prio/PrioG.thy
changeset 264 24199eb2c423
parent 262 4190df6f4488
child 287 440382eb6427
equal deleted inserted replaced
263:f1e6071a4613 264:24199eb2c423
     1 theory PrioG
     1 theory PrioG
     2 imports PrioGDef
     2 imports PrioGDef 
     3 begin
     3 begin
     4 
     4 
     5 lemma runing_ready: "runing s \<subseteq> readys s"
     5 lemma runing_ready: "runing s \<subseteq> readys s"
     6   by (auto simp only:runing_def readys_def)
     6   by (auto simp only:runing_def readys_def)
     7 
     7 
   347     } ultimately show ?thesis by arith
   347     } ultimately show ?thesis by arith
   348   qed
   348   qed
   349 qed
   349 qed
   350 
   350 
   351 lemma waiting_unique:
   351 lemma waiting_unique:
       
   352   fixes s cs1 cs2
   352   assumes "vt step s"
   353   assumes "vt step s"
   353   and "waiting s th cs1"
   354   and "waiting s th cs1"
   354   and "waiting s th cs2"
   355   and "waiting s th cs2"
   355   shows "cs1 = cs2"
   356   shows "cs1 = cs2"
   356 proof -
   357 proof -
   357   from waiting_unique_pre and prems
   358   from waiting_unique_pre and prems
   358   show ?thesis
   359   show ?thesis
   359     by (auto simp add:s_waiting_def)
   360     by (auto simp add:s_waiting_def)
   360 qed
   361 qed
   361 
   362 
   362 lemma holded_unique:
   363 lemma held_unique:
   363   assumes "vt step s"
   364   assumes "vt step s"
   364   and "holding s th1 cs"
   365   and "holding s th1 cs"
   365   and "holding s th2 cs"
   366   and "holding s th2 cs"
   366   shows "th1 = th2"
   367   shows "th1 = th2"
   367 proof -
   368 proof -