1 theory Derivs |
|
2 imports Closure |
|
3 begin |
|
4 |
|
5 section {* Experiments with Derivatives -- independent of Myhill-Nerode *} |
|
6 |
|
7 subsection {* Left-Quotients *} |
|
8 |
|
9 definition |
|
10 Delta :: "lang \<Rightarrow> lang" |
|
11 where |
|
12 "Delta A = (if [] \<in> A then {[]} else {})" |
|
13 |
|
14 definition |
|
15 Der :: "char \<Rightarrow> lang \<Rightarrow> lang" |
|
16 where |
|
17 "Der c A \<equiv> {s. [c] @ s \<in> A}" |
|
18 |
|
19 definition |
|
20 Ders :: "string \<Rightarrow> lang \<Rightarrow> lang" |
|
21 where |
|
22 "Ders s A \<equiv> {s'. s @ s' \<in> A}" |
|
23 |
|
24 definition |
|
25 Ders_set :: "lang \<Rightarrow> lang \<Rightarrow> lang" |
|
26 where |
|
27 "Ders_set A B \<equiv> {s' | s s'. s @ s' \<in> B \<and> s \<in> A}" |
|
28 |
|
29 lemma Ders_set_Ders: |
|
30 shows "Ders_set A B = (\<Union>s \<in> A. Ders s B)" |
|
31 unfolding Ders_set_def Ders_def |
|
32 by auto |
|
33 |
|
34 lemma Der_null [simp]: |
|
35 shows "Der c {} = {}" |
|
36 unfolding Der_def |
|
37 by auto |
|
38 |
|
39 lemma Der_empty [simp]: |
|
40 shows "Der c {[]} = {}" |
|
41 unfolding Der_def |
|
42 by auto |
|
43 |
|
44 lemma Der_char [simp]: |
|
45 shows "Der c {[d]} = (if c = d then {[]} else {})" |
|
46 unfolding Der_def |
|
47 by auto |
|
48 |
|
49 lemma Der_union [simp]: |
|
50 shows "Der c (A \<union> B) = Der c A \<union> Der c B" |
|
51 unfolding Der_def |
|
52 by auto |
|
53 |
|
54 lemma Der_seq [simp]: |
|
55 shows "Der c (A ;; B) = (Der c A) ;; B \<union> (Delta A ;; Der c B)" |
|
56 unfolding Der_def Delta_def |
|
57 unfolding Seq_def |
|
58 by (auto simp add: Cons_eq_append_conv) |
|
59 |
|
60 lemma Der_star [simp]: |
|
61 shows "Der c (A\<star>) = (Der c A) ;; A\<star>" |
|
62 apply(subst star_cases) |
|
63 apply(simp only: Delta_def Der_union Der_seq Der_empty) |
|
64 apply(simp add: Der_def Seq_def) |
|
65 apply(auto) |
|
66 apply(drule star_decom) |
|
67 apply(auto simp add: Cons_eq_append_conv) |
|
68 done |
|
69 |
|
70 lemma Ders_singleton: |
|
71 shows "Ders [c] A = Der c A" |
|
72 unfolding Der_def Ders_def |
|
73 by simp |
|
74 |
|
75 lemma Ders_append: |
|
76 shows "Ders (s1 @ s2) A = Ders s2 (Ders s1 A)" |
|
77 unfolding Ders_def by simp |
|
78 |
|
79 lemma MN_Rel_Ders: |
|
80 shows "x \<approx>A y \<longleftrightarrow> Ders x A = Ders y A" |
|
81 unfolding Ders_def str_eq_def str_eq_rel_def |
|
82 by auto |
|
83 |
|
84 subsection {* Brozowsky's derivatives of regular expressions *} |
|
85 |
|
86 fun |
|
87 nullable :: "rexp \<Rightarrow> bool" |
|
88 where |
|
89 "nullable (NULL) = False" |
|
90 | "nullable (EMPTY) = True" |
|
91 | "nullable (CHAR c) = False" |
|
92 | "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)" |
|
93 | "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)" |
|
94 | "nullable (STAR r) = True" |
|
95 |
|
96 fun |
|
97 der :: "char \<Rightarrow> rexp \<Rightarrow> rexp" |
|
98 where |
|
99 "der c (NULL) = NULL" |
|
100 | "der c (EMPTY) = NULL" |
|
101 | "der c (CHAR c') = (if c = c' then EMPTY else NULL)" |
|
102 | "der c (ALT r1 r2) = ALT (der c r1) (der c r2)" |
|
103 | "der c (SEQ r1 r2) = ALT (SEQ (der c r1) r2) (if nullable r1 then der c r2 else NULL)" |
|
104 | "der c (STAR r) = SEQ (der c r) (STAR r)" |
|
105 |
|
106 function |
|
107 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp" |
|
108 where |
|
109 "ders [] r = r" |
|
110 | "ders (s @ [c]) r = der c (ders s r)" |
|
111 by (auto) (metis rev_cases) |
|
112 |
|
113 termination |
|
114 by (relation "measure (length o fst)") (auto) |
|
115 |
|
116 lemma Delta_nullable: |
|
117 shows "Delta (L r) = (if nullable r then {[]} else {})" |
|
118 unfolding Delta_def |
|
119 by (induct r) (auto simp add: Seq_def split: if_splits) |
|
120 |
|
121 lemma Der_der: |
|
122 fixes r::rexp |
|
123 shows "Der c (L r) = L (der c r)" |
|
124 by (induct r) (simp_all add: Delta_nullable) |
|
125 |
|
126 lemma Ders_ders: |
|
127 fixes r::rexp |
|
128 shows "Ders s (L r) = L (ders s r)" |
|
129 apply(induct s rule: rev_induct) |
|
130 apply(simp add: Ders_def) |
|
131 apply(simp only: ders.simps) |
|
132 apply(simp only: Ders_append) |
|
133 apply(simp only: Ders_singleton) |
|
134 apply(simp only: Der_der) |
|
135 done |
|
136 |
|
137 |
|
138 subsection {* Antimirov's Partial Derivatives *} |
|
139 |
|
140 abbreviation |
|
141 "SEQS R r \<equiv> {SEQ r' r | r'. r' \<in> R}" |
|
142 |
|
143 fun |
|
144 pder :: "char \<Rightarrow> rexp \<Rightarrow> rexp set" |
|
145 where |
|
146 "pder c NULL = {NULL}" |
|
147 | "pder c EMPTY = {NULL}" |
|
148 | "pder c (CHAR c') = (if c = c' then {EMPTY} else {NULL})" |
|
149 | "pder c (ALT r1 r2) = (pder c r1) \<union> (pder c r2)" |
|
150 | "pder c (SEQ r1 r2) = SEQS (pder c r1) r2 \<union> (if nullable r1 then pder c r2 else {})" |
|
151 | "pder c (STAR r) = SEQS (pder c r) (STAR r)" |
|
152 |
|
153 abbreviation |
|
154 "pder_set c R \<equiv> \<Union>r \<in> R. pder c r" |
|
155 |
|
156 function |
|
157 pders :: "string \<Rightarrow> rexp \<Rightarrow> rexp set" |
|
158 where |
|
159 "pders [] r = {r}" |
|
160 | "pders (s @ [c]) r = pder_set c (pders s r)" |
|
161 by (auto) (metis rev_cases) |
|
162 |
|
163 termination |
|
164 by (relation "measure (length o fst)") (auto) |
|
165 |
|
166 abbreviation |
|
167 "pders_set A r \<equiv> \<Union>s \<in> A. pders s r" |
|
168 |
|
169 |
|
170 lemma pders_append: |
|
171 "pders (s1 @ s2) r = \<Union> (pders s2) ` (pders s1 r)" |
|
172 apply(induct s2 arbitrary: s1 r rule: rev_induct) |
|
173 apply(simp) |
|
174 apply(subst append_assoc[symmetric]) |
|
175 apply(simp only: pders.simps) |
|
176 apply(auto) |
|
177 done |
|
178 |
|
179 lemma pders_singleton: |
|
180 "pders [c] r = pder c r" |
|
181 apply(subst append_Nil[symmetric]) |
|
182 apply(simp only: pders.simps) |
|
183 apply(simp) |
|
184 done |
|
185 |
|
186 lemma pder_set_lang: |
|
187 shows "(\<Union> (L ` pder_set c R)) = (\<Union>r \<in> R. (\<Union>L ` (pder c r)))" |
|
188 unfolding image_def |
|
189 by auto |
|
190 |
|
191 lemma |
|
192 shows seq_UNION_left: "B ;; (\<Union>n\<in>C. A n) = (\<Union>n\<in>C. B ;; A n)" |
|
193 and seq_UNION_right: "(\<Union>n\<in>C. A n) ;; B = (\<Union>n\<in>C. A n ;; B)" |
|
194 unfolding Seq_def by auto |
|
195 |
|
196 lemma Der_pder: |
|
197 fixes r::rexp |
|
198 shows "Der c (L r) = \<Union> L ` (pder c r)" |
|
199 by (induct r) (auto simp add: Delta_nullable seq_UNION_right) |
|
200 |
|
201 lemma Ders_pders: |
|
202 fixes r::rexp |
|
203 shows "Ders s (L r) = \<Union> L ` (pders s r)" |
|
204 proof (induct s rule: rev_induct) |
|
205 case (snoc c s) |
|
206 have ih: "Ders s (L r) = \<Union> L ` (pders s r)" by fact |
|
207 have "Ders (s @ [c]) (L r) = Ders [c] (Ders s (L r))" |
|
208 by (simp add: Ders_append) |
|
209 also have "\<dots> = Der c (\<Union> L ` (pders s r))" using ih |
|
210 by (simp add: Ders_singleton) |
|
211 also have "\<dots> = (\<Union>r\<in>pders s r. Der c (L r))" |
|
212 unfolding Der_def image_def by auto |
|
213 also have "\<dots> = (\<Union>r\<in>pders s r. (\<Union> L ` (pder c r)))" |
|
214 by (simp add: Der_pder) |
|
215 also have "\<dots> = (\<Union>L ` (pder_set c (pders s r)))" |
|
216 by (simp add: pder_set_lang) |
|
217 also have "\<dots> = (\<Union>L ` (pders (s @ [c]) r))" |
|
218 by simp |
|
219 finally show "Ders (s @ [c]) (L r) = \<Union>L ` pders (s @ [c]) r" . |
|
220 qed (simp add: Ders_def) |
|
221 |
|
222 lemma Ders_set_pders_set: |
|
223 fixes r::rexp |
|
224 shows "Ders_set A (L r) = (\<Union> L ` (pders_set A r))" |
|
225 by (simp add: Ders_set_Ders Ders_pders) |
|
226 |
|
227 lemma pders_NULL [simp]: |
|
228 shows "pders s NULL = {NULL}" |
|
229 by (induct s rule: rev_induct) (simp_all) |
|
230 |
|
231 lemma pders_EMPTY [simp]: |
|
232 shows "pders s EMPTY = (if s = [] then {EMPTY} else {NULL})" |
|
233 by (induct s rule: rev_induct) (auto) |
|
234 |
|
235 lemma pders_CHAR [simp]: |
|
236 shows "pders s (CHAR c) = (if s = [] then {CHAR c} else (if s = [c] then {EMPTY} else {NULL}))" |
|
237 by (induct s rule: rev_induct) (auto) |
|
238 |
|
239 lemma pders_ALT [simp]: |
|
240 shows "pders s (ALT r1 r2) = (if s = [] then {ALT r1 r2} else (pders s r1) \<union> (pders s r2))" |
|
241 by (induct s rule: rev_induct) (auto) |
|
242 |
|
243 definition |
|
244 "Suf s \<equiv> {v. v \<noteq> [] \<and> (\<exists>u. u @ v = s)}" |
|
245 |
|
246 lemma Suf: |
|
247 shows "Suf (s @ [c]) = (Suf s) ;; {[c]} \<union> {[c]}" |
|
248 unfolding Suf_def Seq_def |
|
249 by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv) |
|
250 |
|
251 lemma Suf_Union: |
|
252 shows "(\<Union>v \<in> Suf s ;; {[c]}. P v) = (\<Union>v \<in> Suf s. P (v @ [c]))" |
|
253 by (auto simp add: Seq_def) |
|
254 |
|
255 lemma inclusion1: |
|
256 shows "pder_set c (SEQS R r2) \<subseteq> SEQS (pder_set c R) r2 \<union> (pder c r2)" |
|
257 apply(auto simp add: if_splits) |
|
258 apply(blast) |
|
259 done |
|
260 |
|
261 lemma pders_SEQ: |
|
262 shows "pders s (SEQ r1 r2) \<subseteq> SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2)" |
|
263 proof (induct s rule: rev_induct) |
|
264 case (snoc c s) |
|
265 have ih: "pders s (SEQ r1 r2) \<subseteq> SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2)" |
|
266 by fact |
|
267 have "pders (s @ [c]) (SEQ r1 r2) = pder_set c (pders s (SEQ r1 r2))" by simp |
|
268 also have "\<dots> \<subseteq> pder_set c (SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2))" |
|
269 using ih by auto |
|
270 also have "\<dots> = pder_set c (SEQS (pders s r1) r2) \<union> pder_set c (\<Union>v \<in> Suf s. pders v r2)" |
|
271 by (simp) |
|
272 also have "\<dots> = pder_set c (SEQS (pders s r1) r2) \<union> (\<Union>v \<in> Suf s. pder_set c (pders v r2))" |
|
273 by (simp) |
|
274 also have "\<dots> \<subseteq> pder_set c (SEQS (pders s r1) r2) \<union> (pder c r2) \<union> (\<Union>v \<in> Suf s. pders (v @ [c]) r2)" |
|
275 by (auto) |
|
276 also have "\<dots> \<subseteq> SEQS (pder_set c (pders s r1)) r2 \<union> (pder c r2) \<union> (\<Union>v \<in> Suf s. pders (v @ [c]) r2)" |
|
277 using inclusion1 by blast |
|
278 also have "\<dots> = SEQS (pders (s @ [c]) r1) r2 \<union> (\<Union>v \<in> Suf (s @ [c]). pders v r2)" |
|
279 apply(subst (2) pders.simps) |
|
280 apply(simp only: Suf) |
|
281 apply(simp add: Suf_Union pders_singleton) |
|
282 apply(auto) |
|
283 done |
|
284 finally show ?case . |
|
285 qed (simp) |
|
286 |
|
287 lemma pders_STAR: |
|
288 assumes a: "s \<noteq> []" |
|
289 shows "pders s (STAR r) \<subseteq> (\<Union>v \<in> Suf s. SEQS (pders v r) (STAR r))" |
|
290 using a |
|
291 proof (induct s rule: rev_induct) |
|
292 case (snoc c s) |
|
293 have ih: "s \<noteq> [] \<Longrightarrow> pders s (STAR r) \<subseteq> (\<Union>v\<in>Suf s. SEQS (pders v r) (STAR r))" by fact |
|
294 { assume asm: "s \<noteq> []" |
|
295 have "pders (s @ [c]) (STAR r) = pder_set c (pders s (STAR r))" by simp |
|
296 also have "\<dots> \<subseteq> (pder_set c (\<Union>v\<in>Suf s. SEQS (pders v r) (STAR r)))" |
|
297 using ih[OF asm] by blast |
|
298 also have "\<dots> = (\<Union>v\<in>Suf s. pder_set c (SEQS (pders v r) (STAR r)))" |
|
299 by simp |
|
300 also have "\<dots> \<subseteq> (\<Union>v\<in>Suf s. (SEQS (pder_set c (pders v r)) (STAR r) \<union> pder c (STAR r)))" |
|
301 using inclusion1 by blast |
|
302 also have "\<dots> = (\<Union>v\<in>Suf s. (SEQS (pder_set c (pders v r)) (STAR r))) \<union> pder c (STAR r)" |
|
303 using asm by (auto simp add: Suf_def) |
|
304 also have "\<dots> = (\<Union>v\<in>Suf s. (SEQS (pders (v @ [c]) r) (STAR r))) \<union> (SEQS (pder c r) (STAR r))" |
|
305 by simp |
|
306 also have "\<dots> = (\<Union>v\<in>Suf (s @ [c]). (SEQS (pders v r) (STAR r)))" |
|
307 apply(simp only: Suf) |
|
308 apply(simp add: Suf_Union pders_singleton) |
|
309 apply(auto) |
|
310 done |
|
311 finally have ?case . |
|
312 } |
|
313 moreover |
|
314 { assume asm: "s = []" |
|
315 then have ?case |
|
316 apply(simp add: pders_singleton Suf_def) |
|
317 apply(auto) |
|
318 apply(rule_tac x="[c]" in exI) |
|
319 apply(simp add: pders_singleton) |
|
320 done |
|
321 } |
|
322 ultimately show ?case by blast |
|
323 qed (simp) |
|
324 |
|
325 abbreviation |
|
326 "UNIV1 \<equiv> UNIV - {[]}" |
|
327 |
|
328 lemma pders_set_NULL: |
|
329 shows "pders_set UNIV1 NULL = {NULL}" |
|
330 by auto |
|
331 |
|
332 lemma pders_set_EMPTY: |
|
333 shows "pders_set UNIV1 EMPTY = {NULL}" |
|
334 by (auto split: if_splits) |
|
335 |
|
336 lemma pders_set_CHAR: |
|
337 shows "pders_set UNIV1 (CHAR c) \<subseteq> {EMPTY, NULL}" |
|
338 by (auto split: if_splits) |
|
339 |
|
340 lemma pders_set_ALT: |
|
341 shows "pders_set UNIV1 (ALT r1 r2) = pders_set UNIV1 r1 \<union> pders_set UNIV1 r2" |
|
342 by auto |
|
343 |
|
344 lemma pders_set_SEQ_aux: |
|
345 assumes a: "s \<in> UNIV1" |
|
346 shows "pders_set (Suf s) r2 \<subseteq> pders_set UNIV1 r2" |
|
347 using a by (auto simp add: Suf_def) |
|
348 |
|
349 lemma pders_set_SEQ: |
|
350 shows "pders_set UNIV1 (SEQ r1 r2) \<subseteq> SEQS (pders_set UNIV1 r1) r2 \<union> pders_set UNIV1 r2" |
|
351 apply(rule UN_least) |
|
352 apply(rule subset_trans) |
|
353 apply(rule pders_SEQ) |
|
354 apply(simp) |
|
355 apply(rule conjI) |
|
356 apply(auto)[1] |
|
357 apply(rule subset_trans) |
|
358 apply(rule pders_set_SEQ_aux) |
|
359 apply(auto) |
|
360 done |
|
361 |
|
362 lemma pders_set_STAR: |
|
363 shows "pders_set UNIV1 (STAR r) \<subseteq> SEQS (pders_set UNIV1 r) (STAR r)" |
|
364 apply(rule UN_least) |
|
365 apply(rule subset_trans) |
|
366 apply(rule pders_STAR) |
|
367 apply(simp) |
|
368 apply(simp add: Suf_def) |
|
369 apply(auto) |
|
370 done |
|
371 |
|
372 lemma finite_SEQS: |
|
373 assumes a: "finite A" |
|
374 shows "finite (SEQS A r)" |
|
375 using a by (auto) |
|
376 |
|
377 lemma finite_pders_set_UNIV1: |
|
378 shows "finite (pders_set UNIV1 r)" |
|
379 apply(induct r) |
|
380 apply(simp) |
|
381 apply(simp only: pders_set_EMPTY) |
|
382 apply(simp) |
|
383 apply(rule finite_subset) |
|
384 apply(rule pders_set_CHAR) |
|
385 apply(simp) |
|
386 apply(rule finite_subset) |
|
387 apply(rule pders_set_SEQ) |
|
388 apply(simp only: finite_SEQS finite_Un) |
|
389 apply(simp) |
|
390 apply(simp only: pders_set_ALT) |
|
391 apply(simp) |
|
392 apply(rule finite_subset) |
|
393 apply(rule pders_set_STAR) |
|
394 apply(simp only: finite_SEQS) |
|
395 done |
|
396 |
|
397 lemma pders_set_UNIV_UNIV1: |
|
398 shows "pders_set UNIV r = pders [] r \<union> pders_set UNIV1 r" |
|
399 apply(auto) |
|
400 apply(rule_tac x="[]" in exI) |
|
401 apply(simp) |
|
402 done |
|
403 |
|
404 lemma finite_pders_set_UNIV: |
|
405 shows "finite (pders_set UNIV r)" |
|
406 unfolding pders_set_UNIV_UNIV1 |
|
407 by (simp add: finite_pders_set_UNIV1) |
|
408 |
|
409 lemma finite_pders_set: |
|
410 shows "finite (pders_set A r)" |
|
411 apply(rule rev_finite_subset) |
|
412 apply(rule_tac r="r" in finite_pders_set_UNIV) |
|
413 apply(auto) |
|
414 done |
|
415 |
|
416 lemma finite_pders: |
|
417 shows "finite (pders s r)" |
|
418 using finite_pders_set[where A="{s}" and r="r"] |
|
419 by simp |
|
420 |
|
421 |
|
422 lemma test: |
|
423 shows "pders_set A r = (\<Union> {pders s r | s. s \<in> A})" |
|
424 by auto |
|
425 |
|
426 lemma finite_pow_pders: |
|
427 shows "finite (Pow (\<Union> {pders s r | s. s \<in> A}))" |
|
428 using finite_pders_set |
|
429 by (simp add: test) |
|
430 |
|
431 lemma test2: |
|
432 shows "{pders s r | s. s \<in> A} \<subseteq> Pow (\<Union> {pders s r | s. s \<in> A})" |
|
433 by auto |
|
434 |
|
435 lemma test3: |
|
436 shows "finite ({pders s r | s. s \<in> A})" |
|
437 apply(rule finite_subset) |
|
438 apply(rule test2) |
|
439 apply(rule finite_pow_pders) |
|
440 done |
|
441 |
|
442 lemma Myhill_Nerode_aux: |
|
443 fixes r::"rexp" |
|
444 shows "finite (UNIV // =(\<lambda>x. pders x r)=)" |
|
445 apply(rule finite_eq_tag_rel) |
|
446 apply(rule rev_finite_subset) |
|
447 apply(rule test3) |
|
448 apply(auto) |
|
449 done |
|
450 |
|
451 lemma Myhill_Nerode3: |
|
452 fixes r::"rexp" |
|
453 shows "finite (UNIV // \<approx>(L r))" |
|
454 apply(rule refined_partition_finite) |
|
455 apply(rule Myhill_Nerode_aux[where r="r"]) |
|
456 apply(simp add: tag_eq_rel_def) |
|
457 apply(auto)[1] |
|
458 unfolding str_eq_def[symmetric] |
|
459 unfolding MN_Rel_Ders |
|
460 apply(simp add: Ders_pders) |
|
461 apply(rule equivI) |
|
462 apply(auto simp add: tag_eq_rel_def refl_on_def sym_def trans_def) |
|
463 apply(rule equivI) |
|
464 apply(auto simp add: str_eq_rel_def refl_on_def sym_def trans_def) |
|
465 done |
|
466 |
|
467 |
|
468 section {* Closure under Left-Quotients *} |
|
469 |
|
470 lemma closure_left_quotient: |
|
471 assumes "regular A" |
|
472 shows "regular (Ders_set B A)" |
|
473 proof - |
|
474 from assms obtain r::rexp where eq: "L r = A" by auto |
|
475 have fin: "finite (pders_set B r)" by (rule finite_pders_set) |
|
476 |
|
477 have "Ders_set B (L r) = (\<Union> L ` (pders_set B r))" |
|
478 by (simp add: Ders_set_pders_set) |
|
479 also have "\<dots> = L (\<Uplus>(pders_set B r))" using fin by simp |
|
480 finally have "Ders_set B A = L (\<Uplus>(pders_set B r))" using eq |
|
481 by simp |
|
482 then show "regular (Ders_set B A)" by auto |
|
483 qed |
|
484 |
|
485 |
|
486 section {* Relating standard and partial derivations *} |
|
487 |
|
488 lemma |
|
489 shows "(\<Union> L ` (pder c r)) = L (der c r)" |
|
490 unfolding Der_der[symmetric] Der_pder by simp |
|
491 |
|
492 lemma |
|
493 shows "(\<Union> L ` (pders s r)) = L (ders s r)" |
|
494 unfolding Ders_ders[symmetric] Ders_pders by simp |
|
495 |
|
496 |
|
497 section {* attempt to prove MN *} |
|
498 (* |
|
499 lemma Myhill_Nerode3: |
|
500 fixes r::"rexp" |
|
501 shows "finite (UNIV // =(\<lambda>x. pders x r)=)" |
|
502 apply(rule finite_eq_tag_rel) |
|
503 apply(rule finite_pders_set) |
|
504 apply(simp add: Range_def) |
|
505 unfolding Quotien_def |
|
506 by (induct r) (auto) |
|
507 *) |
|
508 |
|
509 fun |
|
510 width :: "rexp \<Rightarrow> nat" |
|
511 where |
|
512 "width (NULL) = 0" |
|
513 | "width (EMPTY) = 0" |
|
514 | "width (CHAR c) = 1" |
|
515 | "width (ALT r1 r2) = width r1 + width r2" |
|
516 | "width (SEQ r1 r2) = width r1 + width r2" |
|
517 | "width (STAR r) = width r" |
|
518 |
|
519 |
|
520 |
|
521 end |
|