115 \end{tabular} |
114 \end{tabular} |
116 \end{center}} |
115 \end{center}} |
117 \only<2->{ |
116 \only<2->{ |
118 \begin{center} |
117 \begin{center} |
119 \begin{tabular}{rcl} |
118 \begin{tabular}{rcl} |
120 \smath{r} & \smath{::=} & \smath{\varepsilon} \\ |
119 \smath{r} & \smath{::=} & \smath{0} \\ |
121 & \smath{\mid} & \smath{[]}\\ |
120 & \smath{\mid} & \smath{[]}\\ |
122 & \smath{\mid} & \smath{c}\\ |
121 & \smath{\mid} & \smath{c}\\ |
123 & \smath{\mid} & \smath{r_1 + r_2}\\ |
122 & \smath{\mid} & \smath{r_1 + r_2}\\ |
124 & \smath{\mid} & \smath{r_1 ; r_2}\\ |
123 & \smath{\mid} & \smath{r_1 \cdot r_2}\\ |
125 & \smath{\mid} & \smath{r^\star} |
124 & \smath{\mid} & \smath{r^\star} |
126 \end{tabular} |
125 \end{tabular} |
127 \end{center}} |
126 \end{center}} |
128 |
127 |
129 \end{frame}} |
128 \only<3->{Induction and recursion principles come for free.} |
130 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
129 |
131 |
130 \end{frame}} |
132 *} |
131 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
133 |
132 |
|
133 *} |
|
134 |
|
135 |
|
136 text_raw {* |
|
137 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
138 \mode<presentation>{ |
|
139 \begin{frame}[c] |
|
140 \frametitle{Semantics of Rexps} |
|
141 |
|
142 \begin{center} |
|
143 \begin{tabular}{rcl} |
|
144 \smath{\mathbb{L}(0)} & \smath{=} & \smath{\varnothing}\\ |
|
145 \smath{\mathbb{L}([])} & \smath{=} & \smath{\{[]\}}\\ |
|
146 \smath{\mathbb{L}(c)} & \smath{=} & \smath{\{[c]\}}\\ |
|
147 \smath{\mathbb{L}(r_1 + r_2)} & \smath{=} & \smath{\mathbb{L}(r_1) \cup \mathbb{L}(r_2)}\\ |
|
148 \smath{\mathbb{L}(r_1 \cdot r_2)} & \smath{=} & \smath{\mathbb{L}(r_1)\; ;\; \mathbb{L} (r_2)}\\ |
|
149 \smath{\mathbb{L}(r^\star)} & \smath{=} & \smath{\mathbb{L}(r)^\star} |
|
150 \end{tabular} |
|
151 \end{center} |
|
152 |
|
153 \small |
|
154 \begin{center} |
|
155 \begin{tabular}{rcl} |
|
156 \smath{L_1 ; L_2} & \smath{\dn} & \smath{\{ s_1 @ s_2 \mid s_1 \in L_1 \wedge s_2 \in L_2\}}\bigskip\\ |
|
157 \multicolumn{3}{c}{ |
|
158 \smath{\infer{[] \in L^\star}{}} \hspace{10mm} |
|
159 \smath{\infer{s_1 @ s_2 \in L^\star}{s_1 \in L & s_2 \in L^\star}} |
|
160 } |
|
161 \end{tabular} |
|
162 \end{center} |
|
163 |
|
164 \end{frame}} |
|
165 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
166 |
|
167 *} |
|
168 |
|
169 text_raw {* |
|
170 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
171 \mode<presentation>{ |
|
172 \begin{frame}[c] |
|
173 \frametitle{\LARGE Regular Expression Matching} |
|
174 |
|
175 \begin{itemize} |
|
176 \item Harper in JFP'99: ``Functional Pearl: Proof- Directed Debugging''\medskip |
|
177 \item Yi in JFP'06: ``Educational Pearl: `Proof-Directed Debugging' revisited |
|
178 for a first-order version''\medskip |
|
179 \item Owens et al in JFP'09: ``Regular-expression derivatives re-examined''\bigskip\pause |
|
180 |
|
181 \begin{quote}\small |
|
182 ``Unfortunately, regular expression derivatives have been lost in the |
|
183 sands of time, and few computer scientists are aware of them.'' |
|
184 \end{quote} |
|
185 \end{itemize} |
|
186 |
|
187 |
|
188 \end{frame}} |
|
189 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
190 |
|
191 *} |
|
192 |
|
193 text_raw {* |
|
194 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
195 \mode<presentation>{ |
|
196 \begin{frame}[c] |
|
197 |
|
198 \begin{center} |
|
199 \huge\bf Demo |
|
200 \end{center} |
|
201 |
|
202 |
|
203 \end{frame}} |
|
204 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
205 |
|
206 *} |
|
207 |
|
208 text_raw {* |
|
209 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
210 \mode<presentation>{ |
|
211 \begin{frame}[c] |
|
212 \frametitle{\LARGE The Myhill-Nerode Theorem} |
|
213 |
|
214 \begin{itemize} |
|
215 \item will help with closure properties of regular languages and |
|
216 with the pumping lemma.\medskip |
|
217 |
|
218 \item provides necessary and suf\!ficient conditions for a language being |
|
219 regular\bigskip\pause |
|
220 |
|
221 \begin{center} |
|
222 \smath{x \approx_{L} y \,\dn\, \forall z.\; x @ z \in L \Leftrightarrow y @ z \in L} |
|
223 \end{center} |
|
224 \end{itemize} |
|
225 |
|
226 \end{frame}} |
|
227 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
228 |
|
229 *} |
|
230 |
|
231 text_raw {* |
|
232 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
233 \mode<presentation>{ |
|
234 \begin{frame}[c] |
|
235 \frametitle{\LARGE The Myhill-Nerode Theorem} |
|
236 |
|
237 \mbox{}\\[5cm] |
|
238 |
|
239 \begin{itemize} |
|
240 \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_L) \;\Leftrightarrow\; L\; \text{is regular}} |
|
241 \end{itemize} |
|
242 |
|
243 \end{frame}} |
|
244 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
245 |
|
246 *} |
|
247 |
|
248 |
|
249 text_raw {* |
|
250 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
251 \mode<presentation>{ |
|
252 \begin{frame}[c] |
|
253 \frametitle{\LARGE Equivalence Classes} |
|
254 |
|
255 \begin{itemize} |
|
256 \item \smath{L = []} |
|
257 \begin{center} |
|
258 \smath{\Big\{\{[]\},\; U\!N\!IV - \{[]\}\Big\}} |
|
259 \end{center}\bigskip\bigskip |
|
260 |
|
261 \item \smath{L = [c]} |
|
262 \begin{center} |
|
263 \smath{\Big\{\{[]\},\; \{[c]\},\; U\!N\!IV - \{[], [c]\}\Big\}} |
|
264 \end{center}\bigskip\bigskip |
|
265 |
|
266 \item \smath{L = \varnothing} |
|
267 \begin{center} |
|
268 \smath{\Big\{U\!N\!IV\Big\}} |
|
269 \end{center} |
|
270 |
|
271 \end{itemize} |
|
272 |
|
273 \end{frame}} |
|
274 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
275 |
|
276 *} |
|
277 |
|
278 |
|
279 text_raw {* |
|
280 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
281 \mode<presentation>{ |
|
282 \begin{frame}[c] |
|
283 \frametitle{\LARGE Regular Languages} |
|
284 |
|
285 \begin{itemize} |
|
286 \item \smath{L} is regular \smath{\dn} if there is an automaton \smath{M} |
|
287 such that \smath{\mathbb{L}(M) = L}\\[1.5cm] |
|
288 |
|
289 \item Myhill-Nerode: |
|
290 |
|
291 \begin{center} |
|
292 \begin{tabular}{l} |
|
293 finite $\Rightarrow$ regular\\ |
|
294 \;\;\;\smath{\text{finite}\,(U\!N\!IV /\!/ \approx_L) \Rightarrow \exists r. L = \mathbb{L}(r)}\\[3mm] |
|
295 regular $\Rightarrow$ finite\\ |
|
296 \;\;\;\smath{\text{finite}\, (U\!N\!IV /\!/ \approx_{\mathbb{L}(r)})} |
|
297 \end{tabular} |
|
298 \end{center} |
|
299 |
|
300 \end{itemize} |
|
301 |
|
302 \end{frame}} |
|
303 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
304 |
|
305 *} |
|
306 |
|
307 |
|
308 text_raw {* |
|
309 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
310 \mode<presentation>{ |
|
311 \begin{frame}[c] |
|
312 \frametitle{\LARGE Final States} |
|
313 |
|
314 \mbox{}\\[3cm] |
|
315 |
|
316 \begin{itemize} |
|
317 \item \smath{\text{final}_L\,X \dn}\\ |
|
318 \smath{\hspace{6mm}X \in (U\!N\!IV /\!/\approx_L) \;\wedge\; \forall s \in X.\; s \in L} |
|
319 \smallskip |
|
320 \item we can prove: \smath{L = \bigcup \{X.\;\text{final}_L\,X\}} |
|
321 |
|
322 \end{itemize} |
|
323 |
|
324 \end{frame}} |
|
325 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
326 *} |
|
327 |
|
328 |
|
329 text_raw {* |
|
330 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
331 \mode<presentation>{ |
|
332 \begin{frame}[c] |
|
333 \frametitle{\LARGE Transitions between\\[-3mm] Equivalence Classes} |
|
334 |
|
335 \smath{L = \{[c]\}} |
|
336 |
|
337 \begin{tabular}{@ {\hspace{-7mm}}cc} |
|
338 \begin{tabular}{c} |
|
339 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick] |
|
340 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
341 |
|
342 %\draw[help lines] (0,0) grid (3,2); |
|
343 |
|
344 \node[state,initial] (q_0) {$R_1$}; |
|
345 \node[state,accepting] (q_1) [above right of=q_0] {$R_2$}; |
|
346 \node[state] (q_2) [below right of=q_0] {$R_3$}; |
|
347 |
|
348 \path[->] (q_0) edge node {c} (q_1) |
|
349 edge node [swap] {$\Sigma-{c}$} (q_2) |
|
350 (q_2) edge [loop below] node {$\Sigma$} (); |
|
351 \end{tikzpicture} |
|
352 \end{tabular} |
|
353 & |
|
354 \begin{tabular}[t]{ll} |
|
355 \\[-20mm] |
|
356 \multicolumn{2}{l}{\smath{U\!N\!IV /\!/\approx_L} produces}\\[4mm] |
|
357 |
|
358 \smath{R_1}: & \smath{\{[]\}}\\ |
|
359 \smath{R_2}: & \smath{\{[c]\}}\\ |
|
360 \smath{R_3}: & \smath{U\!N\!IV - \{[], [c]\}}\\[6mm] |
|
361 \multicolumn{2}{l}{\onslide<2->{\smath{X \stackrel{c}{\longrightarrow} Y \dn X ; [c] \subseteq Y}}} |
|
362 \end{tabular} |
|
363 |
|
364 \end{tabular} |
|
365 |
|
366 \end{frame}} |
|
367 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
368 *} |
|
369 |
|
370 |
|
371 text_raw {* |
|
372 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
373 \mode<presentation>{ |
|
374 \begin{frame}[c] |
|
375 \frametitle{\LARGE Systems of Equations} |
|
376 |
|
377 Inspired by a method of Brzozowski\;'64, we can build an equational system |
|
378 characterising the equivalence classes: |
|
379 |
|
380 \begin{center} |
|
381 \begin{tabular}{@ {\hspace{-20mm}}c} |
|
382 \\[-13mm] |
|
383 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick] |
|
384 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
385 |
|
386 %\draw[help lines] (0,0) grid (3,2); |
|
387 |
|
388 \node[state,initial] (p_0) {$R_1$}; |
|
389 \node[state,accepting] (p_1) [right of=q_0] {$R_2$}; |
|
390 |
|
391 \path[->] (p_0) edge [bend left] node {a} (p_1) |
|
392 edge [loop above] node {b} () |
|
393 (p_1) edge [loop above] node {a} () |
|
394 edge [bend left] node {b} (p_0); |
|
395 \end{tikzpicture}\\ |
|
396 \\[-13mm] |
|
397 \end{tabular} |
|
398 \end{center} |
|
399 |
|
400 \begin{center} |
|
401 \begin{tabular}{@ {\hspace{-6mm}}ll@ {\hspace{1mm}}c@ {\hspace{1mm}}l} |
|
402 & \smath{R_1} & \smath{\equiv} & \smath{R_1;b + R_2;b \onslide<2->{\alert<2>{+ \lambda;[]}}}\\ |
|
403 & \smath{R_2} & \smath{\equiv} & \smath{R_1;a + R_2;a}\medskip\\ |
|
404 \onslide<3->{we can prove} |
|
405 & \onslide<3->{\smath{R_1}} & \onslide<3->{\smath{=}} |
|
406 & \onslide<3->{\smath{R_1; \mathbb{L}(b) \,\cup\, R_2;\mathbb{L}(b) \,\cup\, \{[]\};\{[]\}}}\\ |
|
407 & \onslide<3->{\smath{R_2}} & \onslide<3->{\smath{=}} |
|
408 & \onslide<3->{\smath{R_1; \mathbb{L}(a) \,\cup\, R_2;\mathbb{L}(a)}}\\ |
|
409 \end{tabular} |
|
410 \end{center} |
|
411 |
|
412 \end{frame}} |
|
413 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
414 *} |
|
415 |
|
416 text_raw {* |
|
417 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
418 \mode<presentation>{ |
|
419 \begin{frame}<1>[t] |
|
420 \small |
|
421 |
|
422 \begin{center} |
|
423 \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll} |
|
424 \onslide<1->{\smath{R_1}} & \onslide<1->{\smath{=}} |
|
425 & \onslide<1->{\smath{R_1; b + R_2; b + \lambda;[]}}\\ |
|
426 \onslide<1->{\smath{R_2}} & \onslide<1->{\smath{=}} |
|
427 & \onslide<1->{\smath{R_1; a + R_2; a}}\\ |
|
428 |
|
429 & & & \onslide<2->{by Arden}\\ |
|
430 |
|
431 \onslide<2->{\smath{R_1}} & \onslide<2->{\smath{=}} |
|
432 & \onslide<2->{\smath{R_1; b + R_2; b + \lambda;[]}}\\ |
|
433 \onslide<2->{\smath{R_2}} & \onslide<2->{\smath{=}} |
|
434 & \only<2>{\smath{R_1; a + R_2; a}}% |
|
435 \only<3->{\smath{R_1; a\cdot a^\star}}\\ |
|
436 |
|
437 & & & \onslide<3->{by Arden}\\ |
|
438 |
|
439 \onslide<3->{\smath{R_1}} & \onslide<3->{\smath{=}} |
|
440 & \onslide<3->{\smath{R_2; b \cdot b^\star+ \lambda;b^\star}}\\ |
|
441 \onslide<3->{\smath{R_2}} & \onslide<3->{\smath{=}} |
|
442 & \onslide<3->{\smath{R_1; a\cdot a^\star}}\\ |
|
443 |
|
444 & & & \onslide<4->{by substitution}\\ |
|
445 |
|
446 \onslide<4->{\smath{R_1}} & \onslide<4->{\smath{=}} |
|
447 & \onslide<4->{\smath{R_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\ |
|
448 \onslide<4->{\smath{R_2}} & \onslide<4->{\smath{=}} |
|
449 & \onslide<4->{\smath{R_1; a\cdot a^\star}}\\ |
|
450 |
|
451 & & & \onslide<5->{by Arden}\\ |
|
452 |
|
453 \onslide<5->{\smath{R_1}} & \onslide<5->{\smath{=}} |
|
454 & \onslide<5->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
455 \onslide<5->{\smath{R_2}} & \onslide<5->{\smath{=}} |
|
456 & \onslide<5->{\smath{R_1; a\cdot a^\star}}\\ |
|
457 |
|
458 & & & \onslide<6->{by substitution}\\ |
|
459 |
|
460 \onslide<6->{\smath{R_1}} & \onslide<6->{\smath{=}} |
|
461 & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
462 \onslide<6->{\smath{R_2}} & \onslide<6->{\smath{=}} |
|
463 & \onslide<6->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star |
|
464 \cdot a\cdot a^\star}}\\ |
|
465 \end{tabular} |
|
466 \end{center} |
|
467 |
|
468 \end{frame}} |
|
469 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
470 *} |
|
471 |
|
472 text_raw {* |
|
473 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
474 \mode<presentation>{ |
|
475 \begin{frame}[c] |
|
476 \frametitle{\LARGE A Variant of Arden's Lemma} |
|
477 |
|
478 {\bf Arden's Lemma:} |
|
479 |
|
480 If \smath{[] \not\in A} then |
|
481 \begin{center} |
|
482 \smath{X = X; A + \text{something}} |
|
483 \end{center} |
|
484 has the (unique) solution |
|
485 \begin{center} |
|
486 \smath{X = \text{something} ; A^\star} |
|
487 \end{center} |
|
488 |
|
489 |
|
490 \end{frame}} |
|
491 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
492 *} |
|
493 |
|
494 |
|
495 text_raw {* |
|
496 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
497 \mode<presentation>{ |
|
498 \begin{frame}<1->[t] |
|
499 \small |
|
500 |
|
501 \begin{center} |
|
502 \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll} |
|
503 \onslide<1->{\smath{R_1}} & \onslide<1->{\smath{=}} |
|
504 & \onslide<1->{\smath{R_1; b + R_2; b + \lambda;[]}}\\ |
|
505 \onslide<1->{\smath{R_2}} & \onslide<1->{\smath{=}} |
|
506 & \onslide<1->{\smath{R_1; a + R_2; a}}\\ |
|
507 |
|
508 & & & \onslide<2->{by Arden}\\ |
|
509 |
|
510 \onslide<2->{\smath{R_1}} & \onslide<2->{\smath{=}} |
|
511 & \onslide<2->{\smath{R_1; b + R_2; b + \lambda;[]}}\\ |
|
512 \onslide<2->{\smath{R_2}} & \onslide<2->{\smath{=}} |
|
513 & \only<2>{\smath{R_1; a + R_2; a}}% |
|
514 \only<3->{\smath{R_1; a\cdot a^\star}}\\ |
|
515 |
|
516 & & & \onslide<3->{by Arden}\\ |
|
517 |
|
518 \onslide<3->{\smath{R_1}} & \onslide<3->{\smath{=}} |
|
519 & \onslide<3->{\smath{R_2; b \cdot b^\star+ \lambda;b^\star}}\\ |
|
520 \onslide<3->{\smath{R_2}} & \onslide<3->{\smath{=}} |
|
521 & \onslide<3->{\smath{R_1; a\cdot a^\star}}\\ |
|
522 |
|
523 & & & \onslide<4->{by substitution}\\ |
|
524 |
|
525 \onslide<4->{\smath{R_1}} & \onslide<4->{\smath{=}} |
|
526 & \onslide<4->{\smath{R_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\ |
|
527 \onslide<4->{\smath{R_2}} & \onslide<4->{\smath{=}} |
|
528 & \onslide<4->{\smath{R_1; a\cdot a^\star}}\\ |
|
529 |
|
530 & & & \onslide<5->{by Arden}\\ |
|
531 |
|
532 \onslide<5->{\smath{R_1}} & \onslide<5->{\smath{=}} |
|
533 & \onslide<5->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
534 \onslide<5->{\smath{R_2}} & \onslide<5->{\smath{=}} |
|
535 & \onslide<5->{\smath{R_1; a\cdot a^\star}}\\ |
|
536 |
|
537 & & & \onslide<6->{by substitution}\\ |
|
538 |
|
539 \onslide<6->{\smath{R_1}} & \onslide<6->{\smath{=}} |
|
540 & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
541 \onslide<6->{\smath{R_2}} & \onslide<6->{\smath{=}} |
|
542 & \onslide<6->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star |
|
543 \cdot a\cdot a^\star}}\\ |
|
544 |
|
545 & & & \onslide<7->{\alert{solved form}}\\ |
|
546 \end{tabular} |
|
547 \end{center} |
|
548 |
|
549 \only<8->{ |
|
550 \begin{textblock}{6}(2.5,4) |
|
551 \begin{block}{} |
|
552 \begin{minipage}{8cm}\raggedright |
|
553 |
|
554 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick, inner sep=1mm] |
|
555 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
556 |
|
557 %\draw[help lines] (0,0) grid (3,2); |
|
558 |
|
559 \node[state,initial] (p_0) {$R_1$}; |
|
560 \node[state,accepting] (p_1) [right of=q_0] {$R_2$}; |
|
561 |
|
562 \path[->] (p_0) edge [bend left] node {a} (p_1) |
|
563 edge [loop above] node {b} () |
|
564 (p_1) edge [loop above] node {a} () |
|
565 edge [bend left] node {b} (p_0); |
|
566 \end{tikzpicture} |
|
567 |
|
568 \end{minipage} |
|
569 \end{block} |
|
570 \end{textblock}} |
|
571 |
|
572 \end{frame}} |
|
573 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
574 *} |
|
575 |
|
576 text_raw {* |
|
577 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
578 \mode<presentation>{ |
|
579 \begin{frame}[c] |
|
580 \frametitle{\LARGE The Equ's Solving Algorithm} |
|
581 |
|
582 \begin{itemize} |
|
583 \item The algorithm must terminate: Arden makes one equation smaller; |
|
584 substitution deletes one variable from the right-hand sides.\bigskip |
|
585 |
|
586 \item This is still a bit hairy to formalise because of our set-representation |
|
587 for equations: |
|
588 |
|
589 \begin{center} |
|
590 \begin{tabular}{ll} |
|
591 \smath{\big\{ (X, \{(Y_1, r_1), (Y_2, r_2), \ldots\}),}\\ |
|
592 \mbox{}\hspace{5mm}\smath{\ldots}\\ |
|
593 & \smath{\big\}} |
|
594 \end{tabular} |
|
595 \end{center}\pause |
|
596 |
|
597 \small |
|
598 They are generated from \smath{U\!N\!IV /\!/ \approx_L} |
|
599 |
|
600 \end{itemize} |
|
601 |
|
602 |
|
603 \end{frame}} |
|
604 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
605 *} |
|
606 |
|
607 text_raw {* |
|
608 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
609 \mode<presentation>{ |
|
610 \begin{frame}[c] |
|
611 \frametitle{\LARGE Other Direction} |
|
612 |
|
613 One has to prove |
|
614 |
|
615 \begin{center} |
|
616 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r)})} |
|
617 \end{center} |
|
618 |
|
619 by induction on \smath{r}. Not trivial, but after a bit |
|
620 of thinking (by Chunhan), one can prove that if |
|
621 |
|
622 \begin{center} |
|
623 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_1)})}\hspace{5mm} |
|
624 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_2)})} |
|
625 \end{center} |
|
626 |
|
627 then |
|
628 |
|
629 \begin{center} |
|
630 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{\mathbb{L}(r_1) \,\cup\, \mathbb{L}(r_2)})} |
|
631 \end{center} |
|
632 |
|
633 |
|
634 |
|
635 \end{frame}} |
|
636 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
637 *} |
|
638 |
|
639 text_raw {* |
|
640 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
641 \mode<presentation>{ |
|
642 \begin{frame}[c] |
|
643 \frametitle{\LARGE What Have We Achieved?} |
|
644 |
|
645 \begin{itemize} |
|
646 \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_L) \;\Leftrightarrow\; L\; \text{is regular}} |
|
647 \bigskip\pause |
|
648 \item regular languages are closed under `inversion' |
|
649 \begin{center} |
|
650 \smath{U\!N\!IV /\!/ \approx_L \;\;=\;\; U\!N\!IV /\!/ \approx_{-L}} |
|
651 \end{center}\pause\bigskip |
|
652 |
|
653 \item regular expressions are not good if you look for a minimal |
|
654 one of a language (DFA have this notion)\pause\bigskip |
|
655 |
|
656 \item if you want to do regular expression matching (see Scott's paper) |
|
657 \end{itemize} |
|
658 |
|
659 |
|
660 |
|
661 \only<2>{ |
|
662 \begin{textblock}{10}(4,14) |
|
663 \small |
|
664 \smath{x \approx_{L} y \,\dn\, \forall z.\; x @ z \in L \Leftrightarrow y @ z \in L} |
|
665 \end{textblock} |
|
666 } |
|
667 |
|
668 \end{frame}} |
|
669 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
670 *} |
|
671 |
|
672 text_raw {* |
|
673 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
674 \mode<presentation>{ |
|
675 \begin{frame}[c] |
|
676 \frametitle{\LARGE Conclusion} |
|
677 |
|
678 \begin{itemize} |
|
679 \item on balance regular expression are superior to DFAs\bigskip |
|
680 |
|
681 \item I cannot think of a reason to not teach regular languages |
|
682 to students this way\bigskip |
|
683 |
|
684 \item I have never ever seen a proof of Myhill-Nerode based on |
|
685 regular expressions\bigskip |
|
686 |
|
687 \item no application, but a lot of fun\bigskip |
|
688 |
|
689 \item great source of examples |
|
690 |
|
691 \end{itemize} |
|
692 |
|
693 \end{frame}} |
|
694 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
695 *} |
134 |
696 |
135 (*<*) |
697 (*<*) |
136 end |
698 end |
137 (*>*) |
699 (*>*) |