prio/CpsG.thy
changeset 290 6a6d0bd16035
parent 272 ee4611c1e13c
child 298 f2e0d031a395
equal deleted inserted replaced
289:a5dd2c966cbe 290:6a6d0bd16035
   274     show "th1 = th2" by simp
   274     show "th1 = th2" by simp
   275   qed 
   275   qed 
   276 qed
   276 qed
   277 
   277 
   278 
   278 
   279 lemma cp_eq_cpreced_f: "cp s = cpreced s (wq s)"
   279 lemma cp_eq_cpreced_f: "cp s = cpreced (wq s) s"
   280 proof -
   280 proof -
   281   from fun_eq_iff 
   281   from fun_eq_iff 
   282   have h:"\<And>f g. (\<forall> x. f x = g x) \<Longrightarrow> f = g" by auto
   282   have h:"\<And>f g. (\<forall> x. f x = g x) \<Longrightarrow> f = g" by auto
   283   show ?thesis
   283   show ?thesis
   284   proof(rule h)
   284   proof(rule h)
   285     from cp_eq_cpreced show "\<forall>x. cp s x = cpreced s (wq s) x" by auto
   285     from cp_eq_cpreced show "\<forall>x. cp s x = cpreced (wq s) s x" by auto
   286   qed
   286   qed
   287 qed
   287 qed
   288 
   288 
   289 lemma depend_children:
   289 lemma depend_children:
   290   assumes h: "(Th th1, Th th2) \<in> (depend s)^+"
   290   assumes h: "(Th th1, Th th2) \<in> (depend s)^+"