utm/turing_basic.thy
changeset 370 1ce04eb1c8ad
child 371 48b231495281
equal deleted inserted replaced
369:cbb4ac6c8081 370:1ce04eb1c8ad
       
     1 theory turing_basic
       
     2 imports Main
       
     3 begin
       
     4 
       
     5 section {* Basic definitions of Turing machine *}
       
     6 
       
     7 (* Title: Turing machine's definition and its charater
       
     8    Author: Xu Jian <xujian817@hotmail.com>
       
     9    Maintainer: Xu Jian
       
    10 *)
       
    11 
       
    12 text {*
       
    13 \label{description of turing machine}
       
    14 *}
       
    15 
       
    16 section {* Basic definitions of Turing machine *}
       
    17 
       
    18 (* Title: Turing machine's definition and its charater
       
    19    Author: Xu Jian <xujian817@hotmail.com>
       
    20    Maintainer: Xu Jian
       
    21 *)
       
    22 
       
    23 text {*
       
    24   Actions of Turing machine (Abbreviated TM in the following* ).
       
    25 *}
       
    26 
       
    27 datatype taction = 
       
    28   -- {* Write zero *}
       
    29   W0 | 
       
    30   -- {* Write one *}
       
    31   W1 | 
       
    32   -- {* Move left *}
       
    33   L | 
       
    34   -- {* Move right *}
       
    35   R | 
       
    36   -- {* Do nothing *}
       
    37   Nop
       
    38 
       
    39 text {*
       
    40   Tape contents in every block.
       
    41 *}
       
    42 
       
    43 datatype block = 
       
    44   -- {* Blank *}
       
    45   Bk | 
       
    46   -- {* Occupied *}
       
    47   Oc
       
    48 
       
    49 text {*
       
    50   Tape is represented as a pair of lists $(L_{left}, L_{right})$,
       
    51   where $L_left$, named {\em left list}, is used to represent
       
    52   the tape to the left of RW-head and
       
    53   $L_{right}$, named {\em right list}, is used to represent the tape
       
    54   under and to the right of RW-head.
       
    55 *}
       
    56 
       
    57 type_synonym tape = "block list \<times> block list"
       
    58 
       
    59 text {* The state of turing machine.*}
       
    60 type_synonym tstate = nat
       
    61 
       
    62 text {*
       
    63   Turing machine instruction is represented as a 
       
    64   pair @{text "(action, next_state)"},
       
    65   where @{text "action"} is the action to take at the current state 
       
    66   and @{text "next_state"} is the next state the machine is getting into
       
    67   after the action.
       
    68 *}
       
    69 type_synonym tinst = "taction \<times> tstate"
       
    70 
       
    71 text {*
       
    72   Program of Turing machine is represented as a list of Turing instructions
       
    73   and the execution of the program starts from the head of the list.
       
    74   *}
       
    75 type_synonym tprog = "tinst list"
       
    76 
       
    77 
       
    78 text {*
       
    79   Turing machine configuration, which consists of the current state 
       
    80   and the tape.
       
    81 *}
       
    82 type_synonym t_conf = "tstate \<times> tape"
       
    83 
       
    84 fun nth_of ::  "'a list \<Rightarrow> nat \<Rightarrow> 'a option"
       
    85   where
       
    86   "nth_of xs n = (if n < length xs then Some (xs!n)
       
    87                   else None)"
       
    88 
       
    89 text {*
       
    90   The function used to fetech instruction out of Turing program.
       
    91   *}
       
    92 
       
    93 fun fetch :: "tprog \<Rightarrow> tstate \<Rightarrow> block \<Rightarrow> tinst"
       
    94   where
       
    95   "fetch p s b = (if s = 0 then (Nop, 0) else
       
    96                   case b of 
       
    97                      Bk \<Rightarrow> case nth_of p (2 * (s - 1)) of
       
    98                           Some i \<Rightarrow> i
       
    99                         | None \<Rightarrow> (Nop, 0) 
       
   100                    | Oc \<Rightarrow> case nth_of p (2 * (s - 1) +1) of
       
   101                           Some i \<Rightarrow> i
       
   102                         | None \<Rightarrow> (Nop, 0))"
       
   103 
       
   104 
       
   105 fun new_tape :: "taction \<Rightarrow> tape \<Rightarrow> tape"
       
   106 where 
       
   107    "new_tape action (leftn, rightn) = (case action of
       
   108                                          W0 \<Rightarrow> (leftn, Bk#(tl rightn)) |
       
   109                                          W1 \<Rightarrow> (leftn, Oc#(tl rightn)) |
       
   110                                          L  \<Rightarrow>  (if leftn = [] then (tl leftn, Bk#rightn)
       
   111                                                else (tl leftn, (hd leftn) # rightn)) |
       
   112                                          R  \<Rightarrow> if rightn = [] then (Bk#leftn,tl rightn) 
       
   113                                                else ((hd rightn)#leftn, tl rightn) |
       
   114                                          Nop \<Rightarrow> (leftn, rightn)
       
   115                                        )"
       
   116 
       
   117 text {*
       
   118   The one step function used to transfer Turing machine configuration.
       
   119 *}
       
   120 fun tstep :: "t_conf \<Rightarrow> tprog \<Rightarrow> t_conf"
       
   121   where
       
   122   "tstep c p = (let (s, l, r) = c in 
       
   123                      let (ac, ns) = (fetch p s (case r of [] \<Rightarrow> Bk |     
       
   124                                                                x # xs \<Rightarrow> x)) in
       
   125                        (ns, new_tape ac (l, r)))"
       
   126 
       
   127 text {*
       
   128   The many-step function.
       
   129 *}
       
   130 fun steps :: "t_conf \<Rightarrow> tprog \<Rightarrow> nat \<Rightarrow> t_conf"
       
   131   where
       
   132   "steps c p 0 = c" |
       
   133   "steps c p (Suc n) = steps (tstep c p) p n"
       
   134 
       
   135 lemma tstep_red: "steps c p (Suc n) = tstep (steps c p n) p"
       
   136 proof(induct n arbitrary: c)
       
   137   fix c
       
   138   show "steps c p (Suc 0) = tstep (steps c p 0) p" by(simp add: steps.simps)
       
   139 next
       
   140   fix n c
       
   141   assume ind: "\<And> c. steps c p (Suc n) = tstep (steps c p n) p"
       
   142   have "steps (tstep c p) p (Suc n) = tstep (steps (tstep c p) p n) p"
       
   143     by(rule ind)
       
   144   thus "steps c p (Suc (Suc n)) = tstep (steps c p (Suc n)) p" by(simp add: steps.simps)
       
   145 qed
       
   146 
       
   147 declare Let_def[simp] option.split[split]
       
   148 
       
   149 definition 
       
   150   "iseven n \<equiv> \<exists> x. n = 2 * x"
       
   151 
       
   152 
       
   153 text {*
       
   154   The following @{text "t_correct"} function is used to specify the wellformedness of Turing
       
   155   machine.
       
   156 *}
       
   157 fun t_correct :: "tprog \<Rightarrow> bool"
       
   158   where
       
   159   "t_correct p = (length p \<ge> 2 \<and> iseven (length p) \<and> 
       
   160                    list_all (\<lambda> (acn, s). s \<le> length p div 2) p)"
       
   161 
       
   162 declare t_correct.simps[simp del]
       
   163 
       
   164 lemma allimp: "\<lbrakk>\<forall>x. P x \<longrightarrow> Q x; \<forall>x. P x\<rbrakk> \<Longrightarrow> \<forall>x. Q x"
       
   165 by(auto elim: allE)
       
   166 
       
   167 lemma halt_lemma: "\<lbrakk>wf LE; \<forall> n. (\<not> P (f n) \<longrightarrow> (f (Suc n), (f n)) \<in> LE)\<rbrakk> \<Longrightarrow> \<exists> n. P (f n)"
       
   168 apply(rule exCI, drule allimp, auto)
       
   169 apply(drule_tac f = f  in wf_inv_image, simp add: inv_image_def)
       
   170 apply(erule wf_induct, auto)
       
   171 done
       
   172 
       
   173 lemma steps_add: "steps c t (x + y) = steps (steps c t x) t y"
       
   174 by(induct x arbitrary: c, auto simp: steps.simps tstep_red)
       
   175 
       
   176 lemma listall_set: "list_all p t \<Longrightarrow> \<forall> a \<in> set t. p a"
       
   177 by(induct t, auto)
       
   178 
       
   179 lemma fetch_ex: "\<exists>b a. fetch T aa ab = (b, a)"
       
   180 by(simp add: fetch.simps)
       
   181 definition exponent :: "'a \<Rightarrow> nat \<Rightarrow> 'a list" ("_\<^bsup>_\<^esup>" [0, 0]100)
       
   182   where "exponent x n = replicate n x"
       
   183 
       
   184 text {* 
       
   185   @{text "tinres l1 l2"} means left list @{text "l1"} is congruent with
       
   186   @{text "l2"} with respect to the execution of Turing machine. 
       
   187   Appending Blank to the right of eigther one does not affect the 
       
   188   outcome of excution. 
       
   189 *}
       
   190 
       
   191 definition tinres :: "block list \<Rightarrow> block list \<Rightarrow> bool"
       
   192   where
       
   193   "tinres bx by = (\<exists> n. bx = by@Bk\<^bsup>n\<^esup> \<or> by = bx @ Bk\<^bsup>n\<^esup>)"
       
   194 
       
   195 lemma exp_zero: "a\<^bsup>0\<^esup> = []"
       
   196 by(simp add: exponent_def)
       
   197 lemma exp_ind_def: "a\<^bsup>Suc x \<^esup> = a # a\<^bsup>x\<^esup>"
       
   198 by(simp add: exponent_def)
       
   199 
       
   200 text {*
       
   201   The following lemma shows the meaning of @{text "tinres"} with respect to 
       
   202   one step execution.
       
   203   *}
       
   204 lemma tinres_step: 
       
   205   "\<lbrakk>tinres l l'; tstep (ss, l, r) t = (sa, la, ra); tstep (ss, l', r) t = (sb, lb, rb)\<rbrakk>
       
   206     \<Longrightarrow> tinres la lb \<and> ra = rb \<and> sa = sb"
       
   207 apply(auto simp: tstep.simps fetch.simps new_tape.simps 
       
   208         split: if_splits taction.splits list.splits
       
   209                  block.splits)
       
   210 apply(case_tac [!] "t ! (2 * (ss - Suc 0))", 
       
   211      auto simp: exponent_def tinres_def split: if_splits taction.splits list.splits
       
   212                  block.splits)
       
   213 apply(case_tac [!] "t ! (2 * (ss - Suc 0) + Suc 0)", 
       
   214      auto simp: exponent_def tinres_def split: if_splits taction.splits list.splits
       
   215                  block.splits)
       
   216 done
       
   217 
       
   218 declare tstep.simps[simp del] steps.simps[simp del]
       
   219 
       
   220 text {*
       
   221   The following lemma shows the meaning of @{text "tinres"} with respect to 
       
   222   many step execution.
       
   223   *}
       
   224 lemma tinres_steps: 
       
   225   "\<lbrakk>tinres l l'; steps (ss, l, r) t stp = (sa, la, ra); steps (ss, l', r) t stp = (sb, lb, rb)\<rbrakk>
       
   226     \<Longrightarrow> tinres la lb \<and> ra = rb \<and> sa = sb"
       
   227 apply(induct stp arbitrary: sa la ra sb lb rb, simp add: steps.simps)
       
   228 apply(simp add: tstep_red)
       
   229 apply(case_tac "(steps (ss, l, r) t stp)")
       
   230 apply(case_tac "(steps (ss, l', r) t stp)")
       
   231 proof -
       
   232   fix stp sa la ra sb lb rb a b c aa ba ca
       
   233   assume ind: "\<And>sa la ra sb lb rb. \<lbrakk>steps (ss, l, r) t stp = (sa, la, ra); 
       
   234           steps (ss, l', r) t stp = (sb, lb, rb)\<rbrakk> \<Longrightarrow> tinres la lb \<and> ra = rb \<and> sa = sb"
       
   235   and h: " tinres l l'" "tstep (steps (ss, l, r) t stp) t = (sa, la, ra)"
       
   236          "tstep (steps (ss, l', r) t stp) t = (sb, lb, rb)" "steps (ss, l, r) t stp = (a, b, c)" 
       
   237          "steps (ss, l', r) t stp = (aa, ba, ca)"
       
   238   have "tinres b ba \<and> c = ca \<and> a = aa"
       
   239     apply(rule_tac ind, simp_all add: h)
       
   240     done
       
   241   thus "tinres la lb \<and> ra = rb \<and> sa = sb"
       
   242     apply(rule_tac l = b and l' = ba and r = c  and ss = a   
       
   243             and t = t in tinres_step)
       
   244     using h
       
   245     apply(simp, simp, simp)
       
   246     done
       
   247 qed
       
   248 
       
   249 text {*
       
   250   The following function @{text "tshift tp n"} is used to shift Turing programs 
       
   251   @{text "tp"} by @{text "n"} when it is going to be combined with others.
       
   252   *}
       
   253 
       
   254 fun tshift :: "tprog \<Rightarrow> nat \<Rightarrow> tprog"
       
   255   where
       
   256   "tshift tp off = (map (\<lambda> (action, state). (action, (if state = 0 then 0
       
   257                                                       else state + off))) tp)"
       
   258 
       
   259 text {*
       
   260   When two Turing programs are combined, the end state (state @{text "0"}) of the one 
       
   261   at the prefix position needs to be connected to the start state 
       
   262   of the one at postfix position. If @{text "tp"} is the Turing program
       
   263   to be at the prefix, @{text "change_termi_state tp"} is the transformed Turing program.
       
   264   *}
       
   265 fun change_termi_state :: "tprog \<Rightarrow> tprog"
       
   266   where
       
   267   "change_termi_state t = 
       
   268        (map (\<lambda> (acn, ns). if ns = 0 then (acn, Suc ((length t) div 2)) else (acn, ns)) t)"
       
   269 
       
   270 text {*
       
   271   @{text "t_add tp1 tp2"} is the combined Truing program.
       
   272 *}
       
   273 
       
   274 fun t_add :: "tprog \<Rightarrow> tprog \<Rightarrow> tprog" ("_ |+| _" [0, 0] 100)
       
   275   where
       
   276   "t_add t1 t2 = ((change_termi_state t1) @ (tshift t2 ((length t1) div 2)))"
       
   277 
       
   278 text {*
       
   279   Tests whether the current configuration is at state @{text "0"}.
       
   280 *}
       
   281 definition isS0 :: "t_conf \<Rightarrow> bool"
       
   282   where
       
   283   "isS0 c = (let (s, l, r) = c in s = 0)"
       
   284 
       
   285 declare tstep.simps[simp del] steps.simps[simp del] 
       
   286         t_add.simps[simp del] fetch.simps[simp del]
       
   287         new_tape.simps[simp del]
       
   288 
       
   289 
       
   290 text {*
       
   291   Single step execution starting from state @{text "0"} will not make any progress.
       
   292 *}
       
   293 lemma tstep_0: "tstep (0, tp) p = (0, tp)"
       
   294 apply(simp add: tstep.simps fetch.simps new_tape.simps)
       
   295 done
       
   296 
       
   297 
       
   298 text {*
       
   299   Many step executions starting from state @{text "0"} will not make any progress.
       
   300 *}
       
   301 
       
   302 lemma steps_0: "steps (0, tp) p stp = (0, tp)"
       
   303 apply(induct stp)
       
   304 apply(simp add: steps.simps)
       
   305 apply(simp add: tstep_red tstep_0)
       
   306 done
       
   307 
       
   308 lemma s_keep_step: "\<lbrakk>a \<le> length A div 2; tstep (a, b, c) A = (s, l, r); t_correct A\<rbrakk>
       
   309   \<Longrightarrow> s \<le> length A div 2"
       
   310 apply(simp add: tstep.simps fetch.simps t_correct.simps iseven_def 
       
   311   split: if_splits block.splits list.splits)
       
   312 apply(case_tac [!] a, auto simp: list_all_length)
       
   313 apply(erule_tac x = "2 * nat" in allE, auto)
       
   314 apply(erule_tac x = "2 * nat" in allE, auto)
       
   315 apply(erule_tac x = "Suc (2 * nat)" in allE, auto)
       
   316 done
       
   317 
       
   318 lemma s_keep: "\<lbrakk>steps (Suc 0, tp) A stp = (s, l, r);  t_correct A\<rbrakk> \<Longrightarrow> s \<le> length A div 2"
       
   319 proof(induct stp arbitrary: s l r)
       
   320   case 0 thus "?case" by(auto simp: t_correct.simps steps.simps)
       
   321 next
       
   322   fix stp s l r
       
   323   assume ind: "\<And>s l r. \<lbrakk>steps (Suc 0, tp) A stp = (s, l, r); t_correct A\<rbrakk> \<Longrightarrow> s \<le> length A div 2"
       
   324   and h1: "steps (Suc 0, tp) A (Suc stp) = (s, l, r)"
       
   325   and h2: "t_correct A"
       
   326   from h1 h2 show "s \<le> length A div 2"
       
   327   proof(simp add: tstep_red, cases "(steps (Suc 0, tp) A stp)", simp)
       
   328     fix a b c 
       
   329     assume h3: "tstep (a, b, c) A = (s, l, r)"
       
   330     and h4: "steps (Suc 0, tp) A stp = (a, b, c)"
       
   331     have "a \<le> length A div 2"
       
   332       using h2 h4
       
   333       by(rule_tac l = b and r = c in ind, auto)
       
   334     thus "?thesis"
       
   335       using h3 h2
       
   336       by(simp add: s_keep_step)
       
   337   qed
       
   338 qed
       
   339 
       
   340 lemma t_merge_fetch_pre:
       
   341   "\<lbrakk>fetch A s b = (ac, ns); s \<le> length A div 2; t_correct A; s \<noteq> 0\<rbrakk> \<Longrightarrow> 
       
   342   fetch (A |+| B) s b = (ac, if ns = 0 then Suc (length A div 2) else ns)"
       
   343 apply(subgoal_tac "2 * (s - Suc 0) < length A \<and> Suc (2 * (s - Suc 0)) < length A")
       
   344 apply(auto simp: fetch.simps t_add.simps split: if_splits block.splits)
       
   345 apply(simp_all add: nth_append change_termi_state.simps)
       
   346 done
       
   347 
       
   348 lemma [simp]:  "\<lbrakk>\<not> a \<le> length A div 2; t_correct A\<rbrakk> \<Longrightarrow> fetch A a b = (Nop, 0)"
       
   349 apply(auto simp: fetch.simps del: nth_of.simps split: block.splits)
       
   350 apply(case_tac [!] a, auto simp: t_correct.simps iseven_def)
       
   351 done
       
   352 
       
   353 lemma  [elim]: "\<lbrakk>t_correct A; \<not> isS0 (tstep (a, b, c) A)\<rbrakk> \<Longrightarrow> a \<le> length A div 2"
       
   354 apply(rule_tac classical, auto simp: tstep.simps new_tape.simps isS0_def)
       
   355 done
       
   356 
       
   357 lemma [elim]: "\<lbrakk>t_correct A; \<not> isS0 (tstep (a, b, c) A)\<rbrakk> \<Longrightarrow> 0 < a"
       
   358 apply(rule_tac classical, simp add: tstep_0 isS0_def)
       
   359 done
       
   360 
       
   361 
       
   362 lemma t_merge_pre_eq_step: "\<lbrakk>tstep (a, b, c) A = cf; t_correct A; \<not> isS0 cf\<rbrakk> 
       
   363         \<Longrightarrow> tstep (a, b, c) (A |+| B) = cf"
       
   364 apply(subgoal_tac "a \<le> length A div 2 \<and> a \<noteq> 0")
       
   365 apply(simp add: tstep.simps)
       
   366 apply(case_tac "fetch A a (case c of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)", simp)
       
   367 apply(drule_tac B = B in t_merge_fetch_pre, simp, simp, simp, simp add: isS0_def, auto)
       
   368 done
       
   369 
       
   370 lemma t_merge_pre_eq:  "\<lbrakk>steps (Suc 0, tp) A stp = cf; \<not> isS0 cf; t_correct A\<rbrakk>
       
   371     \<Longrightarrow> steps (Suc 0, tp) (A |+| B) stp = cf"
       
   372 proof(induct stp arbitrary: cf)
       
   373   case 0 thus "?case" by(simp add: steps.simps)
       
   374 next
       
   375   fix stp cf
       
   376   assume ind: "\<And>cf. \<lbrakk>steps (Suc 0, tp) A stp = cf; \<not> isS0 cf; t_correct A\<rbrakk> 
       
   377                  \<Longrightarrow> steps (Suc 0, tp) (A |+| B) stp = cf"
       
   378   and h1: "steps (Suc 0, tp) A (Suc stp) = cf"
       
   379   and h2: "\<not> isS0 cf"
       
   380   and h3: "t_correct A"
       
   381   from h1 h2 h3 show "steps (Suc 0, tp) (A |+| B) (Suc stp) = cf"
       
   382   proof(simp add: tstep_red, cases "steps (Suc 0, tp) (A) stp", simp)
       
   383     fix a b c
       
   384     assume h4: "tstep (a, b, c) A = cf"
       
   385     and h5: "steps (Suc 0, tp) A stp = (a, b, c)"
       
   386     have "steps (Suc 0, tp) (A |+| B) stp = (a, b, c)"
       
   387     proof(cases a)
       
   388       case 0 thus "?thesis"
       
   389         using h4 h2
       
   390         apply(simp add: tstep_0, cases cf, simp add: isS0_def)
       
   391         done
       
   392     next
       
   393       case (Suc n) thus "?thesis"
       
   394         using h5 h3
       
   395         apply(rule_tac ind, auto simp: isS0_def)
       
   396         done
       
   397     qed
       
   398     thus "tstep (steps (Suc 0, tp) (A |+| B) stp) (A |+| B) = cf"
       
   399       using h4 h5 h3 h2
       
   400       apply(simp)
       
   401       apply(rule t_merge_pre_eq_step, auto)
       
   402       done
       
   403   qed
       
   404 qed
       
   405 
       
   406 declare nth.simps[simp del] tshift.simps[simp del] change_termi_state.simps[simp del]
       
   407 
       
   408 lemma [simp]: "length (change_termi_state A) = length A"
       
   409 by(simp add: change_termi_state.simps)
       
   410 
       
   411 lemma first_halt_point: "steps (Suc 0, tp) A stp = (0, tp')
       
   412  \<Longrightarrow> \<exists>stp. \<not> isS0 (steps (Suc 0, tp) A stp) \<and> steps (Suc 0, tp) A (Suc stp) = (0, tp')"
       
   413 proof(induct stp)
       
   414   case 0  thus "?case" by(simp add: steps.simps)
       
   415 next
       
   416   case (Suc n) 
       
   417   fix stp
       
   418   assume ind: "steps (Suc 0, tp) A stp = (0, tp') \<Longrightarrow> 
       
   419        \<exists>stp. \<not> isS0 (steps (Suc 0, tp) A stp) \<and> steps (Suc 0, tp) A (Suc stp) = (0, tp')"
       
   420     and h: "steps (Suc 0, tp) A (Suc stp) = (0, tp')"
       
   421   from h show "\<exists>stp. \<not> isS0 (steps (Suc 0, tp) A stp) \<and> steps (Suc 0, tp) A (Suc stp) = (0, tp')"
       
   422   proof(simp add: tstep_red, cases "steps (Suc 0, tp) A stp", simp, case_tac a)
       
   423     fix a b c
       
   424     assume g1: "a = (0::nat)"
       
   425     and g2: "tstep (a, b, c) A = (0, tp')"
       
   426     and g3: "steps (Suc 0, tp) A stp = (a, b, c)"
       
   427     have "steps (Suc 0, tp) A stp = (0, tp')"
       
   428       using g2 g1 g3
       
   429       by(simp add: tstep_0)
       
   430     hence "\<exists> stp. \<not> isS0 (steps (Suc 0, tp) A stp) \<and> steps (Suc 0, tp) A (Suc stp) = (0, tp')"
       
   431       by(rule ind)
       
   432     thus "\<exists>stp. \<not> isS0 (steps (Suc 0, tp) A stp) \<and> tstep (steps (Suc 0, tp) A stp) A = (0, tp')" 
       
   433       apply(simp add: tstep_red)
       
   434       done
       
   435   next
       
   436     fix a b c nat
       
   437     assume g1: "steps (Suc 0, tp) A stp = (a, b, c)"
       
   438     and g2: "steps (Suc 0, tp) A (Suc stp) = (0, tp')" "a= Suc nat"
       
   439     thus "\<exists>stp. \<not> isS0 (steps (Suc 0, tp) A stp) \<and> tstep (steps (Suc 0, tp) A stp) A = (0, tp')"
       
   440       apply(rule_tac x = stp in exI)
       
   441       apply(simp add: isS0_def tstep_red)
       
   442       done
       
   443   qed
       
   444 qed 
       
   445    
       
   446 lemma t_merge_pre_halt_same': 
       
   447   "\<lbrakk>\<not> isS0 (steps (Suc 0, tp) A stp) ; steps (Suc 0, tp) A (Suc stp) = (0, tp'); t_correct A\<rbrakk>
       
   448   \<Longrightarrow> steps (Suc 0, tp) (A |+| B) (Suc stp) = (Suc (length A div 2), tp')"    
       
   449 proof(simp add: tstep_red, cases "steps (Suc 0, tp) A stp", simp)
       
   450   fix a b c 
       
   451   assume h1: "\<not> isS0 (a, b, c)"
       
   452   and h2: "tstep (a, b, c) A = (0, tp')"
       
   453   and h3: "t_correct A"
       
   454   and h4: "steps (Suc 0, tp) A stp = (a, b, c)"
       
   455   have "steps (Suc 0, tp) (A |+| B) stp = (a, b, c)"
       
   456     using h1 h4 h3
       
   457     apply(rule_tac  t_merge_pre_eq, auto)
       
   458     done
       
   459   moreover have "tstep (a, b, c) (A |+| B) = (Suc (length A div 2), tp')"
       
   460     using h2 h3 h1 h4 
       
   461     apply(simp add: tstep.simps)
       
   462     apply(case_tac " fetch A a (case c of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)", simp)
       
   463     apply(drule_tac B = B in t_merge_fetch_pre, auto simp: isS0_def intro: s_keep)
       
   464     done
       
   465   ultimately show "tstep (steps (Suc 0, tp) (A |+| B) stp) (A |+| B) = (Suc (length A div 2), tp')"
       
   466     by(simp)
       
   467 qed
       
   468 
       
   469 text {*
       
   470   When Turing machine @{text "A"} and @{text "B"} are combined and the execution
       
   471   of @{text "A"} can termination within @{text "stp"} steps, 
       
   472   the combined machine @{text "A |+| B"} will eventually get into the starting 
       
   473   state of machine @{text "B"}.
       
   474 *}
       
   475 lemma t_merge_pre_halt_same: "
       
   476   \<lbrakk>steps (Suc 0, tp) A stp = (0, tp'); t_correct A; t_correct B\<rbrakk>
       
   477      \<Longrightarrow> \<exists> stp. steps (Suc 0, tp) (A |+| B) stp = (Suc (length A div 2), tp')"
       
   478 proof -
       
   479   assume a_wf: "t_correct A"
       
   480   and b_wf: "t_correct B"
       
   481   and a_ht: "steps (Suc 0, tp) A stp = (0, tp')"
       
   482   have halt_point: "\<exists> stp. \<not> isS0 (steps (Suc 0, tp) A stp) \<and> steps (Suc 0, tp) A (Suc stp) = (0, tp')"
       
   483     using a_ht
       
   484     by(erule_tac first_halt_point)
       
   485   then obtain stp' where "\<not> isS0 (steps (Suc 0, tp) A stp') \<and> steps (Suc 0, tp) A (Suc stp') = (0, tp')"..
       
   486   hence "steps (Suc 0, tp) (A |+| B) (Suc stp') = (Suc (length A div 2), tp')"
       
   487     using a_wf
       
   488     apply(rule_tac t_merge_pre_halt_same', auto)
       
   489     done
       
   490   thus "?thesis" ..
       
   491 qed
       
   492 
       
   493 lemma fetch_0: "fetch p 0 b = (Nop, 0)"
       
   494 by(simp add: fetch.simps)
       
   495 
       
   496 lemma [simp]: "length (tshift B x) = length B"
       
   497 by(simp add: tshift.simps)
       
   498 
       
   499 lemma [simp]: "t_correct A \<Longrightarrow> 2 * (length A div 2) = length A"
       
   500 apply(simp add: t_correct.simps iseven_def, auto)
       
   501 done
       
   502 
       
   503 lemma t_merge_fetch_snd: 
       
   504   "\<lbrakk>fetch B a b = (ac, ns); t_correct A; t_correct B; a > 0 \<rbrakk>
       
   505   \<Longrightarrow> fetch (A |+| B) (a + length A div 2) b
       
   506   = (ac, if ns = 0 then 0 else ns + length A div 2)"
       
   507 apply(auto simp: fetch.simps t_add.simps split: if_splits block.splits)
       
   508 apply(case_tac [!] a, simp_all)
       
   509 apply(simp_all add: nth_append change_termi_state.simps tshift.simps)
       
   510 done
       
   511 
       
   512 lemma t_merge_snd_eq_step: 
       
   513   "\<lbrakk>tstep (s, l, r) B = (s', l', r'); t_correct A; t_correct B; s > 0\<rbrakk>
       
   514     \<Longrightarrow> tstep (s + length A div 2, l, r) (A |+| B) = 
       
   515        (if s' = 0 then 0 else s' + length A div 2, l' ,r') "
       
   516 apply(simp add: tstep.simps)
       
   517 apply(cases "fetch B s (case r of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)")
       
   518 apply(auto simp: t_merge_fetch_snd)
       
   519 apply(frule_tac [!] t_merge_fetch_snd, auto)
       
   520 done 
       
   521 
       
   522 text {*
       
   523   Relates the executions of TM @{text "B"}, one is when @{text "B"} is executed alone,
       
   524   the other is the execution when @{text "B"} is in the combined TM.
       
   525 *}
       
   526 lemma t_merge_snd_eq_steps: 
       
   527   "\<lbrakk>t_correct A; t_correct B; steps (s, l, r) B stp = (s', l', r'); s > 0\<rbrakk>
       
   528   \<Longrightarrow> steps (s + length A div 2, l, r) (A |+| B) stp = 
       
   529       (if s' = 0 then 0 else s' + length A div 2, l', r')"
       
   530 proof(induct stp arbitrary: s' l' r')
       
   531   case 0 thus "?case" 
       
   532     by(simp add: steps.simps)
       
   533 next
       
   534   fix stp s' l' r'
       
   535   assume ind: "\<And>s' l' r'. \<lbrakk>t_correct A; t_correct B; steps (s, l, r) B stp = (s', l', r'); 0 < s\<rbrakk>
       
   536                    \<Longrightarrow> steps (s + length A div 2, l, r) (A |+| B) stp = 
       
   537                           (if s' = 0 then 0 else s' + length A div 2, l', r')"
       
   538   and h1: "steps (s, l, r) B (Suc stp) = (s', l', r')"
       
   539   and h2: "t_correct A"
       
   540   and h3: "t_correct B"
       
   541   and h4: "0 < s"
       
   542   from h1 show "steps (s + length A div 2, l, r) (A |+| B) (Suc stp) 
       
   543             = (if s' = 0 then 0 else s' + length A div 2, l', r')"
       
   544   proof(simp only: tstep_red, cases "steps (s, l, r) B stp")
       
   545     fix a b c 
       
   546     assume h5: "steps (s, l, r) B stp = (a, b, c)" "tstep (steps (s, l, r) B stp) B = (s', l', r')"
       
   547     hence h6: "(steps (s + length A div 2, l, r) (A |+| B) stp) = 
       
   548                 ((if a = 0 then 0 else a + length A div 2, b, c))"
       
   549       using h2 h3 h4
       
   550       by(rule_tac ind, auto)
       
   551     thus "tstep (steps (s + length A div 2, l, r) (A |+| B) stp) (A |+| B) = 
       
   552        (if s' = 0 then 0 else s'+ length A div 2, l', r')"
       
   553       using h5
       
   554     proof(auto)
       
   555       assume "tstep (0, b, c) B = (0, l', r')" thus "tstep (0, b, c) (A |+| B) = (0, l', r')"
       
   556         by(simp add: tstep_0)
       
   557     next
       
   558       assume "tstep (0, b, c) B = (s', l', r')" "0 < s'"
       
   559       thus "tstep (0, b, c) (A |+| B) = (s' + length A div 2, l', r')"
       
   560         by(simp add: tstep_0)
       
   561     next
       
   562       assume "tstep (a, b, c) B = (0, l', r')" "0 < a"
       
   563       thus "tstep (a + length A div 2, b, c) (A |+| B) = (0, l', r')"
       
   564         using h2 h3
       
   565         by(drule_tac t_merge_snd_eq_step, auto)
       
   566     next
       
   567       assume "tstep (a, b, c) B = (s', l', r')" "0 < a" "0 < s'"
       
   568       thus "tstep (a + length A div 2, b, c) (A |+| B) = (s' + length A div 2, l', r')"
       
   569         using h2 h3
       
   570         by(drule_tac t_merge_snd_eq_step, auto)
       
   571     qed
       
   572   qed
       
   573 qed
       
   574 
       
   575 lemma t_merge_snd_halt_eq: 
       
   576   "\<lbrakk>steps (Suc 0, tp) B stp = (0, tp'); t_correct A; t_correct B\<rbrakk>
       
   577   \<Longrightarrow> \<exists>stp. steps (Suc (length A div 2), tp) (A |+| B) stp = (0, tp')"
       
   578 apply(case_tac tp, cases tp', simp)
       
   579 apply(drule_tac  s = "Suc 0" in t_merge_snd_eq_steps, auto)
       
   580 done
       
   581 
       
   582 lemma t_inj: "\<lbrakk>steps (Suc 0, tp) A stpa = (0, tp1); steps (Suc 0, tp) A stpb = (0, tp2)\<rbrakk> 
       
   583       \<Longrightarrow> tp1 = tp2"
       
   584 proof -
       
   585   assume h1: "steps (Suc 0, tp) A stpa = (0, tp1)" 
       
   586   and h2: "steps (Suc 0, tp) A stpb = (0, tp2)"
       
   587   thus "?thesis"
       
   588   proof(cases "stpa < stpb")
       
   589     case True thus "?thesis"
       
   590       using h1 h2
       
   591       apply(drule_tac less_imp_Suc_add, auto)
       
   592       apply(simp del: add_Suc_right add_Suc add: add_Suc_right[THEN sym] steps_add steps_0)
       
   593       done
       
   594   next
       
   595     case False thus "?thesis"
       
   596       using h1 h2
       
   597       apply(drule_tac leI)
       
   598       apply(case_tac "stpb = stpa", auto)
       
   599       apply(subgoal_tac "stpb < stpa")
       
   600       apply(drule_tac less_imp_Suc_add, auto)
       
   601       apply(simp del: add_Suc_right add_Suc add: add_Suc_right[THEN sym] steps_add steps_0)
       
   602       done
       
   603   qed
       
   604 qed
       
   605 
       
   606 type_synonym t_assert = "tape \<Rightarrow> bool"
       
   607 
       
   608 definition t_imply :: "t_assert \<Rightarrow> t_assert \<Rightarrow> bool" ("_ \<turnstile>-> _" [0, 0] 100)
       
   609   where
       
   610   "t_imply a1 a2 = (\<forall> tp. a1 tp \<longrightarrow> a2 tp)"
       
   611 
       
   612 
       
   613 locale turing_merge =
       
   614   fixes A :: "tprog" and B :: "tprog" and P1 :: "t_assert"
       
   615   and P2 :: "t_assert"
       
   616   and P3 :: "t_assert"
       
   617   and P4 :: "t_assert"
       
   618   and Q1:: "t_assert"
       
   619   and Q2 :: "t_assert"
       
   620   assumes 
       
   621   A_wf : "t_correct A"
       
   622   and B_wf : "t_correct B"
       
   623   and A_halt : "P1 tp \<Longrightarrow> \<exists> stp. let (s, tp') = steps (Suc 0, tp) A stp in s = 0 \<and> Q1 tp'"
       
   624   and B_halt : "P2 tp \<Longrightarrow> \<exists> stp. let (s, tp') = steps (Suc 0, tp) B stp in s = 0 \<and> Q2 tp'"
       
   625   and A_uhalt : "P3 tp \<Longrightarrow> \<not> (\<exists> stp. isS0 (steps (Suc 0, tp) A stp))"
       
   626   and B_uhalt: "P4 tp \<Longrightarrow> \<not> (\<exists> stp. isS0 (steps (Suc 0, tp) B stp))"
       
   627 begin
       
   628 
       
   629 
       
   630 text {*
       
   631   The following lemma tries to derive the Hoare logic rule for sequentially combined TMs.
       
   632   It deals with the situtation when both @{text "A"} and @{text "B"} are terminated.
       
   633 *}
       
   634 
       
   635 lemma t_merge_halt: 
       
   636   assumes aimpb: "Q1 \<turnstile>-> P2"
       
   637   shows "P1 \<turnstile>->  \<lambda> tp. (\<exists> stp tp'. steps (Suc 0, tp) (A |+| B)  stp = (0, tp') \<and> Q2 tp')"
       
   638 proof(simp add: t_imply_def, auto)
       
   639   fix a b
       
   640   assume h: "P1 (a, b)"
       
   641   hence "\<exists> stp. let (s, tp') = steps (Suc 0, a, b) A stp in s = 0 \<and> Q1 tp'"
       
   642     using A_halt by simp
       
   643   from this obtain stp1 where "let (s, tp') = steps (Suc 0, a, b) A stp1 in s = 0 \<and> Q1 tp'" ..
       
   644   thus "\<exists>stp aa ba. steps (Suc 0, a, b) (A |+| B) stp = (0, aa, ba) \<and> Q2 (aa, ba)"
       
   645   proof(case_tac "steps (Suc 0, a, b) A stp1", simp, erule_tac conjE)
       
   646     fix aa ba c
       
   647     assume g1: "Q1 (ba, c)" 
       
   648       and g2: "steps (Suc 0, a, b) A stp1 = (0, ba, c)"
       
   649     hence "P2 (ba, c)"
       
   650       using aimpb apply(simp add: t_imply_def)
       
   651       done
       
   652     hence "\<exists> stp. let (s, tp') = steps (Suc 0, ba, c) B stp in s = 0 \<and> Q2 tp'"
       
   653       using B_halt by simp
       
   654     from this obtain stp2 where "let (s, tp') = steps (Suc 0, ba, c) B stp2 in s = 0 \<and> Q2 tp'" ..
       
   655     thus "?thesis"
       
   656     proof(case_tac "steps (Suc 0, ba, c) B stp2", simp, erule_tac conjE)
       
   657       fix aa bb ca
       
   658       assume g3: " Q2 (bb, ca)" "steps (Suc 0, ba, c) B stp2 = (0, bb, ca)"
       
   659       have "\<exists> stp. steps (Suc 0, a, b) (A |+| B) stp = (Suc (length A div 2), ba , c)"
       
   660         using g2 A_wf B_wf
       
   661         by(rule_tac t_merge_pre_halt_same, auto)
       
   662       moreover have "\<exists> stp. steps (Suc (length A div 2), ba, c) (A |+| B) stp = (0, bb, ca)"
       
   663         using g3 A_wf B_wf
       
   664         apply(rule_tac t_merge_snd_halt_eq, auto)
       
   665         done
       
   666       ultimately show "\<exists>stp aa ba. steps (Suc 0, a, b) (A |+| B) stp = (0, aa, ba) \<and> Q2 (aa, ba)"
       
   667         apply(erule_tac exE, erule_tac exE)
       
   668         apply(rule_tac x = "stp + stpa" in exI, simp add: steps_add)
       
   669         using g3 by simp
       
   670     qed
       
   671   qed
       
   672 qed
       
   673 
       
   674 lemma  t_merge_uhalt_tmp:
       
   675   assumes B_uh: "\<forall>stp. \<not> isS0 (steps (Suc 0, b, c) B stp)"
       
   676   and merge_ah: "steps (Suc 0, tp) (A |+| B) stpa = (Suc (length A div 2), b, c)" 
       
   677   shows "\<forall> stp. \<not> isS0 (steps (Suc 0, tp) (A |+| B) stp)"
       
   678   using B_uh merge_ah
       
   679 apply(rule_tac allI)
       
   680 apply(case_tac "stp > stpa")
       
   681 apply(erule_tac x = "stp - stpa" in allE)
       
   682 apply(case_tac "(steps (Suc 0, b, c) B (stp - stpa))", simp)
       
   683 proof -
       
   684   fix stp a ba ca 
       
   685   assume h1: "\<not> isS0 (a, ba, ca)" "stpa < stp"
       
   686   and h2: "steps (Suc 0, b, c) B (stp - stpa) = (a, ba, ca)"
       
   687   have "steps (Suc 0 + length A div 2, b, c) (A |+| B) (stp - stpa) = 
       
   688       (if a = 0 then 0 else a + length A div 2, ba, ca)"
       
   689     using A_wf B_wf h2
       
   690     by(rule_tac t_merge_snd_eq_steps, auto)
       
   691   moreover have "a > 0" using h1 by(simp add: isS0_def)
       
   692   moreover have "\<exists> stpb. stp = stpa + stpb" 
       
   693     using h1 by(rule_tac x = "stp - stpa" in exI, simp)
       
   694   ultimately show "\<not> isS0 (steps (Suc 0, tp) (A |+| B) stp)"
       
   695     using merge_ah
       
   696     by(auto simp: steps_add isS0_def)
       
   697 next
       
   698   fix stp
       
   699   assume h: "steps (Suc 0, tp) (A |+| B) stpa = (Suc (length A div 2), b, c)" "\<not> stpa < stp"
       
   700   hence "\<exists> stpb. stpa = stp + stpb" apply(rule_tac x = "stpa - stp" in exI, auto) done
       
   701   thus "\<not> isS0 (steps (Suc 0, tp) (A |+| B) stp)"
       
   702     using h
       
   703     apply(auto)
       
   704     apply(cases "steps (Suc 0, tp) (A |+| B) stp", simp add: steps_add isS0_def steps_0)
       
   705     done
       
   706 qed
       
   707 
       
   708 text {*
       
   709   The following lemma deals with the situation when TM @{text "B"} can not terminate.
       
   710   *}
       
   711 
       
   712 lemma t_merge_uhalt: 
       
   713   assumes aimpb: "Q1 \<turnstile>-> P4"
       
   714   shows "P1 \<turnstile>-> \<lambda> tp. \<not> (\<exists> stp. isS0 (steps (Suc 0, tp) (A |+| B) stp))"
       
   715 proof(simp only: t_imply_def, rule_tac allI, rule_tac impI)
       
   716   fix tp 
       
   717   assume init_asst: "P1 tp"
       
   718   show "\<not> (\<exists>stp. isS0 (steps (Suc 0, tp) (A |+| B) stp))"
       
   719   proof -
       
   720     have "\<exists> stp. let (s, tp') = steps (Suc 0, tp) A stp in s = 0 \<and> Q1 tp'"
       
   721       using A_halt[of tp] init_asst
       
   722       by(simp)
       
   723     from this obtain stpx where "let (s, tp') = steps (Suc 0, tp) A stpx in s = 0 \<and> Q1 tp'" ..
       
   724     thus "?thesis"
       
   725     proof(cases "steps (Suc 0, tp) A stpx", simp, erule_tac conjE)
       
   726       fix a b c
       
   727       assume "Q1 (b, c)"
       
   728         and h3: "steps (Suc 0, tp) A stpx = (0, b, c)"
       
   729       hence h2: "P4 (b, c)"  using aimpb
       
   730         by(simp add: t_imply_def)
       
   731       have "\<exists> stp. steps (Suc 0, tp) (A |+| B) stp = (Suc (length A div 2), b, c)"
       
   732         using h3 A_wf B_wf
       
   733         apply(rule_tac stp = stpx in t_merge_pre_halt_same, auto)
       
   734         done
       
   735       from this obtain stpa where h4:"steps (Suc 0, tp) (A |+| B) stpa = (Suc (length A div 2), b, c)" ..
       
   736       have " \<not> (\<exists> stp. isS0 (steps (Suc 0, b, c) B stp))"
       
   737         using B_uhalt [of "(b, c)"] h2 apply simp
       
   738         done
       
   739       from this and h4 show "\<forall>stp. \<not> isS0 (steps (Suc 0, tp) (A |+| B) stp)"
       
   740         by(rule_tac t_merge_uhalt_tmp, auto)
       
   741     qed
       
   742   qed
       
   743 qed
       
   744 end
       
   745 
       
   746 end
       
   747