using in_res by blast |
|
979 qed |
|
980 qed |
|
981 qed |
|
982 |
|
983 lemma quot_single_aux: "\<lbrakk>x \<noteq> []; x \<noteq> [c]\<rbrakk> \<Longrightarrow> x @ z \<noteq> [c]" |
|
984 by (induct x, auto) |
|
985 |
|
986 lemma quot_single: "\<And> (c::char). QUOT {[c]} = {{[]}, {[c]}, UNIV - {[], [c]}}" |
|
987 proof - |
|
988 fix c::"char" |
|
989 have exist_another: "\<exists> a. a \<noteq> c" |
|
990 apply (case_tac "c = CHR ''a''") |
|
991 apply (rule_tac x = "CHR ''b''" in exI, simp) |
|
992 by (rule_tac x = "CHR ''a''" in exI, simp) |
|
993 show "QUOT {[c]} = {{[]}, {[c]}, UNIV - {[], [c]}}" |
|
994 proof |
|
995 show "QUOT {[c]} \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}" |
|
996 proof |
|
997 fix x |
|
998 assume in_quot: "x \<in> QUOT {[c]}" |
|
999 show "x \<in> {{[]}, {[c]}, UNIV - {[],[c]}}" |
|
1000 proof - |
|
1001 from in_quot |
|
1002 have "x = {[]} \<or> x = {[c]} \<or> x = UNIV - {[],[c]}" |
|
1003 unfolding QUOT_def equiv_class_def |
|
1004 proof |
|
1005 fix xa |
|
1006 assume in_eqiv: "x \<in> {{y. xa \<equiv>{[c]}\<equiv> y}}" |
|
1007 show "x = {[]} \<or> x = {[c]} \<or> x = UNIV - {[], [c]}" |
|
1008 proof- |
|
1009 have "xa = [] \<Longrightarrow> x = {[]}" using in_eqiv |
|
1010 by (auto simp add:equiv_str_def) |
|
1011 moreover have "xa = [c] \<Longrightarrow> x = {[c]}" |
|
1012 proof - |
|
1013 have "xa = [c] \<Longrightarrow> {y. xa \<equiv>{[c]}\<equiv> y} = {[c]}" using in_eqiv |
|
1014 apply (simp add:equiv_str_def) |
|
1015 apply (rule set_ext, rule iffI, simp) |
|
1016 apply (drule_tac x = "[]" in spec, auto) |
|
1017 done |
|
1018 thus "xa = [c] \<Longrightarrow> x = {[c]}" using in_eqiv by simp |
|
1019 qed |
|
1020 moreover have "\<lbrakk>xa \<noteq> []; xa \<noteq> [c]\<rbrakk> \<Longrightarrow> x = UNIV - {[],[c]}" |
|
1021 proof - |
|
1022 have "\<lbrakk>xa \<noteq> []; xa \<noteq> [c]\<rbrakk> \<Longrightarrow> {y. xa \<equiv>{[c]}\<equiv> y} = UNIV - {[],[c]}" |
|
1023 apply (clarsimp simp add:equiv_str_def) |
|
1024 apply (rule set_ext, rule iffI, simp) |
|
1025 apply (rule conjI) |
|
1026 apply (drule_tac x = "[c]" in spec, simp) |
|
1027 apply (drule_tac x = "[]" in spec, simp) |
|
1028 by (auto dest:quot_single_aux) |
|
1029 thus "\<lbrakk>xa \<noteq> []; xa \<noteq> [c]\<rbrakk> \<Longrightarrow> x = UNIV - {[],[c]}" using in_eqiv by simp |
|
1030 qed |
|
1031 ultimately show ?thesis by blast |
|
1032 qed |
|
1033 qed |
|
1034 thus ?thesis by simp |
|
1035 qed |
|
1036 qed |
|
1037 next |
|
1038 show "{{[]}, {[c]}, UNIV - {[],[c]}} \<subseteq> QUOT {[c]}" |
|
1039 proof |
|
1040 fix x |
|
1041 assume in_res: "x \<in> {{[]},{[c]}, (UNIV::string set) - {[],[c]}}" |
|
1042 show "x \<in> (QUOT {[c]})" |
|
1043 proof - |
|
1044 have "x = {[]} \<Longrightarrow> x \<in> QUOT {[c]}" |
|
1045 apply (simp add:QUOT_def equiv_class_def equiv_str_def) |
|
1046 by (rule_tac x = "[]" in exI, auto) |
|
1047 moreover have "x = {[c]} \<Longrightarrow> x \<in> QUOT {[c]}" |
|
1048 apply (simp add:QUOT_def equiv_class_def equiv_str_def) |
|
1049 apply (rule_tac x = "[c]" in exI, simp) |
|
1050 apply (rule set_ext, rule iffI, simp+) |
|
1051 by (drule_tac x = "[]" in spec, simp) |
|
1052 moreover have "x = UNIV - {[],[c]} \<Longrightarrow> x \<in> QUOT {[c]}" |
|
1053 using exist_another |
|
1054 apply (clarsimp simp add:QUOT_def equiv_class_def equiv_str_def) |
|
1055 apply (rule_tac x = "[a]" in exI, simp) |
|
1056 apply (rule set_ext, rule iffI, simp) |
|
1057 apply (clarsimp simp:quot_single_aux, simp) |
|
1058 apply (rule conjI) |
|
1059 apply (drule_tac x = "[c]" in spec, simp) |
|
1060 by (drule_tac x = "[]" in spec, simp) |
|
1061 ultimately show ?thesis using in_res by blast |
|
1062 qed |
|
1063 qed |
|
1064 qed |
|
1065 qed |
|
1066 |
|
1067 lemma eq_class_imp_eq_str: |
|
1068 "\<lbrakk>x\<rbrakk>lang = \<lbrakk>y\<rbrakk>lang \<Longrightarrow> x \<equiv>lang\<equiv> y" |
|
1069 by (auto simp:equiv_class_def equiv_str_def) |
|
1070 |
|
1071 lemma finite_tag_image: |
|
1072 "finite (range tag) \<Longrightarrow> finite (((op `) tag) ` S)" |
|
1073 apply (rule_tac B = "Pow (tag ` UNIV)" in finite_subset) |
|
1074 by (auto simp add:image_def Pow_def) |
|
1075 |
|
1076 lemma str_inj_imps: |
|
1077 assumes str_inj: "\<And> m n. tag m = tag (n::string) \<Longrightarrow> m \<equiv>lang\<equiv> n" |
|
1078 shows "inj_on ((op `) tag) (QUOT lang)" |
|
1079 proof (clarsimp simp add:inj_on_def QUOT_def) |
|
1080 fix x y |
|
1081 assume eq_tag: "tag ` \<lbrakk>x\<rbrakk>lang = tag ` \<lbrakk>y\<rbrakk>lang" |
|
1082 show "\<lbrakk>x\<rbrakk>lang = \<lbrakk>y\<rbrakk>lang" |
|
1083 proof - |
|
1084 have aux1:"\<And>a b. a \<in> (\<lbrakk>b\<rbrakk>lang) \<Longrightarrow> (a \<equiv>lang\<equiv> b)" |
|
1085 by (simp add:equiv_class_def equiv_str_def) |
|
1086 have aux2: "\<And> A B f. \<lbrakk>f ` A = f ` B; A \<noteq> {}\<rbrakk> \<Longrightarrow> \<exists> a b. a \<in> A \<and> b \<in> B \<and> f a = f b" |
|
1087 by auto |
|
1088 have aux3: "\<And> a l. \<lbrakk>a\<rbrakk>l \<noteq> {}" |
|
1089 by (auto simp:equiv_class_def equiv_str_def) |
|
1090 show ?thesis using eq_tag |
|
1091 apply (drule_tac aux2, simp add:aux3, clarsimp) |
|
1092 apply (drule_tac str_inj, (drule_tac aux1)+) |
|
1093 by (simp add:equiv_str_def equiv_class_def) |
|
1094 qed |
|
1095 qed |
|
1096 |
|
1097 definition tag_str_ALT :: "string set \<Rightarrow> string set \<Rightarrow> string \<Rightarrow> (string set \<times> string set)" |
|
1098 where |
|
1099 "tag_str_ALT L\<^isub>1 L\<^isub>2 x \<equiv> (\<lbrakk>x\<rbrakk>L\<^isub>1, \<lbrakk>x\<rbrakk>L\<^isub>2)" |
|
1100 |
|
1101 lemma tag_str_alt_range_finite: |
|
1102 assumes finite1: "finite (QUOT L\<^isub>1)" |
|
1103 and finite2: "finite (QUOT L\<^isub>2)" |
|
1104 shows "finite (range (tag_str_ALT L\<^isub>1 L\<^isub>2))" |
|
1105 proof - |
|
1106 have "{y. \<exists>x. y = (\<lbrakk>x\<rbrakk>L\<^isub>1, \<lbrakk>x\<rbrakk>L\<^isub>2)} \<subseteq> (QUOT L\<^isub>1) \<times> (QUOT L\<^isub>2)" |
|
1107 by (auto simp:QUOT_def) |
|
1108 thus ?thesis using finite1 finite2 |
|
1109 by (auto simp: image_def tag_str_ALT_def UNION_def |
|
1110 intro: finite_subset[where B = "(QUOT L\<^isub>1) \<times> (QUOT L\<^isub>2)"]) |
|
1111 qed |
|
1112 |
|
1113 lemma tag_str_alt_inj: |
|
1114 "tag_str_ALT L\<^isub>1 L\<^isub>2 x = tag_str_ALT L\<^isub>1 L\<^isub>2 y \<Longrightarrow> x \<equiv>(L\<^isub>1 \<union> L\<^isub>2)\<equiv> y" |
|
1115 apply (simp add:tag_str_ALT_def equiv_class_def equiv_str_def) |
|
1116 by blast |
|
1117 |
|
1118 lemma quot_alt: |
|
1119 assumes finite1: "finite (QUOT L\<^isub>1)" |
|
1120 and finite2: "finite (QUOT L\<^isub>2)" |
|
1121 shows "finite (QUOT (L\<^isub>1 \<union> L\<^isub>2))" |
|
1122 proof (rule_tac f = "(op `) (tag_str_ALT L\<^isub>1 L\<^isub>2)" in finite_imageD) |
|
1123 show "finite (op ` (tag_str_ALT L\<^isub>1 L\<^isub>2) ` QUOT (L\<^isub>1 \<union> L\<^isub>2))" |
|
1124 using finite_tag_image tag_str_alt_range_finite finite1 finite2 |
|
1125 by auto |
|
1126 next |
|
1127 show "inj_on (op ` (tag_str_ALT L\<^isub>1 L\<^isub>2)) (QUOT (L\<^isub>1 \<union> L\<^isub>2))" |
|
1128 apply (rule_tac str_inj_imps) |
|
1129 by (erule_tac tag_str_alt_inj) |
|
1130 qed |
|
1131 |
|
1132 (* list_diff:: list substract, once different return tailer *) |
|
1133 fun list_diff :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infix "-" 51) |
|
1134 where |
|
1135 "list_diff [] xs = []" | |
|
1136 "list_diff (x#xs) [] = x#xs" | |
|
1137 "list_diff (x#xs) (y#ys) = (if x = y then list_diff xs ys else (x#xs))" |
|
1138 |
|
1139 lemma [simp]: "(x @ y) - x = y" |
|
1140 apply (induct x) |
|
1141 by (case_tac y, simp+) |
|
1142 |
|
1143 lemma [simp]: "x - x = []" |
|
1144 by (induct x, auto) |
|
1145 |
|
1146 lemma [simp]: "x = xa @ y \<Longrightarrow> x - xa = y " |
|
1147 by (induct x, auto) |
|
1148 |
|
1149 lemma [simp]: "x - [] = x" |
|
1150 by (induct x, auto) |
|
1151 |
|
1152 lemma [simp]: "xa \<le> x \<Longrightarrow> (x @ y) - xa = (x - xa) @ y" |
|
1153 by (auto elim:prefixE) |
|
1154 |
|
1155 definition tag_str_SEQ:: "string set \<Rightarrow> string set \<Rightarrow> string \<Rightarrow> (string set \<times> string set set)" |
|
1156 where |
|
1157 "tag_str_SEQ L\<^isub>1 L\<^isub>2 x \<equiv> if (\<exists> xa \<le> x. xa \<in> L\<^isub>1) |
|
1158 then (\<lbrakk>x\<rbrakk>L\<^isub>1, {\<lbrakk>(x - xa)\<rbrakk>L\<^isub>2 | xa. xa \<le> x \<and> xa \<in> L\<^isub>1}) |
|
1159 else (\<lbrakk>x\<rbrakk>L\<^isub>1, {})" |
|
1160 |
|
1161 lemma tag_seq_eq_E: |
|
1162 "tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y \<Longrightarrow> |
|
1163 ((\<exists> xa \<le> x. xa \<in> L\<^isub>1) \<and> \<lbrakk>x\<rbrakk>L\<^isub>1 = \<lbrakk>y\<rbrakk>L\<^isub>1 \<and> |
|
1164 {\<lbrakk>(x - xa)\<rbrakk>L\<^isub>2 | xa. xa \<le> x \<and> xa \<in> L\<^isub>1} = {\<lbrakk>(y - ya)\<rbrakk>L\<^isub>2 | ya. ya \<le> y \<and> ya \<in> L\<^isub>1} ) \<or> |
|
1165 ((\<forall> xa \<le> x. xa \<notin> L\<^isub>1) \<and> \<lbrakk>x\<rbrakk>L\<^isub>1 = \<lbrakk>y\<rbrakk>L\<^isub>1)" |
|
1166 by (simp add:tag_str_SEQ_def split:if_splits, blast) |
|
1167 |
|
1168 lemma tag_str_seq_range_finite: |
|
1169 assumes finite1: "finite (QUOT L\<^isub>1)" |
|
1170 and finite2: "finite (QUOT L\<^isub>2)" |
|
1171 shows "finite (range (tag_str_SEQ L\<^isub>1 L\<^isub>2))" |
|
1172 proof - |
|
1173 have "(range (tag_str_SEQ L\<^isub>1 L\<^isub>2)) \<subseteq> (QUOT L\<^isub>1) \<times> (Pow (QUOT L\<^isub>2))" |
|
1174 by (auto simp:image_def tag_str_SEQ_def QUOT_def) |
|
1175 thus ?thesis using finite1 finite2 |
|
1176 by (rule_tac B = "(QUOT L\<^isub>1) \<times> (Pow (QUOT L\<^isub>2))" in finite_subset, auto) |
|
1177 qed |
|
1178 |
|
1179 lemma app_in_seq_decom[rule_format]: |
|
1180 "\<forall> x. x @ z \<in> L\<^isub>1 ; L\<^isub>2 \<longrightarrow> (\<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ z \<in> L\<^isub>2) \<or> |
|
1181 (\<exists> za \<le> z. (x @ za) \<in> L\<^isub>1 \<and> (z - za) \<in> L\<^isub>2)" |
|
1182 apply (induct z) |
|
1183 apply (simp, rule allI, rule impI, rule disjI1) |
|
1184 apply (clarsimp simp add:lang_seq_def) |
|
1185 apply (rule_tac x = s1 in exI, simp) |
|
1186 apply (rule allI | rule impI)+ |
|
1187 apply (drule_tac x = "x @ [a]" in spec, simp) |
|
1188 apply (erule exE | erule conjE | erule disjE)+ |
|
1189 apply (rule disjI2, rule_tac x = "[a]" in exI, simp) |
|
1190 apply (rule disjI1, rule_tac x = xa in exI, simp) |
|
1191 apply (erule exE | erule conjE)+ |
|
1192 apply (rule disjI2, rule_tac x = "a # za" in exI, simp) |
|
1193 done |
|
1194 |
|
1195 lemma tag_str_seq_inj: |
|
1196 assumes tag_eq: "tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y" |
|
1197 shows "(x::string) \<equiv>(L\<^isub>1 ; L\<^isub>2)\<equiv> y" |
|
1198 proof - |
|
1199 have aux: "\<And> x y z. \<lbrakk>tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y; x @ z \<in> L\<^isub>1 ; L\<^isub>2\<rbrakk> |
|
1200 \<Longrightarrow> y @ z \<in> L\<^isub>1 ; L\<^isub>2" |
|
1201 proof (drule app_in_seq_decom, erule disjE) |
|
1202 fix x y z |
|
1203 assume tag_eq: "tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y" |
|
1204 and x_gets_l2: "\<exists>xa\<le>x. xa \<in> L\<^isub>1 \<and> (x - xa) @ z \<in> L\<^isub>2" |
|
1205 from x_gets_l2 have "\<exists> xa \<le> x. xa \<in> L\<^isub>1" by blast |
|
1206 hence xy_l2:"{\<lbrakk>(x - xa)\<rbrakk>L\<^isub>2 | xa. xa \<le> x \<and> xa \<in> L\<^isub>1} = {\<lbrakk>(y - ya)\<rbrakk>L\<^isub>2 | ya. ya \<le> y \<and> ya \<in> L\<^isub>1}" |
|
1207 using tag_eq tag_seq_eq_E by blast |
|
1208 from x_gets_l2 obtain xa where xa_le_x: "xa \<le> x" |
|
1209 and xa_in_l1: "xa \<in> L\<^isub>1" |
|
1210 and rest_in_l2: "(x - xa) @ z \<in> L\<^isub>2" by blast |
|
1211 hence "\<exists> ya. \<lbrakk>(x - xa)\<rbrakk>L\<^isub>2 = \<lbrakk>(y - ya)\<rbrakk>L\<^isub>2 \<and> ya \<le> y \<and> ya \<in> L\<^isub>1" using xy_l2 by auto |
|
1212 then obtain ya where ya_le_x: "ya \<le> y" |
|
1213 and ya_in_l1: "ya \<in> L\<^isub>1" |
|
1214 and rest_eq: "\<lbrakk>(x - xa)\<rbrakk>L\<^isub>2 = \<lbrakk>(y - ya)\<rbrakk>L\<^isub>2" by blast |
|
1215 from rest_eq rest_in_l2 have "(y - ya) @ z \<in> L\<^isub>2" |
|
1216 by (auto simp:equiv_class_def equiv_str_def) |
|
1217 hence "ya @ ((y - ya) @ z) \<in> L\<^isub>1 ; L\<^isub>2" using ya_in_l1 |
|
1218 by (auto simp:lang_seq_def) |
|
1219 thus "y @ z \<in> L\<^isub>1 ; L\<^isub>2" using ya_le_x |
|
1220 by (erule_tac prefixE, simp) |
|
1221 next |
|
1222 fix x y z |
|
1223 assume tag_eq: "tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y" |
|
1224 and x_gets_l1: "\<exists>za\<le>z. x @ za \<in> L\<^isub>1 \<and> z - za \<in> L\<^isub>2" |
|
1225 from tag_eq tag_seq_eq_E have x_y_eq: "\<lbrakk>x\<rbrakk>L\<^isub>1 = \<lbrakk>y\<rbrakk>L\<^isub>1" by blast |
|
1226 from x_gets_l1 obtain za where za_le_z: "za \<le> z" |
|
1227 and x_za_in_l1: "(x @ za) \<in> L\<^isub>1" |
|
1228 and rest_in_l2: "z - za \<in> L\<^isub>2" by blast |
|
1229 from x_y_eq x_za_in_l1 have y_za_in_l1: "y @ za \<in> L\<^isub>1" |
|
1230 by (auto simp:equiv_class_def equiv_str_def) |
|
1231 hence "(y @ za) @ (z - za) \<in> L\<^isub>1 ; L\<^isub>2" using rest_in_l2 |
|
1232 apply (simp add:lang_seq_def) |
|
1233 by (rule_tac x = "y @ za" in exI, rule_tac x = "z - za" in exI, simp) |
|
1234 thus "y @ z \<in> L\<^isub>1 ; L\<^isub>2" using za_le_z |
|
1235 by (erule_tac prefixE, simp) |
|
1236 qed |
|
1237 show ?thesis using tag_eq |
|
1238 apply (simp add:equiv_str_def) |
|
1239 by (auto intro:aux) |
|
1240 qed |
|
1241 |
|
1242 lemma quot_seq: |
|
1243 assumes finite1: "finite (QUOT L\<^isub>1)" |
|
1244 and finite2: "finite (QUOT L\<^isub>2)" |
|
1245 shows "finite (QUOT (L\<^isub>1;L\<^isub>2))" |
|
1246 proof (rule_tac f = "(op `) (tag_str_SEQ L\<^isub>1 L\<^isub>2)" in finite_imageD) |
|
1247 show "finite (op ` (tag_str_SEQ L\<^isub>1 L\<^isub>2) ` QUOT (L\<^isub>1 ; L\<^isub>2))" |
|
1248 using finite_tag_image tag_str_seq_range_finite finite1 finite2 |
|
1249 by auto |
|
1250 next |
|
1251 show "inj_on (op ` (tag_str_SEQ L\<^isub>1 L\<^isub>2)) (QUOT (L\<^isub>1 ; L\<^isub>2))" |
|
1252 apply (rule_tac str_inj_imps) |
|
1253 by (erule_tac tag_str_seq_inj) |
|
1254 qed |
|
1255 |
|
1256 (****************** the STAR case ************************) |
|
1257 |
|
1258 lemma app_eq_elim[rule_format]: |
|
1259 "\<And> a. \<forall> b x y. a @ b = x @ y \<longrightarrow> (\<exists> aa ab. a = aa @ ab \<and> x = aa \<and> y = ab @ b) \<or> |
|
1260 (\<exists> ba bb. b = ba @ bb \<and> x = a @ ba \<and> y = bb \<and> ba \<noteq> [])" |
|
1261 apply (induct_tac a rule:List.induct, simp) |
|
1262 apply (rule allI | rule impI)+ |
|
1263 by (case_tac x, auto) |
|
1264 |
|
1265 definition tag_str_STAR:: "string set \<Rightarrow> string \<Rightarrow> string set set" |
|
1266 where |
|
1267 "tag_str_STAR L\<^isub>1 x \<equiv> if (x = []) |
|
1268 then {} |
|
1269 else {\<lbrakk>x\<^isub>2\<rbrakk>L\<^isub>1 | x\<^isub>1 x\<^isub>2. x = x\<^isub>1 @ x\<^isub>2 \<and> x\<^isub>1 \<in> L\<^isub>1\<star> \<and> x\<^isub>2 \<noteq> []}" |
|
1270 |
|
1271 lemma tag_str_star_range_finite: |
|
1272 assumes finite1: "finite (QUOT L\<^isub>1)" |
|
1273 shows "finite (range (tag_str_STAR L\<^isub>1))" |
|
1274 proof - |
|
1275 have "range (tag_str_STAR L\<^isub>1) \<subseteq> Pow (QUOT L\<^isub>1)" |
|
1276 by (auto simp:image_def tag_str_STAR_def QUOT_def) |
|
1277 thus ?thesis using finite1 |
|
1278 by (rule_tac B = "Pow (QUOT L\<^isub>1)" in finite_subset, auto) |
|
1279 qed |
|
1280 |
|
1281 lemma star_prop[rule_format]: "x \<in> lang\<star> \<Longrightarrow> \<forall> y. y \<in> lang\<star> \<longrightarrow> x @ y \<in> lang\<star>" |
|
1282 by (erule Star.induct, auto) |
|
1283 |
|
1284 lemma star_prop2: "y \<in> lang \<Longrightarrow> y \<in> lang\<star>" |
|
1285 by (drule step[of y lang "[]"], auto simp:start) |
|
1286 |
|
1287 lemma star_prop3[rule_format]: "x \<in> lang\<star> \<Longrightarrow> \<forall>y . y \<in> lang \<longrightarrow> x @ y \<in> lang\<star>" |
|
1288 by (erule Star.induct, auto intro:star_prop2) |
|
1289 |
|
1290 lemma postfix_prop: "y >>= (x @ y) \<Longrightarrow> x = []" |
|
1291 by (erule postfixE, induct x arbitrary:y, auto) |
|
1292 |
|
1293 lemma inj_aux: |
|
1294 "\<lbrakk>(m @ z) \<in> L\<^isub>1\<star>; m \<equiv>L\<^isub>1\<equiv> yb; xa @ m = x; xa \<in> L\<^isub>1\<star>; m \<noteq> []; |
|
1295 \<forall> xa xb. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star> \<longrightarrow> xb >>= m\<rbrakk> |
|
1296 \<Longrightarrow> (yb @ z) \<in> L\<^isub>1\<star>" |
|
1297 proof- |
|
1298 have "\<And>s. s \<in> L\<^isub>1\<star> \<Longrightarrow> \<forall> m z yb. (s = m @ z \<and> m \<equiv>L\<^isub>1\<equiv> yb \<and> x = xa @ m \<and> xa \<in> L\<^isub>1\<star> \<and> m \<noteq> [] \<and> |
|
1299 (\<forall> xa xb. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star> \<longrightarrow> xb >>= m) \<longrightarrow> (yb @ z) \<in> L\<^isub>1\<star>)" |
|
1300 apply (erule Star.induct, simp) |
|
1301 apply (rule allI | rule impI | erule conjE)+ |
|
1302 apply (drule app_eq_elim) |
|
1303 apply (erule disjE | erule exE | erule conjE)+ |
|
1304 apply simp |
|
1305 apply (simp (no_asm) only:append_assoc[THEN sym]) |
|
1306 apply (rule step) |
|
1307 apply (simp add:equiv_str_def) |
|
1308 apply simp |
|
1309 |
|
1310 apply (erule exE | erule conjE)+ |
|
1311 apply (rotate_tac 3) |
|
1312 apply (frule_tac x = "xa @ s1" in spec) |
|
1313 apply (rotate_tac 12) |
|
1314 apply (drule_tac x = ba in spec) |
|
1315 apply (erule impE) |
|
1316 apply ( simp add:star_prop3) |
|
1317 apply (simp) |
|
1318 apply (drule postfix_prop) |
|
1319 apply simp |
|
1320 done |
|
1321 thus "\<lbrakk>(m @ z) \<in> L\<^isub>1\<star>; m \<equiv>L\<^isub>1\<equiv> yb; xa @ m = x; xa \<in> L\<^isub>1\<star>; m \<noteq> []; |
|
1322 \<forall> xa xb. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star> \<longrightarrow> xb >>= m\<rbrakk> |
|
1323 \<Longrightarrow> (yb @ z) \<in> L\<^isub>1\<star>" by blast |
|
1324 qed |
|
1325 |
|
1326 |
|
1327 lemma min_postfix_exists[rule_format]: |
|
1328 "finite A \<Longrightarrow> A \<noteq> {} \<and> (\<forall> a \<in> A. \<forall> b \<in> A. ((b >>= a) \<or> (a >>= b))) |
|
1329 \<longrightarrow> (\<exists> min. (min \<in> A \<and> (\<forall> a \<in> A. a >>= min)))" |
|
1330 apply (erule finite.induct) |
|
1331 apply simp |
|
1332 apply simp |
|
1333 apply (case_tac "A = {}") |
|
1334 apply simp |
|
1335 apply clarsimp |
|
1336 apply (case_tac "a >>= min") |
|
1337 apply (rule_tac x = min in exI, simp) |
|
1338 apply (rule_tac x = a in exI, simp) |
|
1339 apply clarify |
|
1340 apply (rotate_tac 5) |
|
1341 apply (erule_tac x = aa in ballE) defer apply simp |
|
1342 apply (erule_tac ys = min in postfix_trans) |
|
1343 apply (erule_tac x = min in ballE) |
|
1344 by simp+ |
|
1345 |
|
1346 lemma tag_str_star_inj: |
|
1347 "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 (y::string) \<Longrightarrow> x \<equiv>L\<^isub>1\<star>\<equiv> y" |
|
1348 proof - |
|
1349 have aux: "\<And> x y z. \<lbrakk>tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y; x @ z \<in> L\<^isub>1\<star>\<rbrakk> \<Longrightarrow> y @ z \<in> L\<^isub>1\<star>" |
|
1350 proof- |
|
1351 fix x y z |
|
1352 assume tag_eq: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y" |
|
1353 and x_z: "x @ z \<in> L\<^isub>1\<star>" |
|
1354 show "y @ z \<in> L\<^isub>1\<star>" |
|
1355 proof (cases "x = []") |
|
1356 case True |
|
1357 with tag_eq have "y = []" by (simp add:tag_str_STAR_def split:if_splits, blast) |
|
1358 thus ?thesis using x_z True by simp |
|
1359 next |
|
1360 case False |
|
1361 hence not_empty: "{xb. \<exists> xa. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star>} \<noteq> {}" using x_z |
|
1362 by (simp, rule_tac x = x in exI, rule_tac x = "[]" in exI, simp add:start) |
|
1363 have finite_set: "finite {xb. \<exists> xa. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star>}" |
|
1364 apply (rule_tac B = "{xb. \<exists> xa. x = xa @ xb}" in finite_subset) |
|
1365 apply auto |
|
1366 apply (induct x, simp) |
|
1367 apply (subgoal_tac "{xb. \<exists>xa. a # x = xa @ xb} = insert (a # x) {xb. \<exists>xa. x = xa @ xb}") |
|
1368 apply auto |
|
1369 by (case_tac xaa, simp+) |
|
1370 have comparable: "\<forall> a \<in> {xb. \<exists> xa. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star>}. |
|
1371 \<forall> b \<in> {xb. \<exists> xa. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star>}. |
|
1372 ((b >>= a) \<or> (a >>= b))" |
|
1373 by (auto simp:postfix_def, drule app_eq_elim, blast) |
|
1374 hence "\<exists> min. min \<in> {xb. \<exists> xa. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star>} |
|
1375 \<and> (\<forall> xa xb. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star> \<longrightarrow> xb >>= min)" |
|
1376 using finite_set not_empty comparable |
|
1377 apply (drule_tac min_postfix_exists, simp) |
|
1378 by (erule exE, rule_tac x = min in exI, auto) |
|
1379 then obtain min xa where x_decom: "x = xa @ min \<and> xa \<in> L\<^isub>1\<star>" |
|
1380 and min_not_empty: "min \<noteq> []" |
|
1381 and min_z_in_star: "min @ z \<in> L\<^isub>1\<star>" |
|
1382 and is_min: "\<forall> xa xb. x = xa @ xb \<and> xa \<in> L\<^isub>1\<star> \<and> xb \<noteq> [] \<and> xb @ z \<in> L\<^isub>1\<star> \<longrightarrow> xb >>= min" by blast |
|
1383 from x_decom min_not_empty have "\<lbrakk>min\<rbrakk>L\<^isub>1 \<in> tag_str_STAR L\<^isub>1 x" by (auto simp:tag_str_STAR_def) |
|
1384 hence "\<exists> yb. \<lbrakk>yb\<rbrakk>L\<^isub>1 \<in> tag_str_STAR L\<^isub>1 y \<and> \<lbrakk>min\<rbrakk>L\<^isub>1 = \<lbrakk>yb\<rbrakk>L\<^isub>1" using tag_eq by auto |
|
1385 hence "\<exists> ya yb. y = ya @ yb \<and> ya \<in> L\<^isub>1\<star> \<and> min \<equiv>L\<^isub>1\<equiv> yb \<and> yb \<noteq> [] " |
|
1386 by (simp add:tag_str_STAR_def equiv_class_def equiv_str_def split:if_splits, blast) |
|
1387 then obtain ya yb where y_decom: "y = ya @ yb" |
|
1388 and ya_in_star: "ya \<in> L\<^isub>1\<star>" |
|
1389 and yb_not_empty: "yb \<noteq> []" |
|
1390 and min_yb_eq: "min \<equiv>L\<^isub>1\<equiv> yb" by blast |
|
1391 from min_z_in_star min_yb_eq min_not_empty is_min x_decom |
|
1392 have "yb @ z \<in> L\<^isub>1\<star>" |
|
1393 by (rule_tac x = x and xa = xa in inj_aux, simp+) |
|
1394 thus ?thesis using ya_in_star y_decom |
|
1395 by (auto dest:star_prop) |
|
1396 qed |
|
1397 qed |
|
1398 show "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 (y::string) \<Longrightarrow> x \<equiv>L\<^isub>1\<star>\<equiv> y" |
|
1399 by (auto intro:aux simp:equiv_str_def) |
|
1400 qed |
|
1401 |
|
1402 lemma quot_star: |
|
1403 assumes finite1: "finite (QUOT L\<^isub>1)" |
|
1404 shows "finite (QUOT (L\<^isub>1\<star>))" |
|
1405 proof (rule_tac f = "(op `) (tag_str_STAR L\<^isub>1)" in finite_imageD) |
|
1406 show "finite (op ` (tag_str_STAR L\<^isub>1) ` QUOT (L\<^isub>1\<star>))" |
|
1407 using finite_tag_image tag_str_star_range_finite finite1 |
|
1408 by auto |
|
1409 next |
|
1410 show "inj_on (op ` (tag_str_STAR L\<^isub>1)) (QUOT (L\<^isub>1\<star>))" |
|
1411 apply (rule_tac str_inj_imps) |
|
1412 by (erule_tac tag_str_star_inj) |
|
1413 qed |
|
1414 |
|
1415 lemma other_direction: |
|
1416 "Lang = L (r::rexp) \<Longrightarrow> finite (QUOT Lang)" |
|
1417 apply (induct arbitrary:Lang rule:rexp.induct) |
|
1418 apply (simp add:QUOT_def equiv_class_def equiv_str_def) |
|
1419 by (simp_all add:quot_lambda quot_single quot_seq quot_alt quot_star) |
|
1420 |
|
1421 end |