Theories/Derivs.thy
changeset 166 7743d2ad71d1
parent 165 b04cc5e4e84c
child 167 61d0a412a3ae
equal deleted inserted replaced
165:b04cc5e4e84c 166:7743d2ad71d1
     1 theory Derivs
       
     2 imports Closure
       
     3 begin
       
     4 
       
     5 section {* Experiments with Derivatives -- independent of Myhill-Nerode *}
       
     6 
       
     7 subsection {* Left-Quotients *}
       
     8 
       
     9 definition
       
    10   Delta :: "lang \<Rightarrow> lang"
       
    11 where
       
    12   "Delta A = (if [] \<in> A then {[]} else {})"
       
    13 
       
    14 definition
       
    15   Der :: "char \<Rightarrow> lang \<Rightarrow> lang"
       
    16 where
       
    17   "Der c A \<equiv> {s. [c] @ s \<in> A}"
       
    18 
       
    19 definition
       
    20   Ders :: "string \<Rightarrow> lang \<Rightarrow> lang"
       
    21 where
       
    22   "Ders s A \<equiv> {s'. s @ s' \<in> A}"
       
    23 
       
    24 definition
       
    25   Ders_set :: "lang \<Rightarrow> lang \<Rightarrow> lang"
       
    26 where
       
    27   "Ders_set A B \<equiv> {s' | s s'. s @ s' \<in> B \<and> s \<in> A}"
       
    28 
       
    29 lemma Ders_set_Ders:
       
    30   shows "Ders_set A B = (\<Union>s \<in> A. Ders s B)"
       
    31 unfolding Ders_set_def Ders_def
       
    32 by auto
       
    33 
       
    34 lemma Der_null [simp]:
       
    35   shows "Der c {} = {}"
       
    36 unfolding Der_def
       
    37 by auto
       
    38 
       
    39 lemma Der_empty [simp]:
       
    40   shows "Der c {[]} = {}"
       
    41 unfolding Der_def
       
    42 by auto
       
    43 
       
    44 lemma Der_char [simp]:
       
    45   shows "Der c {[d]} = (if c = d then {[]} else {})"
       
    46 unfolding Der_def
       
    47 by auto
       
    48 
       
    49 lemma Der_union [simp]:
       
    50   shows "Der c (A \<union> B) = Der c A \<union> Der c B"
       
    51 unfolding Der_def
       
    52 by auto
       
    53 
       
    54 lemma Der_seq [simp]:
       
    55   shows "Der c (A ;; B) = (Der c A) ;; B \<union> (Delta A ;; Der c B)"
       
    56 unfolding Der_def Delta_def
       
    57 unfolding Seq_def
       
    58 by (auto simp add: Cons_eq_append_conv)
       
    59 
       
    60 lemma Der_star [simp]:
       
    61   shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
       
    62 apply(subst star_cases)
       
    63 apply(simp only: Delta_def Der_union Der_seq Der_empty)
       
    64 apply(simp add: Der_def Seq_def)
       
    65 apply(auto)
       
    66 apply(drule star_decom)
       
    67 apply(auto simp add: Cons_eq_append_conv)
       
    68 done
       
    69 
       
    70 lemma Ders_singleton:
       
    71   shows "Ders [c] A = Der c A"
       
    72 unfolding Der_def Ders_def
       
    73 by simp
       
    74 
       
    75 lemma Ders_append:
       
    76   shows "Ders (s1 @ s2) A = Ders s2 (Ders s1 A)"
       
    77 unfolding Ders_def by simp 
       
    78 
       
    79 lemma MN_Rel_Ders:
       
    80   shows "x \<approx>A y \<longleftrightarrow> Ders x A = Ders y A"
       
    81 unfolding Ders_def str_eq_def str_eq_rel_def
       
    82 by auto
       
    83 
       
    84 subsection {* Brozowsky's derivatives of regular expressions *}
       
    85 
       
    86 fun
       
    87   nullable :: "rexp \<Rightarrow> bool"
       
    88 where
       
    89   "nullable (NULL) = False"
       
    90 | "nullable (EMPTY) = True"
       
    91 | "nullable (CHAR c) = False"
       
    92 | "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
       
    93 | "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
       
    94 | "nullable (STAR r) = True"
       
    95 
       
    96 fun
       
    97   der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
       
    98 where
       
    99   "der c (NULL) = NULL"
       
   100 | "der c (EMPTY) = NULL"
       
   101 | "der c (CHAR c') = (if c = c' then EMPTY else NULL)"
       
   102 | "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
       
   103 | "der c (SEQ r1 r2) = ALT (SEQ (der c r1) r2) (if nullable r1 then der c r2 else NULL)"
       
   104 | "der c (STAR r) = SEQ (der c r) (STAR r)"
       
   105 
       
   106 function 
       
   107   ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
       
   108 where
       
   109   "ders [] r = r"
       
   110 | "ders (s @ [c]) r = der c (ders s r)"
       
   111 by (auto) (metis rev_cases)
       
   112 
       
   113 termination
       
   114   by (relation "measure (length o fst)") (auto)
       
   115 
       
   116 lemma Delta_nullable:
       
   117   shows "Delta (L r) = (if nullable r then {[]} else {})"
       
   118 unfolding Delta_def
       
   119 by (induct r) (auto simp add: Seq_def split: if_splits)
       
   120 
       
   121 lemma Der_der:
       
   122   fixes r::rexp
       
   123   shows "Der c (L r) = L (der c r)"
       
   124 by (induct r) (simp_all add: Delta_nullable)
       
   125 
       
   126 lemma Ders_ders:
       
   127   fixes r::rexp
       
   128   shows "Ders s (L r) = L (ders s r)"
       
   129 apply(induct s rule: rev_induct)
       
   130 apply(simp add: Ders_def)
       
   131 apply(simp only: ders.simps)
       
   132 apply(simp only: Ders_append)
       
   133 apply(simp only: Ders_singleton)
       
   134 apply(simp only: Der_der)
       
   135 done
       
   136 
       
   137 
       
   138 subsection {* Antimirov's Partial Derivatives *}
       
   139 
       
   140 abbreviation
       
   141   "SEQS R r \<equiv> {SEQ r' r | r'. r' \<in> R}"
       
   142 
       
   143 fun
       
   144   pder :: "char \<Rightarrow> rexp \<Rightarrow> rexp set"
       
   145 where
       
   146   "pder c NULL = {NULL}"
       
   147 | "pder c EMPTY = {NULL}"
       
   148 | "pder c (CHAR c') = (if c = c' then {EMPTY} else {NULL})"
       
   149 | "pder c (ALT r1 r2) = (pder c r1) \<union> (pder c r2)"
       
   150 | "pder c (SEQ r1 r2) = SEQS (pder c r1) r2 \<union> (if nullable r1 then pder c r2 else {})"
       
   151 | "pder c (STAR r) = SEQS (pder c r) (STAR r)"
       
   152 
       
   153 abbreviation
       
   154   "pder_set c R \<equiv> \<Union>r \<in> R. pder c r"
       
   155 
       
   156 function 
       
   157   pders :: "string \<Rightarrow> rexp \<Rightarrow> rexp set"
       
   158 where
       
   159   "pders [] r = {r}"
       
   160 | "pders (s @ [c]) r = pder_set c (pders s r)"
       
   161 by (auto) (metis rev_cases)
       
   162 
       
   163 termination
       
   164   by (relation "measure (length o fst)") (auto)
       
   165 
       
   166 abbreviation
       
   167   "pders_set A r \<equiv> \<Union>s \<in> A. pders s r"
       
   168 
       
   169 
       
   170 lemma pders_append:
       
   171   "pders (s1 @ s2) r = \<Union> (pders s2) ` (pders s1 r)"
       
   172 apply(induct s2 arbitrary: s1 r rule: rev_induct)
       
   173 apply(simp)
       
   174 apply(subst append_assoc[symmetric])
       
   175 apply(simp only: pders.simps)
       
   176 apply(auto)
       
   177 done
       
   178 
       
   179 lemma pders_singleton:
       
   180   "pders [c] r = pder c r"
       
   181 apply(subst append_Nil[symmetric])
       
   182 apply(simp only: pders.simps)
       
   183 apply(simp)
       
   184 done
       
   185 
       
   186 lemma pder_set_lang:
       
   187   shows "(\<Union> (L ` pder_set c R)) = (\<Union>r \<in> R. (\<Union>L ` (pder c r)))"
       
   188 unfolding image_def 
       
   189 by auto
       
   190 
       
   191 lemma
       
   192   shows seq_UNION_left:  "B ;; (\<Union>n\<in>C. A n) = (\<Union>n\<in>C. B ;; A n)"
       
   193   and   seq_UNION_right: "(\<Union>n\<in>C. A n) ;; B = (\<Union>n\<in>C. A n ;; B)"
       
   194 unfolding Seq_def by auto
       
   195 
       
   196 lemma Der_pder:
       
   197   fixes r::rexp
       
   198   shows "Der c (L r) = \<Union> L ` (pder c r)"
       
   199 by (induct r) (auto simp add: Delta_nullable seq_UNION_right)
       
   200 
       
   201 lemma Ders_pders:
       
   202   fixes r::rexp
       
   203   shows "Ders s (L r) = \<Union> L ` (pders s r)"
       
   204 proof (induct s rule: rev_induct)
       
   205   case (snoc c s)
       
   206   have ih: "Ders s (L r) = \<Union> L ` (pders s r)" by fact
       
   207   have "Ders (s @ [c]) (L r) = Ders [c] (Ders s (L r))"
       
   208     by (simp add: Ders_append)
       
   209   also have "\<dots> = Der c (\<Union> L ` (pders s r))" using ih
       
   210     by (simp add: Ders_singleton)
       
   211   also have "\<dots> = (\<Union>r\<in>pders s r. Der c (L r))" 
       
   212     unfolding Der_def image_def by auto
       
   213   also have "\<dots> = (\<Union>r\<in>pders s r. (\<Union> L `  (pder c r)))"
       
   214     by (simp add: Der_pder)
       
   215   also have "\<dots> = (\<Union>L ` (pder_set c (pders s r)))"
       
   216     by (simp add: pder_set_lang)
       
   217   also have "\<dots> = (\<Union>L ` (pders (s @ [c]) r))"
       
   218     by simp
       
   219   finally show "Ders (s @ [c]) (L r) = \<Union>L ` pders (s @ [c]) r" .
       
   220 qed (simp add: Ders_def)
       
   221 
       
   222 lemma Ders_set_pders_set:
       
   223   fixes r::rexp
       
   224   shows "Ders_set A (L r) = (\<Union> L ` (pders_set A r))"
       
   225 by (simp add: Ders_set_Ders Ders_pders)
       
   226 
       
   227 lemma pders_NULL [simp]:
       
   228   shows "pders s NULL = {NULL}"
       
   229 by (induct s rule: rev_induct) (simp_all)
       
   230 
       
   231 lemma pders_EMPTY [simp]:
       
   232   shows "pders s EMPTY = (if s = [] then {EMPTY} else {NULL})"
       
   233 by (induct s rule: rev_induct) (auto)
       
   234 
       
   235 lemma pders_CHAR [simp]:
       
   236   shows "pders s (CHAR c) = (if s = [] then {CHAR c} else (if s = [c] then {EMPTY} else {NULL}))"
       
   237 by (induct s rule: rev_induct) (auto)
       
   238 
       
   239 lemma pders_ALT [simp]:
       
   240   shows "pders s (ALT r1 r2) = (if s = [] then {ALT r1 r2} else (pders s r1) \<union> (pders s r2))"
       
   241 by (induct s rule: rev_induct) (auto)
       
   242 
       
   243 definition
       
   244   "Suf s \<equiv> {v. v \<noteq> [] \<and> (\<exists>u. u @ v = s)}"
       
   245 
       
   246 lemma Suf:
       
   247   shows "Suf (s @ [c]) = (Suf s) ;; {[c]} \<union> {[c]}"
       
   248 unfolding Suf_def Seq_def
       
   249 by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv)
       
   250 
       
   251 lemma Suf_Union:
       
   252   shows "(\<Union>v \<in> Suf s ;; {[c]}. P v) = (\<Union>v \<in> Suf s. P (v @ [c]))"
       
   253 by (auto simp add: Seq_def)
       
   254 
       
   255 lemma inclusion1:
       
   256   shows "pder_set c (SEQS R r2) \<subseteq> SEQS (pder_set c R) r2 \<union> (pder c r2)"
       
   257 apply(auto simp add: if_splits)
       
   258 apply(blast)
       
   259 done
       
   260 
       
   261 lemma pders_SEQ:
       
   262   shows "pders s (SEQ r1 r2) \<subseteq> SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2)"
       
   263 proof (induct s rule: rev_induct)
       
   264   case (snoc c s)
       
   265   have ih: "pders s (SEQ r1 r2) \<subseteq> SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2)" 
       
   266     by fact
       
   267   have "pders (s @ [c]) (SEQ r1 r2) = pder_set c (pders s (SEQ r1 r2))" by simp
       
   268   also have "\<dots> \<subseteq> pder_set c (SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2))"
       
   269     using ih by auto 
       
   270   also have "\<dots> = pder_set c (SEQS (pders s r1) r2) \<union> pder_set c (\<Union>v \<in> Suf s. pders v r2)"
       
   271     by (simp)
       
   272   also have "\<dots> = pder_set c (SEQS (pders s r1) r2) \<union> (\<Union>v \<in> Suf s. pder_set c (pders v r2))"
       
   273     by (simp)
       
   274   also have "\<dots> \<subseteq> pder_set c (SEQS (pders s r1) r2) \<union> (pder c r2) \<union> (\<Union>v \<in> Suf s. pders (v @ [c]) r2)"
       
   275     by (auto)
       
   276   also have "\<dots> \<subseteq> SEQS (pder_set c (pders s r1)) r2 \<union> (pder c r2) \<union> (\<Union>v \<in> Suf s. pders (v @ [c]) r2)"
       
   277     using inclusion1 by blast
       
   278   also have "\<dots> = SEQS (pders (s @ [c]) r1) r2 \<union> (\<Union>v \<in> Suf (s @ [c]). pders v r2)"
       
   279     apply(subst (2) pders.simps)
       
   280     apply(simp only: Suf)
       
   281     apply(simp add: Suf_Union pders_singleton)
       
   282     apply(auto)
       
   283     done
       
   284   finally show ?case .
       
   285 qed (simp)
       
   286 
       
   287 lemma pders_STAR:
       
   288   assumes a: "s \<noteq> []"
       
   289   shows "pders s (STAR r) \<subseteq> (\<Union>v \<in> Suf s. SEQS (pders v r) (STAR r))"
       
   290 using a
       
   291 proof (induct s rule: rev_induct)
       
   292   case (snoc c s)
       
   293   have ih: "s \<noteq> [] \<Longrightarrow> pders s (STAR r) \<subseteq> (\<Union>v\<in>Suf s. SEQS (pders v r) (STAR r))" by fact
       
   294   { assume asm: "s \<noteq> []"
       
   295     have "pders (s @ [c]) (STAR r) = pder_set c (pders s (STAR r))" by simp
       
   296     also have "\<dots> \<subseteq> (pder_set c (\<Union>v\<in>Suf s. SEQS (pders v r) (STAR r)))"
       
   297       using ih[OF asm] by blast
       
   298     also have "\<dots> = (\<Union>v\<in>Suf s. pder_set c (SEQS (pders v r) (STAR r)))"
       
   299       by simp
       
   300     also have "\<dots> \<subseteq> (\<Union>v\<in>Suf s. (SEQS (pder_set c (pders v r)) (STAR r) \<union> pder c (STAR r)))"
       
   301       using inclusion1 by blast
       
   302     also have "\<dots> = (\<Union>v\<in>Suf s. (SEQS (pder_set c (pders v r)) (STAR r))) \<union> pder c (STAR r)"
       
   303       using asm by (auto simp add: Suf_def)
       
   304     also have "\<dots> = (\<Union>v\<in>Suf s. (SEQS (pders (v @ [c]) r) (STAR r))) \<union> (SEQS (pder c r) (STAR r))"
       
   305       by simp
       
   306     also have "\<dots> = (\<Union>v\<in>Suf (s @ [c]). (SEQS (pders v r) (STAR r)))"
       
   307       apply(simp only: Suf)
       
   308       apply(simp add: Suf_Union pders_singleton)
       
   309       apply(auto)
       
   310       done
       
   311     finally have ?case .
       
   312   }
       
   313   moreover
       
   314   { assume asm: "s = []"
       
   315     then have ?case
       
   316       apply(simp add: pders_singleton Suf_def)
       
   317       apply(auto)
       
   318       apply(rule_tac x="[c]" in exI)
       
   319       apply(simp add: pders_singleton)
       
   320       done
       
   321   }
       
   322   ultimately show ?case by blast
       
   323 qed (simp)
       
   324 
       
   325 abbreviation 
       
   326   "UNIV1 \<equiv> UNIV - {[]}"
       
   327 
       
   328 lemma pders_set_NULL:
       
   329   shows "pders_set UNIV1 NULL = {NULL}"
       
   330 by auto
       
   331 
       
   332 lemma pders_set_EMPTY:
       
   333   shows "pders_set UNIV1 EMPTY = {NULL}"
       
   334 by (auto split: if_splits)
       
   335 
       
   336 lemma pders_set_CHAR:
       
   337   shows "pders_set UNIV1 (CHAR c) \<subseteq> {EMPTY, NULL}"
       
   338 by (auto split: if_splits)
       
   339 
       
   340 lemma pders_set_ALT:
       
   341   shows "pders_set UNIV1 (ALT r1 r2) = pders_set UNIV1 r1 \<union> pders_set UNIV1 r2"
       
   342 by auto
       
   343 
       
   344 lemma pders_set_SEQ_aux:
       
   345   assumes a: "s \<in> UNIV1"
       
   346   shows "pders_set (Suf s) r2 \<subseteq> pders_set UNIV1 r2"
       
   347 using a by (auto simp add: Suf_def)
       
   348 
       
   349 lemma pders_set_SEQ:
       
   350   shows "pders_set UNIV1 (SEQ r1 r2) \<subseteq> SEQS (pders_set UNIV1 r1) r2 \<union> pders_set UNIV1 r2"
       
   351 apply(rule UN_least)
       
   352 apply(rule subset_trans)
       
   353 apply(rule pders_SEQ)
       
   354 apply(simp)
       
   355 apply(rule conjI) 
       
   356 apply(auto)[1]
       
   357 apply(rule subset_trans)
       
   358 apply(rule pders_set_SEQ_aux)
       
   359 apply(auto)
       
   360 done
       
   361 
       
   362 lemma pders_set_STAR:
       
   363   shows "pders_set UNIV1 (STAR r) \<subseteq> SEQS (pders_set UNIV1 r) (STAR r)"
       
   364 apply(rule UN_least)
       
   365 apply(rule subset_trans)
       
   366 apply(rule pders_STAR)
       
   367 apply(simp)
       
   368 apply(simp add: Suf_def)
       
   369 apply(auto)
       
   370 done
       
   371 
       
   372 lemma finite_SEQS:
       
   373   assumes a: "finite A"
       
   374   shows "finite (SEQS A r)"
       
   375 using a by (auto)
       
   376 
       
   377 lemma finite_pders_set_UNIV1:
       
   378   shows "finite (pders_set UNIV1 r)"
       
   379 apply(induct r)
       
   380 apply(simp)
       
   381 apply(simp only: pders_set_EMPTY)
       
   382 apply(simp)
       
   383 apply(rule finite_subset)
       
   384 apply(rule pders_set_CHAR)
       
   385 apply(simp)
       
   386 apply(rule finite_subset)
       
   387 apply(rule pders_set_SEQ)
       
   388 apply(simp only: finite_SEQS finite_Un)
       
   389 apply(simp)
       
   390 apply(simp only: pders_set_ALT)
       
   391 apply(simp)
       
   392 apply(rule finite_subset)
       
   393 apply(rule pders_set_STAR)
       
   394 apply(simp only: finite_SEQS)
       
   395 done
       
   396     
       
   397 lemma pders_set_UNIV_UNIV1:
       
   398   shows "pders_set UNIV r = pders [] r \<union> pders_set UNIV1 r"
       
   399 apply(auto)
       
   400 apply(rule_tac x="[]" in exI)
       
   401 apply(simp)
       
   402 done
       
   403 
       
   404 lemma finite_pders_set_UNIV:
       
   405   shows "finite (pders_set UNIV r)"
       
   406 unfolding pders_set_UNIV_UNIV1
       
   407 by (simp add: finite_pders_set_UNIV1)
       
   408 
       
   409 lemma finite_pders_set:
       
   410   shows "finite (pders_set A r)"
       
   411 apply(rule rev_finite_subset)
       
   412 apply(rule_tac r="r" in finite_pders_set_UNIV)
       
   413 apply(auto)
       
   414 done
       
   415 
       
   416 lemma finite_pders:
       
   417   shows "finite (pders s r)"
       
   418 using finite_pders_set[where A="{s}" and r="r"]
       
   419 by simp
       
   420 
       
   421 
       
   422 lemma test: 
       
   423   shows "pders_set A r = (\<Union> {pders s r | s. s \<in> A})"
       
   424 by auto
       
   425 
       
   426 lemma finite_pow_pders:
       
   427   shows "finite (Pow (\<Union> {pders s r | s. s \<in> A}))"
       
   428 using finite_pders_set
       
   429 by (simp add: test)
       
   430 
       
   431 lemma test2:
       
   432   shows "{pders s r | s. s \<in> A} \<subseteq> Pow (\<Union> {pders s r | s. s \<in> A})"
       
   433   by auto
       
   434 
       
   435 lemma test3:
       
   436   shows "finite ({pders s r | s. s \<in> A})"
       
   437 apply(rule finite_subset)
       
   438 apply(rule test2)
       
   439 apply(rule finite_pow_pders)
       
   440 done
       
   441 
       
   442 lemma Myhill_Nerode_aux:
       
   443   fixes r::"rexp"
       
   444   shows "finite (UNIV // =(\<lambda>x. pders x r)=)"
       
   445 apply(rule finite_eq_tag_rel)
       
   446 apply(rule rev_finite_subset)
       
   447 apply(rule test3)
       
   448 apply(auto)
       
   449 done
       
   450 
       
   451 lemma Myhill_Nerode3:
       
   452   fixes r::"rexp"
       
   453   shows "finite (UNIV // \<approx>(L r))"
       
   454 apply(rule refined_partition_finite)
       
   455 apply(rule Myhill_Nerode_aux[where r="r"])
       
   456 apply(simp add: tag_eq_rel_def)
       
   457 apply(auto)[1]
       
   458 unfolding str_eq_def[symmetric]
       
   459 unfolding MN_Rel_Ders
       
   460 apply(simp add: Ders_pders)
       
   461 apply(rule equivI)
       
   462 apply(auto simp add: tag_eq_rel_def refl_on_def sym_def trans_def)
       
   463 apply(rule equivI)
       
   464 apply(auto simp add: str_eq_rel_def refl_on_def sym_def trans_def)
       
   465 done
       
   466 
       
   467 
       
   468 section {* Closure under Left-Quotients *}
       
   469 
       
   470 lemma closure_left_quotient:
       
   471   assumes "regular A"
       
   472   shows "regular (Ders_set B A)"
       
   473 proof -
       
   474   from assms obtain r::rexp where eq: "L r = A" by auto
       
   475   have fin: "finite (pders_set B r)" by (rule finite_pders_set)
       
   476   
       
   477   have "Ders_set B (L r) = (\<Union> L ` (pders_set B r))"
       
   478     by (simp add: Ders_set_pders_set)
       
   479   also have "\<dots> = L (\<Uplus>(pders_set B r))" using fin by simp
       
   480   finally have "Ders_set B A = L (\<Uplus>(pders_set B r))" using eq
       
   481     by simp
       
   482   then show "regular (Ders_set B A)" by auto
       
   483 qed
       
   484 
       
   485 
       
   486 section {* Relating standard and partial derivations *}
       
   487 
       
   488 lemma
       
   489   shows "(\<Union> L ` (pder c r)) = L (der c r)"
       
   490 unfolding Der_der[symmetric] Der_pder by simp
       
   491 
       
   492 lemma
       
   493   shows "(\<Union> L ` (pders s r)) = L (ders s r)"
       
   494 unfolding Ders_ders[symmetric] Ders_pders by simp
       
   495 
       
   496 
       
   497 section {* attempt to prove MN *}
       
   498 (*
       
   499 lemma Myhill_Nerode3:
       
   500   fixes r::"rexp"
       
   501   shows "finite (UNIV // =(\<lambda>x. pders x r)=)"
       
   502 apply(rule finite_eq_tag_rel)
       
   503 apply(rule finite_pders_set)
       
   504 apply(simp add: Range_def)
       
   505 unfolding Quotien_def
       
   506 by (induct r) (auto)
       
   507 *)
       
   508 
       
   509 fun
       
   510   width :: "rexp \<Rightarrow> nat"
       
   511 where
       
   512   "width (NULL) = 0"
       
   513 | "width (EMPTY) = 0"
       
   514 | "width (CHAR c) = 1"
       
   515 | "width (ALT r1 r2) = width r1 + width r2"
       
   516 | "width (SEQ r1 r2) = width r1 + width r2"
       
   517 | "width (STAR r) = width r"
       
   518 
       
   519 
       
   520  
       
   521 end