|
1 \documentclass[runningheads]{llncs} |
|
2 \usepackage{isabelle} |
|
3 \usepackage{isabellesym} |
|
4 \usepackage{amsmath} |
|
5 \usepackage{amssymb} |
|
6 \usepackage{tikz} |
|
7 \usepackage{pgf} |
|
8 \usetikzlibrary{arrows,automata,decorations,fit,calc} |
|
9 \usetikzlibrary{shapes,shapes.arrows,snakes,positioning} |
|
10 \usepgflibrary{shapes.misc} % LATEX and plain TEX and pure pgf |
|
11 \usetikzlibrary{matrix} |
|
12 \usepackage{pdfsetup} |
|
13 \usepackage{ot1patch} |
|
14 \usepackage{times} |
|
15 %%\usepackage{proof} |
|
16 %%\usepackage{mathabx} |
|
17 \usepackage{stmaryrd} |
|
18 |
|
19 \titlerunning{Myhill-Nerode using Regular Expressions} |
|
20 |
|
21 |
|
22 \urlstyle{rm} |
|
23 \isabellestyle{it} |
|
24 \renewcommand{\isastyleminor}{\it}% |
|
25 \renewcommand{\isastyle}{\normalsize\it}% |
|
26 |
|
27 |
|
28 \def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,} |
|
29 \renewcommand{\isasymequiv}{$\dn$} |
|
30 \renewcommand{\isasymemptyset}{$\varnothing$} |
|
31 \renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}} |
|
32 |
|
33 \newcommand{\isasymcalL}{\ensuremath{\cal{L}}} |
|
34 \newcommand{\isasymbigplus}{\ensuremath{\bigplus}} |
|
35 |
|
36 \newcommand{\bigplus}{\mbox{\Large\bf$+$}} |
|
37 \begin{document} |
|
38 |
|
39 \title{A Formalisation of the Myhill-Nerode Theorem\\ based on Regular |
|
40 Expressions (Proof Pearl)} |
|
41 \author{Chunhan Wu\inst{1} \and Xingyuan Zhang\inst{1} \and Christian Urban\inst{2}} |
|
42 \institute{PLA University of Science and Technology, China \and TU Munich, Germany} |
|
43 \maketitle |
|
44 |
|
45 %\mbox{}\\[-10mm] |
|
46 \begin{abstract} |
|
47 There are numerous textbooks on regular languages. Nearly all of them |
|
48 introduce the subject by describing finite automata and only mentioning on the |
|
49 side a connection with regular expressions. Unfortunately, automata are difficult |
|
50 to formalise in HOL-based theorem provers. The reason is that |
|
51 they need to be represented as graphs, matrices or functions, none of which |
|
52 are inductive datatypes. Also convenient operations for disjoint unions of |
|
53 graphs and functions are not easily formalisiable in HOL. In contrast, regular |
|
54 expressions can be defined conveniently as a datatype and a corresponding |
|
55 reasoning infrastructure comes for free. We show in this paper that a central |
|
56 result from formal language theory---the Myhill-Nerode theorem---can be |
|
57 recreated using only regular expressions. |
|
58 |
|
59 \end{abstract} |
|
60 |
|
61 |
|
62 \input{session} |
|
63 |
|
64 %%\mbox{}\\[-10mm] |
|
65 \bibliographystyle{plain} |
|
66 \bibliography{root} |
|
67 |
|
68 \end{document} |
|
69 |
|
70 %%% Local Variables: |
|
71 %%% mode: latex |
|
72 %%% TeX-master: t |
|
73 %%% End: |