|
1 theory UTM |
|
2 imports Main uncomputable recursive abacus UF GCD |
|
3 begin |
|
4 |
|
5 section {* Wang coding of input arguments *} |
|
6 |
|
7 text {* |
|
8 The direct compilation of the universal function @{text "rec_F"} can not give us UTM, because @{text "rec_F"} is of arity 2, |
|
9 where the first argument represents the Godel coding of the TM being simulated and the second argument represents the right number (in Wang's coding) of the TM tape. |
|
10 (Notice, left number is always @{text "0"} at the very beginning). However, UTM needs to simulate the execution of any TM which may |
|
11 very well take many input arguments. Therefore, a initialization TM needs to run before the TM compiled from @{text "rec_F"}, and the sequential |
|
12 composition of these two TMs will give rise to the UTM we are seeking. The purpose of this initialization TM is to transform the multiple |
|
13 input arguments of the TM being simulated into Wang's coding, so that it can be consumed by the TM compiled from @{text "rec_F"} as the second |
|
14 argument. |
|
15 |
|
16 However, this initialization TM (named @{text "t_wcode"}) can not be constructed by compiling from any resurve function, because every recursive |
|
17 function takes a fixed number of input arguments, while @{text "t_wcode"} needs to take varying number of arguments and tranform them into |
|
18 Wang's coding. Therefore, this section give a direct construction of @{text "t_wcode"} with just some parts being obtained from recursive functions. |
|
19 *} |
|
20 |
|
21 definition rec_twice :: "recf" |
|
22 where |
|
23 "rec_twice = Cn 1 rec_mult [id 1 0, constn 2]" |
|
24 |
|
25 definition rec_fourtimes :: "recf" |
|
26 where |
|
27 "rec_fourtimes = Cn 1 rec_mult [id 1 0, constn 4]" |
|
28 |
|
29 definition abc_twice :: "abc_prog" |
|
30 where |
|
31 "abc_twice = (let (aprog, ary, fp) = rec_ci rec_twice in |
|
32 aprog [+] dummy_abc ((Suc 0)))" |
|
33 |
|
34 definition abc_fourtimes :: "abc_prog" |
|
35 where |
|
36 "abc_fourtimes = (let (aprog, ary, fp) = rec_ci rec_fourtimes in |
|
37 aprog [+] dummy_abc ((Suc 0)))" |
|
38 |
|
39 definition twice_ly :: "nat list" |
|
40 where |
|
41 "twice_ly = layout_of abc_twice" |
|
42 |
|
43 definition fourtimes_ly :: "nat list" |
|
44 where |
|
45 "fourtimes_ly = layout_of abc_fourtimes" |
|
46 |
|
47 definition t_twice :: "tprog" |
|
48 where |
|
49 "t_twice = change_termi_state (tm_of (abc_twice) @ (tMp 1 (start_of twice_ly (length abc_twice) - Suc 0)))" |
|
50 |
|
51 definition t_fourtimes :: "tprog" |
|
52 where |
|
53 "t_fourtimes = change_termi_state (tm_of (abc_fourtimes) @ |
|
54 (tMp 1 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0)))" |
|
55 |
|
56 |
|
57 definition t_twice_len :: "nat" |
|
58 where |
|
59 "t_twice_len = length t_twice div 2" |
|
60 |
|
61 definition t_wcode_main_first_part:: "tprog" |
|
62 where |
|
63 "t_wcode_main_first_part \<equiv> |
|
64 [(L, 1), (L, 2), (L, 7), (R, 3), |
|
65 (R, 4), (W0, 3), (R, 4), (R, 5), |
|
66 (W1, 6), (R, 5), (R, 13), (L, 6), |
|
67 (R, 0), (R, 8), (R, 9), (Nop, 8), |
|
68 (R, 10), (W0, 9), (R, 10), (R, 11), |
|
69 (W1, 12), (R, 11), (R, t_twice_len + 14), (L, 12)]" |
|
70 |
|
71 definition t_wcode_main :: "tprog" |
|
72 where |
|
73 "t_wcode_main = (t_wcode_main_first_part @ tshift t_twice 12 @ [(L, 1), (L, 1)] |
|
74 @ tshift t_fourtimes (t_twice_len + 13) @ [(L, 1), (L, 1)])" |
|
75 |
|
76 fun bl_bin :: "block list \<Rightarrow> nat" |
|
77 where |
|
78 "bl_bin [] = 0" |
|
79 | "bl_bin (Bk # xs) = 2 * bl_bin xs" |
|
80 | "bl_bin (Oc # xs) = Suc (2 * bl_bin xs)" |
|
81 |
|
82 declare bl_bin.simps[simp del] |
|
83 |
|
84 type_synonym bin_inv_t = "block list \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
85 |
|
86 fun wcode_before_double :: "bin_inv_t" |
|
87 where |
|
88 "wcode_before_double ires rs (l, r) = |
|
89 (\<exists> ln rn. l = Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
90 r = Oc\<^bsup>(Suc (Suc rs))\<^esup> @ Bk\<^bsup>rn \<^esup>)" |
|
91 |
|
92 declare wcode_before_double.simps[simp del] |
|
93 |
|
94 fun wcode_after_double :: "bin_inv_t" |
|
95 where |
|
96 "wcode_after_double ires rs (l, r) = |
|
97 (\<exists> ln rn. l = Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
98 r = Oc\<^bsup>Suc (Suc (Suc 2*rs))\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
99 |
|
100 declare wcode_after_double.simps[simp del] |
|
101 |
|
102 fun wcode_on_left_moving_1_B :: "bin_inv_t" |
|
103 where |
|
104 "wcode_on_left_moving_1_B ires rs (l, r) = |
|
105 (\<exists> ml mr rn. l = Bk\<^bsup>ml\<^esup> @ Oc # Oc # ires \<and> |
|
106 r = Bk\<^bsup>mr\<^esup> @ Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
107 ml + mr > Suc 0 \<and> mr > 0)" |
|
108 |
|
109 declare wcode_on_left_moving_1_B.simps[simp del] |
|
110 |
|
111 fun wcode_on_left_moving_1_O :: "bin_inv_t" |
|
112 where |
|
113 "wcode_on_left_moving_1_O ires rs (l, r) = |
|
114 (\<exists> ln rn. |
|
115 l = Oc # ires \<and> |
|
116 r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
117 |
|
118 declare wcode_on_left_moving_1_O.simps[simp del] |
|
119 |
|
120 fun wcode_on_left_moving_1 :: "bin_inv_t" |
|
121 where |
|
122 "wcode_on_left_moving_1 ires rs (l, r) = |
|
123 (wcode_on_left_moving_1_B ires rs (l, r) \<or> wcode_on_left_moving_1_O ires rs (l, r))" |
|
124 |
|
125 declare wcode_on_left_moving_1.simps[simp del] |
|
126 |
|
127 fun wcode_on_checking_1 :: "bin_inv_t" |
|
128 where |
|
129 "wcode_on_checking_1 ires rs (l, r) = |
|
130 (\<exists> ln rn. l = ires \<and> |
|
131 r = Oc # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
132 |
|
133 fun wcode_erase1 :: "bin_inv_t" |
|
134 where |
|
135 "wcode_erase1 ires rs (l, r) = |
|
136 (\<exists> ln rn. l = Oc # ires \<and> |
|
137 tl r = Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
138 |
|
139 declare wcode_erase1.simps [simp del] |
|
140 |
|
141 fun wcode_on_right_moving_1 :: "bin_inv_t" |
|
142 where |
|
143 "wcode_on_right_moving_1 ires rs (l, r) = |
|
144 (\<exists> ml mr rn. |
|
145 l = Bk\<^bsup>ml\<^esup> @ Oc # ires \<and> |
|
146 r = Bk\<^bsup>mr\<^esup> @ Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
147 ml + mr > Suc 0)" |
|
148 |
|
149 declare wcode_on_right_moving_1.simps [simp del] |
|
150 |
|
151 declare wcode_on_right_moving_1.simps[simp del] |
|
152 |
|
153 fun wcode_goon_right_moving_1 :: "bin_inv_t" |
|
154 where |
|
155 "wcode_goon_right_moving_1 ires rs (l, r) = |
|
156 (\<exists> ml mr ln rn. |
|
157 l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
158 r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
159 ml + mr = Suc rs)" |
|
160 |
|
161 declare wcode_goon_right_moving_1.simps[simp del] |
|
162 |
|
163 fun wcode_backto_standard_pos_B :: "bin_inv_t" |
|
164 where |
|
165 "wcode_backto_standard_pos_B ires rs (l, r) = |
|
166 (\<exists> ln rn. l = Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
167 r = Bk # Oc\<^bsup>(Suc (Suc rs))\<^esup> @ Bk\<^bsup>rn \<^esup>)" |
|
168 |
|
169 declare wcode_backto_standard_pos_B.simps[simp del] |
|
170 |
|
171 fun wcode_backto_standard_pos_O :: "bin_inv_t" |
|
172 where |
|
173 "wcode_backto_standard_pos_O ires rs (l, r) = |
|
174 (\<exists> ml mr ln rn. |
|
175 l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
176 r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
177 ml + mr = Suc (Suc rs) \<and> mr > 0)" |
|
178 |
|
179 declare wcode_backto_standard_pos_O.simps[simp del] |
|
180 |
|
181 fun wcode_backto_standard_pos :: "bin_inv_t" |
|
182 where |
|
183 "wcode_backto_standard_pos ires rs (l, r) = (wcode_backto_standard_pos_B ires rs (l, r) \<or> |
|
184 wcode_backto_standard_pos_O ires rs (l, r))" |
|
185 |
|
186 declare wcode_backto_standard_pos.simps[simp del] |
|
187 |
|
188 lemma [simp]: "<0::nat> = [Oc]" |
|
189 apply(simp add: tape_of_nat_abv exponent_def tape_of_nat_list.simps) |
|
190 done |
|
191 |
|
192 lemma tape_of_Suc_nat: "<Suc (a ::nat)> = replicate a Oc @ [Oc, Oc]" |
|
193 apply(simp add: tape_of_nat_abv exp_ind tape_of_nat_list.simps) |
|
194 apply(simp only: exp_ind_def[THEN sym]) |
|
195 apply(simp only: exp_ind, simp, simp add: exponent_def) |
|
196 done |
|
197 |
|
198 lemma [simp]: "length (<a::nat>) = Suc a" |
|
199 apply(simp add: tape_of_nat_abv tape_of_nat_list.simps) |
|
200 done |
|
201 |
|
202 lemma [simp]: "<[a::nat]> = <a>" |
|
203 apply(simp add: tape_of_nat_abv tape_of_nl_abv exponent_def |
|
204 tape_of_nat_list.simps) |
|
205 done |
|
206 |
|
207 lemma bin_wc_eq: "bl_bin xs = bl2wc xs" |
|
208 proof(induct xs) |
|
209 show " bl_bin [] = bl2wc []" |
|
210 apply(simp add: bl_bin.simps) |
|
211 done |
|
212 next |
|
213 fix a xs |
|
214 assume "bl_bin xs = bl2wc xs" |
|
215 thus " bl_bin (a # xs) = bl2wc (a # xs)" |
|
216 apply(case_tac a, simp_all add: bl_bin.simps bl2wc.simps) |
|
217 apply(simp_all add: bl2nat.simps bl2nat_double) |
|
218 done |
|
219 qed |
|
220 |
|
221 declare exp_def[simp del] |
|
222 |
|
223 lemma bl_bin_nat_Suc: |
|
224 "bl_bin (<Suc a>) = bl_bin (<a>) + 2^(Suc a)" |
|
225 apply(simp add: tape_of_nat_abv bin_wc_eq) |
|
226 apply(simp add: bl2wc.simps) |
|
227 done |
|
228 lemma [simp]: " rev (a\<^bsup>aa\<^esup>) = a\<^bsup>aa\<^esup>" |
|
229 apply(simp add: exponent_def) |
|
230 done |
|
231 |
|
232 declare tape_of_nl_abv_cons[simp del] |
|
233 |
|
234 lemma tape_of_nl_rev: "rev (<lm::nat list>) = (<rev lm>)" |
|
235 apply(induct lm rule: list_tl_induct, simp) |
|
236 apply(case_tac "list = []", simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
237 apply(simp add: tape_of_nat_list_butlast_last tape_of_nl_abv_cons) |
|
238 done |
|
239 lemma [simp]: "a\<^bsup>Suc 0\<^esup> = [a]" |
|
240 by(simp add: exp_def) |
|
241 lemma tape_of_nl_cons_app1: "(<a # xs @ [b]>) = (Oc\<^bsup>Suc a\<^esup> @ Bk # (<xs@ [b]>))" |
|
242 apply(case_tac xs, simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
243 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
244 done |
|
245 |
|
246 lemma bl_bin_bk_oc[simp]: |
|
247 "bl_bin (xs @ [Bk, Oc]) = |
|
248 bl_bin xs + 2*2^(length xs)" |
|
249 apply(simp add: bin_wc_eq) |
|
250 using bl2nat_cons_oc[of "xs @ [Bk]"] |
|
251 apply(simp add: bl2nat_cons_bk bl2wc.simps) |
|
252 done |
|
253 |
|
254 lemma tape_of_nat[simp]: "(<a::nat>) = Oc\<^bsup>Suc a\<^esup>" |
|
255 apply(simp add: tape_of_nat_abv) |
|
256 done |
|
257 lemma tape_of_nl_cons_app2: "(<c # xs @ [b]>) = (<c # xs> @ Bk # Oc\<^bsup>Suc b\<^esup>)" |
|
258 proof(induct "length xs" arbitrary: xs c, |
|
259 simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
260 fix x xs c |
|
261 assume ind: "\<And>xs c. x = length xs \<Longrightarrow> <c # xs @ [b]> = |
|
262 <c # xs> @ Bk # Oc\<^bsup>Suc b\<^esup>" |
|
263 and h: "Suc x = length (xs::nat list)" |
|
264 show "<c # xs @ [b]> = <c # xs> @ Bk # Oc\<^bsup>Suc b\<^esup>" |
|
265 proof(case_tac xs, simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
266 fix a list |
|
267 assume g: "xs = a # list" |
|
268 hence k: "<a # list @ [b]> = <a # list> @ Bk # Oc\<^bsup>Suc b\<^esup>" |
|
269 apply(rule_tac ind) |
|
270 using h |
|
271 apply(simp) |
|
272 done |
|
273 from g and k show "<c # xs @ [b]> = <c # xs> @ Bk # Oc\<^bsup>Suc b\<^esup>" |
|
274 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
275 done |
|
276 qed |
|
277 qed |
|
278 |
|
279 lemma [simp]: "length (<aa # a # list>) = Suc (Suc aa) + length (<a # list>)" |
|
280 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
281 done |
|
282 |
|
283 lemma [simp]: "bl_bin (Oc\<^bsup>Suc aa\<^esup> @ Bk # tape_of_nat_list (a # lista) @ [Bk, Oc]) = |
|
284 bl_bin (Oc\<^bsup>Suc aa\<^esup> @ Bk # tape_of_nat_list (a # lista)) + |
|
285 2* 2^(length (Oc\<^bsup>Suc aa\<^esup> @ Bk # tape_of_nat_list (a # lista)))" |
|
286 using bl_bin_bk_oc[of "Oc\<^bsup>Suc aa\<^esup> @ Bk # tape_of_nat_list (a # lista)"] |
|
287 apply(simp) |
|
288 done |
|
289 |
|
290 lemma [simp]: |
|
291 "bl_bin (<aa # list>) + (4 * rs + 4) * 2 ^ (length (<aa # list>) - Suc 0) |
|
292 = bl_bin (Oc\<^bsup>Suc aa\<^esup> @ Bk # <list @ [0]>) + rs * (2 * 2 ^ (aa + length (<list @ [0]>)))" |
|
293 apply(case_tac "list", simp add: add_mult_distrib, simp) |
|
294 apply(simp add: tape_of_nl_cons_app2 add_mult_distrib) |
|
295 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
296 done |
|
297 |
|
298 lemma tape_of_nl_app_Suc: "((<list @ [Suc ab]>)) = (<list @ [ab]>) @ [Oc]" |
|
299 apply(induct list) |
|
300 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps exp_ind) |
|
301 apply(case_tac list) |
|
302 apply(simp_all add:tape_of_nl_abv tape_of_nat_list.simps exp_ind) |
|
303 done |
|
304 |
|
305 lemma [simp]: "bl_bin (Oc # Oc\<^bsup>aa\<^esup> @ Bk # <list @ [ab]> @ [Oc]) |
|
306 = bl_bin (Oc # Oc\<^bsup>aa\<^esup> @ Bk # <list @ [ab]>) + |
|
307 2^(length (Oc # Oc\<^bsup>aa\<^esup> @ Bk # <list @ [ab]>))" |
|
308 apply(simp add: bin_wc_eq) |
|
309 apply(simp add: bl2nat_cons_oc bl2wc.simps) |
|
310 using bl2nat_cons_oc[of "Oc # Oc\<^bsup>aa\<^esup> @ Bk # <list @ [ab]>"] |
|
311 apply(simp) |
|
312 done |
|
313 lemma [simp]: "bl_bin (Oc # Oc\<^bsup>aa\<^esup> @ Bk # <list @ [ab]>) + (4 * 2 ^ (aa + length (<list @ [ab]>)) + |
|
314 4 * (rs * 2 ^ (aa + length (<list @ [ab]>)))) = |
|
315 bl_bin (Oc # Oc\<^bsup>aa\<^esup> @ Bk # <list @ [Suc ab]>) + |
|
316 rs * (2 * 2 ^ (aa + length (<list @ [Suc ab]>)))" |
|
317 apply(simp add: tape_of_nl_app_Suc) |
|
318 done |
|
319 |
|
320 declare tape_of_nat[simp del] |
|
321 |
|
322 text{* double case*} |
|
323 fun wcode_double_case_inv :: "nat \<Rightarrow> bin_inv_t" |
|
324 where |
|
325 "wcode_double_case_inv st ires rs (l, r) = |
|
326 (if st = Suc 0 then wcode_on_left_moving_1 ires rs (l, r) |
|
327 else if st = Suc (Suc 0) then wcode_on_checking_1 ires rs (l, r) |
|
328 else if st = 3 then wcode_erase1 ires rs (l, r) |
|
329 else if st = 4 then wcode_on_right_moving_1 ires rs (l, r) |
|
330 else if st = 5 then wcode_goon_right_moving_1 ires rs (l, r) |
|
331 else if st = 6 then wcode_backto_standard_pos ires rs (l, r) |
|
332 else if st = 13 then wcode_before_double ires rs (l, r) |
|
333 else False)" |
|
334 |
|
335 declare wcode_double_case_inv.simps[simp del] |
|
336 |
|
337 fun wcode_double_case_state :: "t_conf \<Rightarrow> nat" |
|
338 where |
|
339 "wcode_double_case_state (st, l, r) = |
|
340 13 - st" |
|
341 |
|
342 fun wcode_double_case_step :: "t_conf \<Rightarrow> nat" |
|
343 where |
|
344 "wcode_double_case_step (st, l, r) = |
|
345 (if st = Suc 0 then (length l) |
|
346 else if st = Suc (Suc 0) then (length r) |
|
347 else if st = 3 then |
|
348 if hd r = Oc then 1 else 0 |
|
349 else if st = 4 then (length r) |
|
350 else if st = 5 then (length r) |
|
351 else if st = 6 then (length l) |
|
352 else 0)" |
|
353 |
|
354 fun wcode_double_case_measure :: "t_conf \<Rightarrow> nat \<times> nat" |
|
355 where |
|
356 "wcode_double_case_measure (st, l, r) = |
|
357 (wcode_double_case_state (st, l, r), |
|
358 wcode_double_case_step (st, l, r))" |
|
359 |
|
360 definition wcode_double_case_le :: "(t_conf \<times> t_conf) set" |
|
361 where "wcode_double_case_le \<equiv> (inv_image lex_pair wcode_double_case_measure)" |
|
362 |
|
363 lemma [intro]: "wf lex_pair" |
|
364 by(auto intro:wf_lex_prod simp:lex_pair_def) |
|
365 |
|
366 lemma wf_wcode_double_case_le[intro]: "wf wcode_double_case_le" |
|
367 by(auto intro:wf_inv_image simp: wcode_double_case_le_def ) |
|
368 term fetch |
|
369 |
|
370 lemma [simp]: "fetch t_wcode_main (Suc 0) Bk = (L, Suc 0)" |
|
371 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
372 fetch.simps nth_of.simps) |
|
373 done |
|
374 |
|
375 lemma [simp]: "fetch t_wcode_main (Suc 0) Oc = (L, Suc (Suc 0))" |
|
376 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
377 fetch.simps nth_of.simps) |
|
378 done |
|
379 |
|
380 lemma [simp]: "fetch t_wcode_main (Suc (Suc 0)) Oc = (R, 3)" |
|
381 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
382 fetch.simps nth_of.simps) |
|
383 done |
|
384 |
|
385 lemma [simp]: "fetch t_wcode_main (Suc (Suc (Suc 0))) Bk = (R, 4)" |
|
386 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
387 fetch.simps nth_of.simps) |
|
388 done |
|
389 |
|
390 lemma [simp]: "fetch t_wcode_main (Suc (Suc (Suc 0))) Oc = (W0, 3)" |
|
391 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
392 fetch.simps nth_of.simps) |
|
393 done |
|
394 |
|
395 lemma [simp]: "fetch t_wcode_main 4 Bk = (R, 4)" |
|
396 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
397 fetch.simps nth_of.simps) |
|
398 done |
|
399 |
|
400 lemma [simp]: "fetch t_wcode_main 4 Oc = (R, 5)" |
|
401 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
402 fetch.simps nth_of.simps) |
|
403 done |
|
404 |
|
405 lemma [simp]: "fetch t_wcode_main 5 Oc = (R, 5)" |
|
406 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
407 fetch.simps nth_of.simps) |
|
408 done |
|
409 |
|
410 lemma [simp]: "fetch t_wcode_main 5 Bk = (W1, 6)" |
|
411 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
412 fetch.simps nth_of.simps) |
|
413 done |
|
414 |
|
415 lemma [simp]: "fetch t_wcode_main 6 Bk = (R, 13)" |
|
416 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
417 fetch.simps nth_of.simps) |
|
418 done |
|
419 |
|
420 lemma [simp]: "fetch t_wcode_main 6 Oc = (L, 6)" |
|
421 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
422 fetch.simps nth_of.simps) |
|
423 done |
|
424 lemma [elim]: "Bk\<^bsup>mr\<^esup> = [] \<Longrightarrow> mr = 0" |
|
425 apply(case_tac mr, auto simp: exponent_def) |
|
426 done |
|
427 |
|
428 lemma [simp]: "wcode_on_left_moving_1 ires rs (b, []) = False" |
|
429 apply(simp add: wcode_on_left_moving_1.simps wcode_on_left_moving_1_B.simps |
|
430 wcode_on_left_moving_1_O.simps, auto) |
|
431 done |
|
432 |
|
433 |
|
434 declare wcode_on_checking_1.simps[simp del] |
|
435 |
|
436 lemmas wcode_double_case_inv_simps = |
|
437 wcode_on_left_moving_1.simps wcode_on_left_moving_1_O.simps |
|
438 wcode_on_left_moving_1_B.simps wcode_on_checking_1.simps |
|
439 wcode_erase1.simps wcode_on_right_moving_1.simps |
|
440 wcode_goon_right_moving_1.simps wcode_backto_standard_pos.simps |
|
441 |
|
442 |
|
443 lemma [simp]: "wcode_on_left_moving_1 ires rs (b, r) \<Longrightarrow> b \<noteq> []" |
|
444 apply(simp add: wcode_double_case_inv_simps, auto) |
|
445 done |
|
446 |
|
447 |
|
448 lemma [elim]: "\<lbrakk>wcode_on_left_moving_1 ires rs (b, Bk # list); |
|
449 tl b = aa \<and> hd b # Bk # list = ba\<rbrakk> \<Longrightarrow> |
|
450 wcode_on_left_moving_1 ires rs (aa, ba)" |
|
451 apply(simp only: wcode_on_left_moving_1.simps wcode_on_left_moving_1_O.simps |
|
452 wcode_on_left_moving_1_B.simps) |
|
453 apply(erule_tac disjE) |
|
454 apply(erule_tac exE)+ |
|
455 apply(case_tac ml, simp) |
|
456 apply(rule_tac x = "mr - Suc (Suc 0)" in exI, rule_tac x = rn in exI) |
|
457 apply(case_tac mr, simp, case_tac nat, simp, simp add: exp_ind) |
|
458 apply(rule_tac disjI1) |
|
459 apply(rule_tac x = nat in exI, rule_tac x = "Suc mr" in exI, rule_tac x = rn in exI, |
|
460 simp add: exp_ind_def) |
|
461 apply(erule_tac exE)+ |
|
462 apply(simp) |
|
463 done |
|
464 |
|
465 |
|
466 lemma [elim]: |
|
467 "\<lbrakk>wcode_on_left_moving_1 ires rs (b, Oc # list); tl b = aa \<and> hd b # Oc # list = ba\<rbrakk> |
|
468 \<Longrightarrow> wcode_on_checking_1 ires rs (aa, ba)" |
|
469 apply(simp only: wcode_double_case_inv_simps) |
|
470 apply(erule_tac disjE) |
|
471 apply(erule_tac [!] exE)+ |
|
472 apply(case_tac mr, simp, simp add: exp_ind_def) |
|
473 apply(rule_tac x = ln in exI, rule_tac x = rn in exI, simp) |
|
474 done |
|
475 |
|
476 |
|
477 lemma [simp]: "wcode_on_checking_1 ires rs (b, []) = False" |
|
478 apply(auto simp: wcode_double_case_inv_simps) |
|
479 done |
|
480 |
|
481 lemma [simp]: "wcode_on_checking_1 ires rs (b, Bk # list) = False" |
|
482 apply(auto simp: wcode_double_case_inv_simps) |
|
483 done |
|
484 |
|
485 lemma [elim]: "\<lbrakk>wcode_on_checking_1 ires rs (b, Oc # ba);Oc # b = aa \<and> list = ba\<rbrakk> |
|
486 \<Longrightarrow> wcode_erase1 ires rs (aa, ba)" |
|
487 apply(simp only: wcode_double_case_inv_simps) |
|
488 apply(erule_tac exE)+ |
|
489 apply(rule_tac x = ln in exI, rule_tac x = rn in exI, simp) |
|
490 done |
|
491 |
|
492 |
|
493 lemma [simp]: "wcode_on_checking_1 ires rs (b, []) = False" |
|
494 apply(simp add: wcode_double_case_inv_simps) |
|
495 done |
|
496 |
|
497 lemma [simp]: "wcode_on_checking_1 ires rs ([], Bk # list) = False" |
|
498 apply(simp add: wcode_double_case_inv_simps) |
|
499 done |
|
500 |
|
501 lemma [simp]: "wcode_erase1 ires rs (b, []) = False" |
|
502 apply(simp add: wcode_double_case_inv_simps) |
|
503 done |
|
504 |
|
505 lemma [simp]: "wcode_on_right_moving_1 ires rs (b, []) = False" |
|
506 apply(simp add: wcode_double_case_inv_simps exp_ind_def) |
|
507 done |
|
508 |
|
509 lemma [simp]: "wcode_on_right_moving_1 ires rs (b, []) = False" |
|
510 apply(simp add: wcode_double_case_inv_simps exp_ind_def) |
|
511 done |
|
512 |
|
513 lemma [elim]: "\<lbrakk>wcode_on_right_moving_1 ires rs (b, Bk # ba); Bk # b = aa \<and> list = b\<rbrakk> \<Longrightarrow> |
|
514 wcode_on_right_moving_1 ires rs (aa, ba)" |
|
515 apply(simp only: wcode_double_case_inv_simps) |
|
516 apply(erule_tac exE)+ |
|
517 apply(rule_tac x = "Suc ml" in exI, rule_tac x = "mr - Suc 0" in exI, |
|
518 rule_tac x = rn in exI) |
|
519 apply(simp add: exp_ind_def) |
|
520 apply(case_tac mr, simp, simp add: exp_ind_def) |
|
521 done |
|
522 |
|
523 lemma [elim]: |
|
524 "\<lbrakk>wcode_on_right_moving_1 ires rs (b, Oc # ba); Oc # b = aa \<and> list = ba\<rbrakk> |
|
525 \<Longrightarrow> wcode_goon_right_moving_1 ires rs (aa, ba)" |
|
526 apply(simp only: wcode_double_case_inv_simps) |
|
527 apply(erule_tac exE)+ |
|
528 apply(rule_tac x = "Suc 0" in exI, rule_tac x = "rs" in exI, |
|
529 rule_tac x = "ml - Suc (Suc 0)" in exI, rule_tac x = rn in exI) |
|
530 apply(case_tac mr, simp_all add: exp_ind_def) |
|
531 apply(case_tac ml, simp, case_tac nat, simp, simp) |
|
532 apply(simp add: exp_ind_def) |
|
533 done |
|
534 |
|
535 lemma [simp]: |
|
536 "wcode_on_right_moving_1 ires rs (b, []) \<Longrightarrow> False" |
|
537 apply(simp add: wcode_double_case_inv_simps exponent_def) |
|
538 done |
|
539 |
|
540 lemma [elim]: "\<lbrakk>wcode_erase1 ires rs (b, Bk # ba); Bk # b = aa \<and> list = ba; c = Bk # ba\<rbrakk> |
|
541 \<Longrightarrow> wcode_on_right_moving_1 ires rs (aa, ba)" |
|
542 apply(simp only: wcode_double_case_inv_simps) |
|
543 apply(erule_tac exE)+ |
|
544 apply(rule_tac x = "Suc 0" in exI, rule_tac x = "Suc (Suc ln)" in exI, |
|
545 rule_tac x = rn in exI, simp add: exp_ind) |
|
546 done |
|
547 |
|
548 lemma [elim]: "\<lbrakk>wcode_erase1 ires rs (aa, Oc # list); b = aa \<and> Bk # list = ba\<rbrakk> \<Longrightarrow> |
|
549 wcode_erase1 ires rs (aa, ba)" |
|
550 apply(simp only: wcode_double_case_inv_simps) |
|
551 apply(erule_tac exE)+ |
|
552 apply(rule_tac x = ln in exI, rule_tac x = rn in exI, auto) |
|
553 done |
|
554 |
|
555 lemma [elim]: "\<lbrakk>wcode_goon_right_moving_1 ires rs (aa, []); b = aa \<and> [Oc] = ba\<rbrakk> |
|
556 \<Longrightarrow> wcode_backto_standard_pos ires rs (aa, ba)" |
|
557 apply(simp only: wcode_double_case_inv_simps) |
|
558 apply(erule_tac exE)+ |
|
559 apply(rule_tac disjI2) |
|
560 apply(simp only:wcode_backto_standard_pos_O.simps) |
|
561 apply(rule_tac x = ml in exI, rule_tac x = "Suc 0" in exI, rule_tac x = ln in exI, |
|
562 rule_tac x = rn in exI, simp) |
|
563 apply(case_tac mr, simp_all add: exponent_def) |
|
564 done |
|
565 |
|
566 lemma [elim]: |
|
567 "\<lbrakk>wcode_goon_right_moving_1 ires rs (aa, Bk # list); b = aa \<and> Oc # list = ba\<rbrakk> |
|
568 \<Longrightarrow> wcode_backto_standard_pos ires rs (aa, ba)" |
|
569 apply(simp only: wcode_double_case_inv_simps) |
|
570 apply(erule_tac exE)+ |
|
571 apply(rule_tac disjI2) |
|
572 apply(simp only:wcode_backto_standard_pos_O.simps) |
|
573 apply(rule_tac x = ml in exI, rule_tac x = "Suc 0" in exI, rule_tac x = ln in exI, |
|
574 rule_tac x = "rn - Suc 0" in exI, simp) |
|
575 apply(case_tac mr, simp, case_tac rn, simp, simp_all add: exp_ind_def) |
|
576 done |
|
577 |
|
578 lemma [elim]: "\<lbrakk>wcode_goon_right_moving_1 ires rs (b, Oc # ba); Oc # b = aa \<and> list = ba\<rbrakk> |
|
579 \<Longrightarrow> wcode_goon_right_moving_1 ires rs (aa, ba)" |
|
580 apply(simp only: wcode_double_case_inv_simps) |
|
581 apply(erule_tac exE)+ |
|
582 apply(rule_tac x = "Suc ml" in exI, rule_tac x = "mr - Suc 0" in exI, |
|
583 rule_tac x = ln in exI, rule_tac x = rn in exI) |
|
584 apply(simp add: exp_ind_def) |
|
585 apply(case_tac mr, simp, case_tac rn, simp_all add: exp_ind_def) |
|
586 done |
|
587 |
|
588 lemma [elim]: "\<lbrakk>wcode_backto_standard_pos ires rs (b, []); Bk # b = aa\<rbrakk> \<Longrightarrow> False" |
|
589 apply(auto simp: wcode_double_case_inv_simps wcode_backto_standard_pos_O.simps |
|
590 wcode_backto_standard_pos_B.simps) |
|
591 apply(case_tac mr, simp_all add: exp_ind_def) |
|
592 done |
|
593 |
|
594 lemma [elim]: "\<lbrakk>wcode_backto_standard_pos ires rs (b, Bk # ba); Bk # b = aa \<and> list = ba\<rbrakk> |
|
595 \<Longrightarrow> wcode_before_double ires rs (aa, ba)" |
|
596 apply(simp only: wcode_double_case_inv_simps wcode_backto_standard_pos_B.simps |
|
597 wcode_backto_standard_pos_O.simps wcode_before_double.simps) |
|
598 apply(erule_tac disjE) |
|
599 apply(erule_tac exE)+ |
|
600 apply(rule_tac x = ln in exI, rule_tac x = rn in exI, simp) |
|
601 apply(auto) |
|
602 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
603 done |
|
604 |
|
605 lemma [simp]: "wcode_backto_standard_pos ires rs ([], Oc # list) = False" |
|
606 apply(auto simp: wcode_backto_standard_pos.simps wcode_backto_standard_pos_B.simps |
|
607 wcode_backto_standard_pos_O.simps) |
|
608 done |
|
609 |
|
610 lemma [simp]: "wcode_backto_standard_pos ires rs (b, []) = False" |
|
611 apply(auto simp: wcode_backto_standard_pos.simps wcode_backto_standard_pos_B.simps |
|
612 wcode_backto_standard_pos_O.simps) |
|
613 apply(case_tac mr, simp, simp add: exp_ind_def) |
|
614 done |
|
615 |
|
616 lemma [elim]: "\<lbrakk>wcode_backto_standard_pos ires rs (b, Oc # list); tl b = aa; hd b # Oc # list = ba\<rbrakk> |
|
617 \<Longrightarrow> wcode_backto_standard_pos ires rs (aa, ba)" |
|
618 apply(simp only: wcode_backto_standard_pos.simps wcode_backto_standard_pos_B.simps |
|
619 wcode_backto_standard_pos_O.simps) |
|
620 apply(erule_tac disjE) |
|
621 apply(simp) |
|
622 apply(erule_tac exE)+ |
|
623 apply(case_tac ml, simp) |
|
624 apply(rule_tac disjI1, rule_tac conjI) |
|
625 apply(rule_tac x = ln in exI, simp, rule_tac x = rn in exI, simp) |
|
626 apply(rule_tac disjI2) |
|
627 apply(rule_tac x = nat in exI, rule_tac x = "Suc mr" in exI, rule_tac x = ln in exI, |
|
628 rule_tac x = rn in exI, simp) |
|
629 apply(simp add: exp_ind_def) |
|
630 done |
|
631 |
|
632 declare new_tape.simps[simp del] nth_of.simps[simp del] fetch.simps[simp del] |
|
633 lemma wcode_double_case_first_correctness: |
|
634 "let P = (\<lambda> (st, l, r). st = 13) in |
|
635 let Q = (\<lambda> (st, l, r). wcode_double_case_inv st ires rs (l, r)) in |
|
636 let f = (\<lambda> stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp) in |
|
637 \<exists> n .P (f n) \<and> Q (f (n::nat))" |
|
638 proof - |
|
639 let ?P = "(\<lambda> (st, l, r). st = 13)" |
|
640 let ?Q = "(\<lambda> (st, l, r). wcode_double_case_inv st ires rs (l, r))" |
|
641 let ?f = "(\<lambda> stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp)" |
|
642 have "\<exists> n. ?P (?f n) \<and> ?Q (?f (n::nat))" |
|
643 proof(rule_tac halt_lemma2) |
|
644 show "wf wcode_double_case_le" |
|
645 by auto |
|
646 next |
|
647 show "\<forall> na. \<not> ?P (?f na) \<and> ?Q (?f na) \<longrightarrow> |
|
648 ?Q (?f (Suc na)) \<and> (?f (Suc na), ?f na) \<in> wcode_double_case_le" |
|
649 proof(rule_tac allI, case_tac "?f na", simp add: tstep_red) |
|
650 fix na a b c |
|
651 show "a \<noteq> 13 \<and> wcode_double_case_inv a ires rs (b, c) \<longrightarrow> |
|
652 (case tstep (a, b, c) t_wcode_main of (st, x) \<Rightarrow> |
|
653 wcode_double_case_inv st ires rs x) \<and> |
|
654 (tstep (a, b, c) t_wcode_main, a, b, c) \<in> wcode_double_case_le" |
|
655 apply(rule_tac impI, simp add: wcode_double_case_inv.simps) |
|
656 apply(auto split: if_splits simp: tstep.simps, |
|
657 case_tac [!] c, simp_all, case_tac [!] "(c::block list)!0") |
|
658 apply(simp_all add: new_tape.simps wcode_double_case_inv.simps wcode_double_case_le_def |
|
659 lex_pair_def) |
|
660 apply(auto split: if_splits) |
|
661 done |
|
662 qed |
|
663 next |
|
664 show "?Q (?f 0)" |
|
665 apply(simp add: steps.simps wcode_double_case_inv.simps |
|
666 wcode_on_left_moving_1.simps |
|
667 wcode_on_left_moving_1_B.simps) |
|
668 apply(rule_tac disjI1) |
|
669 apply(rule_tac x = "Suc m" in exI, simp add: exp_ind_def) |
|
670 apply(rule_tac x = "Suc 0" in exI, simp add: exp_ind_def) |
|
671 apply(auto) |
|
672 done |
|
673 next |
|
674 show "\<not> ?P (?f 0)" |
|
675 apply(simp add: steps.simps) |
|
676 done |
|
677 qed |
|
678 thus "let P = \<lambda>(st, l, r). st = 13; |
|
679 Q = \<lambda>(st, l, r). wcode_double_case_inv st ires rs (l, r); |
|
680 f = steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main |
|
681 in \<exists>n. P (f n) \<and> Q (f n)" |
|
682 apply(simp add: Let_def) |
|
683 done |
|
684 qed |
|
685 |
|
686 lemma [elim]: "t_ncorrect tp |
|
687 \<Longrightarrow> t_ncorrect (abacus.tshift tp a)" |
|
688 apply(simp add: t_ncorrect.simps shift_length) |
|
689 done |
|
690 |
|
691 lemma tshift_fetch: "\<lbrakk> fetch tp a b = (aa, st'); 0 < st'\<rbrakk> |
|
692 \<Longrightarrow> fetch (abacus.tshift tp (length tp1 div 2)) a b |
|
693 = (aa, st' + length tp1 div 2)" |
|
694 apply(subgoal_tac "a > 0") |
|
695 apply(auto simp: fetch.simps nth_of.simps shift_length nth_map |
|
696 tshift.simps split: block.splits if_splits) |
|
697 done |
|
698 |
|
699 lemma t_steps_steps_eq: "\<lbrakk>steps (st, l, r) tp stp = (st', l', r'); |
|
700 0 < st'; |
|
701 0 < st \<and> st \<le> length tp div 2; |
|
702 t_ncorrect tp1; |
|
703 t_ncorrect tp\<rbrakk> |
|
704 \<Longrightarrow> t_steps (st + length tp1 div 2, l, r) (tshift tp (length tp1 div 2), |
|
705 length tp1 div 2) stp |
|
706 = (st' + length tp1 div 2, l', r')" |
|
707 apply(induct stp arbitrary: st' l' r', simp add: steps.simps t_steps.simps, |
|
708 simp add: tstep_red stepn) |
|
709 apply(case_tac "(steps (st, l, r) tp stp)", simp) |
|
710 proof - |
|
711 fix stp st' l' r' a b c |
|
712 assume ind: "\<And>st' l' r'. |
|
713 \<lbrakk>a = st' \<and> b = l' \<and> c = r'; 0 < st'\<rbrakk> |
|
714 \<Longrightarrow> t_steps (st + length tp1 div 2, l, r) |
|
715 (abacus.tshift tp (length tp1 div 2), length tp1 div 2) stp = |
|
716 (st' + length tp1 div 2, l', r')" |
|
717 and h: "tstep (a, b, c) tp = (st', l', r')" "0 < st'" "t_ncorrect tp1" "t_ncorrect tp" |
|
718 have k: "t_steps (st + length tp1 div 2, l, r) (abacus.tshift tp (length tp1 div 2), |
|
719 length tp1 div 2) stp = (a + length tp1 div 2, b, c)" |
|
720 apply(rule_tac ind, simp) |
|
721 using h |
|
722 apply(case_tac a, simp_all add: tstep.simps fetch.simps) |
|
723 done |
|
724 from h and this show "t_step (t_steps (st + length tp1 div 2, l, r) (abacus.tshift tp (length tp1 div 2), length tp1 div 2) stp) |
|
725 (abacus.tshift tp (length tp1 div 2), length tp1 div 2) = |
|
726 (st' + length tp1 div 2, l', r')" |
|
727 apply(simp add: k) |
|
728 apply(simp add: tstep.simps t_step.simps) |
|
729 apply(case_tac "fetch tp a (case c of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)", simp) |
|
730 apply(subgoal_tac "fetch (abacus.tshift tp (length tp1 div 2)) a |
|
731 (case c of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x) = (aa, st' + length tp1 div 2)", simp) |
|
732 apply(simp add: tshift_fetch) |
|
733 done |
|
734 qed |
|
735 |
|
736 lemma t_tshift_lemma: "\<lbrakk> steps (st, l, r) tp stp = (st', l', r'); |
|
737 st' \<noteq> 0; |
|
738 stp > 0; |
|
739 0 < st \<and> st \<le> length tp div 2; |
|
740 t_ncorrect tp1; |
|
741 t_ncorrect tp; |
|
742 t_ncorrect tp2 |
|
743 \<rbrakk> |
|
744 \<Longrightarrow> \<exists> stp>0. steps (st + length tp1 div 2, l, r) (tp1 @ tshift tp (length tp1 div 2) @ tp2) stp |
|
745 = (st' + length tp1 div 2, l', r')" |
|
746 proof - |
|
747 assume h: "steps (st, l, r) tp stp = (st', l', r')" |
|
748 "st' \<noteq> 0" "stp > 0" |
|
749 "0 < st \<and> st \<le> length tp div 2" |
|
750 "t_ncorrect tp1" |
|
751 "t_ncorrect tp" |
|
752 "t_ncorrect tp2" |
|
753 from h have |
|
754 "\<exists>stp>0. t_steps (st + length tp1 div 2, l, r) (tp1 @ abacus.tshift tp (length tp1 div 2) @ tp2, 0) stp = |
|
755 (st' + length tp1 div 2, l', r')" |
|
756 apply(rule_tac stp = stp in turing_shift, simp_all add: shift_length) |
|
757 apply(simp add: t_steps_steps_eq) |
|
758 apply(simp add: t_ncorrect.simps shift_length) |
|
759 done |
|
760 thus "\<exists> stp>0. steps (st + length tp1 div 2, l, r) (tp1 @ tshift tp (length tp1 div 2) @ tp2) stp |
|
761 = (st' + length tp1 div 2, l', r')" |
|
762 apply(erule_tac exE) |
|
763 apply(rule_tac x = stp in exI, simp) |
|
764 apply(subgoal_tac "length (tp1 @ abacus.tshift tp (length tp1 div 2) @ tp2) mod 2 = 0") |
|
765 apply(simp only: steps_eq) |
|
766 using h |
|
767 apply(auto simp: t_ncorrect.simps shift_length) |
|
768 apply arith |
|
769 done |
|
770 qed |
|
771 |
|
772 |
|
773 lemma t_twice_len_ge: "Suc 0 \<le> length t_twice div 2" |
|
774 apply(simp add: t_twice_def tMp.simps shift_length) |
|
775 done |
|
776 |
|
777 lemma [intro]: "rec_calc_rel (recf.id (Suc 0) 0) [rs] rs" |
|
778 apply(rule_tac calc_id, simp_all) |
|
779 done |
|
780 |
|
781 lemma [intro]: "rec_calc_rel (constn 2) [rs] 2" |
|
782 using prime_rel_exec_eq[of "constn 2" "[rs]" 2] |
|
783 apply(subgoal_tac "primerec (constn 2) 1", auto) |
|
784 done |
|
785 |
|
786 lemma [intro]: "rec_calc_rel rec_mult [rs, 2] (2 * rs)" |
|
787 using prime_rel_exec_eq[of "rec_mult" "[rs, 2]" "2*rs"] |
|
788 apply(subgoal_tac "primerec rec_mult (Suc (Suc 0))", auto) |
|
789 done |
|
790 lemma t_twice_correct: "\<exists>stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
791 (tm_of abc_twice @ tMp (Suc 0) (start_of twice_ly (length abc_twice) - Suc 0)) stp = |
|
792 (0, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
793 proof(case_tac "rec_ci rec_twice") |
|
794 fix a b c |
|
795 assume h: "rec_ci rec_twice = (a, b, c)" |
|
796 have "\<exists>stp m l. steps (Suc 0, Bk # Bk # ires, <[rs]> @ Bk\<^bsup>n\<^esup>) (tm_of abc_twice @ tMp (Suc 0) |
|
797 (start_of twice_ly (length abc_twice) - 1)) stp = (0, Bk\<^bsup>m\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2*rs)\<^esup> @ Bk\<^bsup>l\<^esup>)" |
|
798 proof(rule_tac t_compiled_by_rec) |
|
799 show "rec_ci rec_twice = (a, b, c)" by (simp add: h) |
|
800 next |
|
801 show "rec_calc_rel rec_twice [rs] (2 * rs)" |
|
802 apply(simp add: rec_twice_def) |
|
803 apply(rule_tac rs = "[rs, 2]" in calc_cn, simp_all) |
|
804 apply(rule_tac allI, case_tac k, auto) |
|
805 done |
|
806 next |
|
807 show "length [rs] = Suc 0" by simp |
|
808 next |
|
809 show "layout_of (a [+] dummy_abc (Suc 0)) = layout_of (a [+] dummy_abc (Suc 0))" |
|
810 by simp |
|
811 next |
|
812 show "start_of twice_ly (length abc_twice) = |
|
813 start_of (layout_of (a [+] dummy_abc (Suc 0))) (length (a [+] dummy_abc (Suc 0)))" |
|
814 using h |
|
815 apply(simp add: twice_ly_def abc_twice_def) |
|
816 done |
|
817 next |
|
818 show "tm_of abc_twice = tm_of (a [+] dummy_abc (Suc 0))" |
|
819 using h |
|
820 apply(simp add: abc_twice_def) |
|
821 done |
|
822 qed |
|
823 thus "\<exists>stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
824 (tm_of abc_twice @ tMp (Suc 0) (start_of twice_ly (length abc_twice) - Suc 0)) stp = |
|
825 (0, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
826 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
827 done |
|
828 qed |
|
829 |
|
830 lemma change_termi_state_fetch: "\<lbrakk>fetch ap a b = (aa, st); st > 0\<rbrakk> |
|
831 \<Longrightarrow> fetch (change_termi_state ap) a b = (aa, st)" |
|
832 apply(case_tac b, auto simp: fetch.simps nth_of.simps change_termi_state.simps nth_map |
|
833 split: if_splits block.splits) |
|
834 done |
|
835 |
|
836 lemma change_termi_state_exec_in_range: |
|
837 "\<lbrakk>steps (st, l, r) ap stp = (st', l', r'); st' \<noteq> 0\<rbrakk> |
|
838 \<Longrightarrow> steps (st, l, r) (change_termi_state ap) stp = (st', l', r')" |
|
839 proof(induct stp arbitrary: st l r st' l' r', simp add: steps.simps) |
|
840 fix stp st l r st' l' r' |
|
841 assume ind: "\<And>st l r st' l' r'. |
|
842 \<lbrakk>steps (st, l, r) ap stp = (st', l', r'); st' \<noteq> 0\<rbrakk> \<Longrightarrow> |
|
843 steps (st, l, r) (change_termi_state ap) stp = (st', l', r')" |
|
844 and h: "steps (st, l, r) ap (Suc stp) = (st', l', r')" "st' \<noteq> 0" |
|
845 from h show "steps (st, l, r) (change_termi_state ap) (Suc stp) = (st', l', r')" |
|
846 proof(simp add: tstep_red, case_tac "steps (st, l, r) ap stp", simp) |
|
847 fix a b c |
|
848 assume g: "steps (st, l, r) ap stp = (a, b, c)" |
|
849 "tstep (a, b, c) ap = (st', l', r')" "0 < st'" |
|
850 hence "steps (st, l, r) (change_termi_state ap) stp = (a, b, c)" |
|
851 apply(rule_tac ind, simp) |
|
852 apply(case_tac a, simp_all add: tstep_0) |
|
853 done |
|
854 from g and this show "tstep (steps (st, l, r) (change_termi_state ap) stp) |
|
855 (change_termi_state ap) = (st', l', r')" |
|
856 apply(simp add: tstep.simps) |
|
857 apply(case_tac "fetch ap a (case c of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)", simp) |
|
858 apply(subgoal_tac "fetch (change_termi_state ap) a (case c of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x) |
|
859 = (aa, st')", simp) |
|
860 apply(simp add: change_termi_state_fetch) |
|
861 done |
|
862 qed |
|
863 qed |
|
864 |
|
865 lemma change_termi_state_fetch0: |
|
866 "\<lbrakk>0 < a; a \<le> length ap div 2; t_correct ap; fetch ap a b = (aa, 0)\<rbrakk> |
|
867 \<Longrightarrow> fetch (change_termi_state ap) a b = (aa, Suc (length ap div 2))" |
|
868 apply(case_tac b, auto simp: fetch.simps nth_of.simps change_termi_state.simps nth_map |
|
869 split: if_splits block.splits) |
|
870 done |
|
871 |
|
872 lemma turing_change_termi_state: |
|
873 "\<lbrakk>steps (Suc 0, l, r) ap stp = (0, l', r'); t_correct ap\<rbrakk> |
|
874 \<Longrightarrow> \<exists> stp. steps (Suc 0, l, r) (change_termi_state ap) stp = |
|
875 (Suc (length ap div 2), l', r')" |
|
876 apply(drule first_halt_point) |
|
877 apply(erule_tac exE) |
|
878 apply(rule_tac x = "Suc stp" in exI, simp add: tstep_red) |
|
879 apply(case_tac "steps (Suc 0, l, r) ap stp") |
|
880 apply(simp add: isS0_def change_termi_state_exec_in_range) |
|
881 apply(subgoal_tac "steps (Suc 0, l, r) (change_termi_state ap) stp = (a, b, c)", simp) |
|
882 apply(simp add: tstep.simps) |
|
883 apply(case_tac "fetch ap a (case c of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)", simp) |
|
884 apply(subgoal_tac "fetch (change_termi_state ap) a |
|
885 (case c of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x) = (aa, Suc (length ap div 2))", simp) |
|
886 apply(rule_tac ap = ap in change_termi_state_fetch0, simp_all) |
|
887 apply(rule_tac tp = "(l, r)" and l = b and r = c and stp = stp and A = ap in s_keep, simp_all) |
|
888 apply(simp add: change_termi_state_exec_in_range) |
|
889 done |
|
890 |
|
891 lemma t_twice_change_term_state: |
|
892 "\<exists> stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_twice stp |
|
893 = (Suc t_twice_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
894 using t_twice_correct[of ires rs n] |
|
895 apply(erule_tac exE) |
|
896 apply(erule_tac exE) |
|
897 apply(erule_tac exE) |
|
898 proof(drule_tac turing_change_termi_state) |
|
899 fix stp ln rn |
|
900 show "t_correct (tm_of abc_twice @ tMp (Suc 0) (start_of twice_ly (length abc_twice) - Suc 0))" |
|
901 apply(rule_tac t_compiled_correct, simp_all) |
|
902 apply(simp add: twice_ly_def) |
|
903 done |
|
904 next |
|
905 fix stp ln rn |
|
906 show "\<exists>stp. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
907 (change_termi_state (tm_of abc_twice @ tMp (Suc 0) |
|
908 (start_of twice_ly (length abc_twice) - Suc 0))) stp = |
|
909 (Suc (length (tm_of abc_twice @ tMp (Suc 0) (start_of twice_ly (length abc_twice) - Suc 0)) div 2), |
|
910 Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>) \<Longrightarrow> |
|
911 \<exists>stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_twice stp = |
|
912 (Suc t_twice_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
913 apply(erule_tac exE) |
|
914 apply(simp add: t_twice_len_def t_twice_def) |
|
915 apply(rule_tac x = stp in exI, rule_tac x = ln in exI, rule_tac x = rn in exI, simp) |
|
916 done |
|
917 qed |
|
918 |
|
919 lemma t_twice_append_pre: |
|
920 "steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_twice stp |
|
921 = (Suc t_twice_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>) |
|
922 \<Longrightarrow> \<exists> stp>0. steps (Suc 0 + length t_wcode_main_first_part div 2, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
923 (t_wcode_main_first_part @ tshift t_twice (length t_wcode_main_first_part div 2) @ |
|
924 ([(L, 1), (L, 1)] @ tshift t_fourtimes (t_twice_len + 13) @ [(L, 1), (L, 1)])) stp |
|
925 = (Suc (t_twice_len) + length t_wcode_main_first_part div 2, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
926 proof(rule_tac t_tshift_lemma, simp_all add: t_twice_len_ge) |
|
927 assume "steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_twice stp = |
|
928 (Suc t_twice_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
929 thus "0 < stp" |
|
930 apply(case_tac stp, simp add: steps.simps t_twice_len_ge t_twice_len_def) |
|
931 using t_twice_len_ge |
|
932 apply(simp, simp) |
|
933 done |
|
934 next |
|
935 show "t_ncorrect t_wcode_main_first_part" |
|
936 apply(simp add: t_ncorrect.simps t_wcode_main_first_part_def) |
|
937 done |
|
938 next |
|
939 show "t_ncorrect t_twice" |
|
940 using length_tm_even[of abc_twice] |
|
941 apply(auto simp: t_ncorrect.simps t_twice_def) |
|
942 apply(arith) |
|
943 done |
|
944 next |
|
945 show "t_ncorrect ((L, Suc 0) # (L, Suc 0) # |
|
946 abacus.tshift t_fourtimes (t_twice_len + 13) @ [(L, Suc 0), (L, Suc 0)])" |
|
947 using length_tm_even[of abc_fourtimes] |
|
948 apply(simp add: t_ncorrect.simps shift_length t_fourtimes_def) |
|
949 apply arith |
|
950 done |
|
951 qed |
|
952 |
|
953 lemma t_twice_append: |
|
954 "\<exists> stp ln rn. steps (Suc 0 + length t_wcode_main_first_part div 2, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
955 (t_wcode_main_first_part @ tshift t_twice (length t_wcode_main_first_part div 2) @ |
|
956 ([(L, 1), (L, 1)] @ tshift t_fourtimes (t_twice_len + 13) @ [(L, 1), (L, 1)])) stp |
|
957 = (Suc (t_twice_len) + length t_wcode_main_first_part div 2, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
958 using t_twice_change_term_state[of ires rs n] |
|
959 apply(erule_tac exE) |
|
960 apply(erule_tac exE) |
|
961 apply(erule_tac exE) |
|
962 apply(drule_tac t_twice_append_pre) |
|
963 apply(erule_tac exE) |
|
964 apply(rule_tac x = stpa in exI, rule_tac x = ln in exI, rule_tac x = rn in exI) |
|
965 apply(simp) |
|
966 done |
|
967 |
|
968 lemma [simp]: "fetch t_wcode_main (Suc (t_twice_len + length t_wcode_main_first_part div 2)) Oc |
|
969 = (L, Suc 0)" |
|
970 apply(subgoal_tac "length (t_twice) mod 2 = 0") |
|
971 apply(simp add: t_wcode_main_def nth_append fetch.simps t_wcode_main_first_part_def |
|
972 nth_of.simps shift_length t_twice_len_def, auto) |
|
973 apply(simp add: t_twice_def) |
|
974 apply(subgoal_tac "length (tm_of abc_twice) mod 2 = 0") |
|
975 apply arith |
|
976 apply(rule_tac tm_even) |
|
977 done |
|
978 |
|
979 lemma wcode_jump1: |
|
980 "\<exists> stp ln rn. steps (Suc (t_twice_len) + length t_wcode_main_first_part div 2, |
|
981 Bk\<^bsup>m\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
982 t_wcode_main stp |
|
983 = (Suc 0, Bk\<^bsup>ln\<^esup> @ Bk # ires, Bk # Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
984 apply(rule_tac x = "Suc 0" in exI, rule_tac x = "m" in exI, rule_tac x = n in exI) |
|
985 apply(simp add: steps.simps tstep.simps exp_ind_def new_tape.simps) |
|
986 apply(case_tac m, simp, simp add: exp_ind_def) |
|
987 apply(simp add: exp_ind_def[THEN sym] exp_ind[THEN sym]) |
|
988 done |
|
989 |
|
990 lemma wcode_main_first_part_len: |
|
991 "length t_wcode_main_first_part = 24" |
|
992 apply(simp add: t_wcode_main_first_part_def) |
|
993 done |
|
994 |
|
995 lemma wcode_double_case: |
|
996 shows "\<exists>stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
997 (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (2 * rs + 2)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
998 proof - |
|
999 have "\<exists>stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
1000 (13, Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1001 using wcode_double_case_first_correctness[of ires rs m n] |
|
1002 apply(simp) |
|
1003 apply(erule_tac exE) |
|
1004 apply(case_tac "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, |
|
1005 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main na", |
|
1006 auto simp: wcode_double_case_inv.simps |
|
1007 wcode_before_double.simps) |
|
1008 apply(rule_tac x = na in exI, rule_tac x = ln in exI, rule_tac x = rn in exI) |
|
1009 apply(simp) |
|
1010 done |
|
1011 from this obtain stpa lna rna where stp1: |
|
1012 "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stpa = |
|
1013 (13, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rna\<^esup>)" by blast |
|
1014 have "\<exists> stp ln rn. steps (13, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stp = |
|
1015 (13 + t_twice_len, Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1016 using t_twice_append[of "Bk\<^bsup>lna\<^esup> @ Oc # ires" "Suc rs" rna] |
|
1017 apply(erule_tac exE) |
|
1018 apply(erule_tac exE) |
|
1019 apply(erule_tac exE) |
|
1020 apply(simp add: wcode_main_first_part_len) |
|
1021 apply(rule_tac x = stp in exI, rule_tac x = "ln + lna" in exI, |
|
1022 rule_tac x = rn in exI) |
|
1023 apply(simp add: t_wcode_main_def) |
|
1024 apply(simp add: exp_ind_def[THEN sym] exp_add[THEN sym]) |
|
1025 done |
|
1026 from this obtain stpb lnb rnb where stp2: |
|
1027 "steps (13, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stpb = |
|
1028 (13 + t_twice_len, Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rnb\<^esup>)" by blast |
|
1029 have "\<exists>stp ln rn. steps (13 + t_twice_len, Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, |
|
1030 Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rnb\<^esup>) t_wcode_main stp = |
|
1031 (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1032 using wcode_jump1[of lnb "Oc # ires" "Suc rs" rnb] |
|
1033 apply(erule_tac exE) |
|
1034 apply(erule_tac exE) |
|
1035 apply(erule_tac exE) |
|
1036 apply(rule_tac x = stp in exI, |
|
1037 rule_tac x = ln in exI, |
|
1038 rule_tac x = rn in exI, simp add:wcode_main_first_part_len t_wcode_main_def) |
|
1039 apply(subgoal_tac "Bk\<^bsup>lnb\<^esup> @ Bk # Bk # Oc # ires = Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires", simp) |
|
1040 apply(simp add: exp_ind_def[THEN sym] exp_ind[THEN sym]) |
|
1041 apply(simp) |
|
1042 apply(case_tac lnb, simp, simp add: exp_ind_def[THEN sym] exp_ind) |
|
1043 done |
|
1044 from this obtain stpc lnc rnc where stp3: |
|
1045 "steps (13 + t_twice_len, Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, |
|
1046 Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rnb\<^esup>) t_wcode_main stpc = |
|
1047 (Suc 0, Bk # Bk\<^bsup>lnc\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rnc\<^esup>)" |
|
1048 by blast |
|
1049 from stp1 stp2 stp3 show "?thesis" |
|
1050 apply(rule_tac x = "stpa + stpb + stpc" in exI, rule_tac x = lnc in exI, |
|
1051 rule_tac x = rnc in exI) |
|
1052 apply(simp add: steps_add) |
|
1053 done |
|
1054 qed |
|
1055 |
|
1056 |
|
1057 (* Begin: fourtime_case*) |
|
1058 fun wcode_on_left_moving_2_B :: "bin_inv_t" |
|
1059 where |
|
1060 "wcode_on_left_moving_2_B ires rs (l, r) = |
|
1061 (\<exists> ml mr rn. l = Bk\<^bsup>ml\<^esup> @ Oc # Bk # Oc # ires \<and> |
|
1062 r = Bk\<^bsup>mr\<^esup> @ Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
1063 ml + mr > Suc 0 \<and> mr > 0)" |
|
1064 |
|
1065 fun wcode_on_left_moving_2_O :: "bin_inv_t" |
|
1066 where |
|
1067 "wcode_on_left_moving_2_O ires rs (l, r) = |
|
1068 (\<exists> ln rn. l = Bk # Oc # ires \<and> |
|
1069 r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1070 |
|
1071 fun wcode_on_left_moving_2 :: "bin_inv_t" |
|
1072 where |
|
1073 "wcode_on_left_moving_2 ires rs (l, r) = |
|
1074 (wcode_on_left_moving_2_B ires rs (l, r) \<or> |
|
1075 wcode_on_left_moving_2_O ires rs (l, r))" |
|
1076 |
|
1077 fun wcode_on_checking_2 :: "bin_inv_t" |
|
1078 where |
|
1079 "wcode_on_checking_2 ires rs (l, r) = |
|
1080 (\<exists> ln rn. l = Oc#ires \<and> |
|
1081 r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1082 |
|
1083 fun wcode_goon_checking :: "bin_inv_t" |
|
1084 where |
|
1085 "wcode_goon_checking ires rs (l, r) = |
|
1086 (\<exists> ln rn. l = ires \<and> |
|
1087 r = Oc # Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1088 |
|
1089 fun wcode_right_move :: "bin_inv_t" |
|
1090 where |
|
1091 "wcode_right_move ires rs (l, r) = |
|
1092 (\<exists> ln rn. l = Oc # ires \<and> |
|
1093 r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1094 |
|
1095 fun wcode_erase2 :: "bin_inv_t" |
|
1096 where |
|
1097 "wcode_erase2 ires rs (l, r) = |
|
1098 (\<exists> ln rn. l = Bk # Oc # ires \<and> |
|
1099 tl r = Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1100 |
|
1101 fun wcode_on_right_moving_2 :: "bin_inv_t" |
|
1102 where |
|
1103 "wcode_on_right_moving_2 ires rs (l, r) = |
|
1104 (\<exists> ml mr rn. l = Bk\<^bsup>ml\<^esup> @ Oc # ires \<and> |
|
1105 r = Bk\<^bsup>mr\<^esup> @ Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> ml + mr > Suc 0)" |
|
1106 |
|
1107 fun wcode_goon_right_moving_2 :: "bin_inv_t" |
|
1108 where |
|
1109 "wcode_goon_right_moving_2 ires rs (l, r) = |
|
1110 (\<exists> ml mr ln rn. l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
1111 r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> ml + mr = Suc rs)" |
|
1112 |
|
1113 fun wcode_backto_standard_pos_2_B :: "bin_inv_t" |
|
1114 where |
|
1115 "wcode_backto_standard_pos_2_B ires rs (l, r) = |
|
1116 (\<exists> ln rn. l = Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
1117 r = Bk # Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1118 |
|
1119 fun wcode_backto_standard_pos_2_O :: "bin_inv_t" |
|
1120 where |
|
1121 "wcode_backto_standard_pos_2_O ires rs (l, r) = |
|
1122 (\<exists> ml mr ln rn. l = Oc\<^bsup>ml \<^esup>@ Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
1123 r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
1124 ml + mr = (Suc (Suc rs)) \<and> mr > 0)" |
|
1125 |
|
1126 fun wcode_backto_standard_pos_2 :: "bin_inv_t" |
|
1127 where |
|
1128 "wcode_backto_standard_pos_2 ires rs (l, r) = |
|
1129 (wcode_backto_standard_pos_2_O ires rs (l, r) \<or> |
|
1130 wcode_backto_standard_pos_2_B ires rs (l, r))" |
|
1131 |
|
1132 fun wcode_before_fourtimes :: "bin_inv_t" |
|
1133 where |
|
1134 "wcode_before_fourtimes ires rs (l, r) = |
|
1135 (\<exists> ln rn. l = Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
1136 r = Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1137 |
|
1138 declare wcode_on_left_moving_2_B.simps[simp del] wcode_on_left_moving_2.simps[simp del] |
|
1139 wcode_on_left_moving_2_O.simps[simp del] wcode_on_checking_2.simps[simp del] |
|
1140 wcode_goon_checking.simps[simp del] wcode_right_move.simps[simp del] |
|
1141 wcode_erase2.simps[simp del] |
|
1142 wcode_on_right_moving_2.simps[simp del] wcode_goon_right_moving_2.simps[simp del] |
|
1143 wcode_backto_standard_pos_2_B.simps[simp del] wcode_backto_standard_pos_2_O.simps[simp del] |
|
1144 wcode_backto_standard_pos_2.simps[simp del] |
|
1145 |
|
1146 lemmas wcode_fourtimes_invs = |
|
1147 wcode_on_left_moving_2_B.simps wcode_on_left_moving_2.simps |
|
1148 wcode_on_left_moving_2_O.simps wcode_on_checking_2.simps |
|
1149 wcode_goon_checking.simps wcode_right_move.simps |
|
1150 wcode_erase2.simps |
|
1151 wcode_on_right_moving_2.simps wcode_goon_right_moving_2.simps |
|
1152 wcode_backto_standard_pos_2_B.simps wcode_backto_standard_pos_2_O.simps |
|
1153 wcode_backto_standard_pos_2.simps |
|
1154 |
|
1155 fun wcode_fourtimes_case_inv :: "nat \<Rightarrow> bin_inv_t" |
|
1156 where |
|
1157 "wcode_fourtimes_case_inv st ires rs (l, r) = |
|
1158 (if st = Suc 0 then wcode_on_left_moving_2 ires rs (l, r) |
|
1159 else if st = Suc (Suc 0) then wcode_on_checking_2 ires rs (l, r) |
|
1160 else if st = 7 then wcode_goon_checking ires rs (l, r) |
|
1161 else if st = 8 then wcode_right_move ires rs (l, r) |
|
1162 else if st = 9 then wcode_erase2 ires rs (l, r) |
|
1163 else if st = 10 then wcode_on_right_moving_2 ires rs (l, r) |
|
1164 else if st = 11 then wcode_goon_right_moving_2 ires rs (l, r) |
|
1165 else if st = 12 then wcode_backto_standard_pos_2 ires rs (l, r) |
|
1166 else if st = t_twice_len + 14 then wcode_before_fourtimes ires rs (l, r) |
|
1167 else False)" |
|
1168 |
|
1169 declare wcode_fourtimes_case_inv.simps[simp del] |
|
1170 |
|
1171 fun wcode_fourtimes_case_state :: "t_conf \<Rightarrow> nat" |
|
1172 where |
|
1173 "wcode_fourtimes_case_state (st, l, r) = 13 - st" |
|
1174 |
|
1175 fun wcode_fourtimes_case_step :: "t_conf \<Rightarrow> nat" |
|
1176 where |
|
1177 "wcode_fourtimes_case_step (st, l, r) = |
|
1178 (if st = Suc 0 then length l |
|
1179 else if st = 9 then |
|
1180 (if hd r = Oc then 1 |
|
1181 else 0) |
|
1182 else if st = 10 then length r |
|
1183 else if st = 11 then length r |
|
1184 else if st = 12 then length l |
|
1185 else 0)" |
|
1186 |
|
1187 fun wcode_fourtimes_case_measure :: "t_conf \<Rightarrow> nat \<times> nat" |
|
1188 where |
|
1189 "wcode_fourtimes_case_measure (st, l, r) = |
|
1190 (wcode_fourtimes_case_state (st, l, r), |
|
1191 wcode_fourtimes_case_step (st, l, r))" |
|
1192 |
|
1193 definition wcode_fourtimes_case_le :: "(t_conf \<times> t_conf) set" |
|
1194 where "wcode_fourtimes_case_le \<equiv> (inv_image lex_pair wcode_fourtimes_case_measure)" |
|
1195 |
|
1196 lemma wf_wcode_fourtimes_case_le[intro]: "wf wcode_fourtimes_case_le" |
|
1197 by(auto intro:wf_inv_image simp: wcode_fourtimes_case_le_def) |
|
1198 |
|
1199 lemma [simp]: "fetch t_wcode_main (Suc (Suc 0)) Bk = (L, 7)" |
|
1200 apply(simp add: t_wcode_main_def fetch.simps |
|
1201 t_wcode_main_first_part_def nth_of.simps) |
|
1202 done |
|
1203 |
|
1204 lemma [simp]: "fetch t_wcode_main 7 Oc = (R, 8)" |
|
1205 apply(simp add: t_wcode_main_def fetch.simps |
|
1206 t_wcode_main_first_part_def nth_of.simps) |
|
1207 done |
|
1208 |
|
1209 lemma [simp]: "fetch t_wcode_main 8 Bk = (R, 9)" |
|
1210 apply(simp add: t_wcode_main_def fetch.simps |
|
1211 t_wcode_main_first_part_def nth_of.simps) |
|
1212 done |
|
1213 |
|
1214 lemma [simp]: "fetch t_wcode_main 9 Bk = (R, 10)" |
|
1215 apply(simp add: t_wcode_main_def fetch.simps |
|
1216 t_wcode_main_first_part_def nth_of.simps) |
|
1217 done |
|
1218 |
|
1219 lemma [simp]: "fetch t_wcode_main 9 Oc = (W0, 9)" |
|
1220 apply(simp add: t_wcode_main_def fetch.simps |
|
1221 t_wcode_main_first_part_def nth_of.simps) |
|
1222 done |
|
1223 |
|
1224 lemma [simp]: "fetch t_wcode_main 10 Bk = (R, 10)" |
|
1225 apply(simp add: t_wcode_main_def fetch.simps |
|
1226 t_wcode_main_first_part_def nth_of.simps) |
|
1227 done |
|
1228 |
|
1229 lemma [simp]: "fetch t_wcode_main 10 Oc = (R, 11)" |
|
1230 apply(simp add: t_wcode_main_def fetch.simps |
|
1231 t_wcode_main_first_part_def nth_of.simps) |
|
1232 done |
|
1233 |
|
1234 lemma [simp]: "fetch t_wcode_main 11 Bk = (W1, 12)" |
|
1235 apply(simp add: t_wcode_main_def fetch.simps |
|
1236 t_wcode_main_first_part_def nth_of.simps) |
|
1237 done |
|
1238 |
|
1239 lemma [simp]: "fetch t_wcode_main 11 Oc = (R, 11)" |
|
1240 apply(simp add: t_wcode_main_def fetch.simps |
|
1241 t_wcode_main_first_part_def nth_of.simps) |
|
1242 done |
|
1243 |
|
1244 lemma [simp]: "fetch t_wcode_main 12 Oc = (L, 12)" |
|
1245 apply(simp add: t_wcode_main_def fetch.simps |
|
1246 t_wcode_main_first_part_def nth_of.simps) |
|
1247 done |
|
1248 |
|
1249 lemma [simp]: "fetch t_wcode_main 12 Bk = (R, t_twice_len + 14)" |
|
1250 apply(simp add: t_wcode_main_def fetch.simps |
|
1251 t_wcode_main_first_part_def nth_of.simps) |
|
1252 done |
|
1253 |
|
1254 |
|
1255 lemma [simp]: "wcode_on_left_moving_2 ires rs (b, []) = False" |
|
1256 apply(auto simp: wcode_fourtimes_invs) |
|
1257 done |
|
1258 |
|
1259 lemma [simp]: "wcode_on_checking_2 ires rs (b, []) = False" |
|
1260 apply(auto simp: wcode_fourtimes_invs) |
|
1261 done |
|
1262 |
|
1263 lemma [simp]: "wcode_goon_checking ires rs (b, []) = False" |
|
1264 apply(auto simp: wcode_fourtimes_invs) |
|
1265 done |
|
1266 |
|
1267 lemma [simp]: "wcode_right_move ires rs (b, []) = False" |
|
1268 apply(auto simp: wcode_fourtimes_invs) |
|
1269 done |
|
1270 |
|
1271 lemma [simp]: "wcode_erase2 ires rs (b, []) = False" |
|
1272 apply(auto simp: wcode_fourtimes_invs) |
|
1273 done |
|
1274 |
|
1275 lemma [simp]: "wcode_on_right_moving_2 ires rs (b, []) = False" |
|
1276 apply(auto simp: wcode_fourtimes_invs exponent_def) |
|
1277 done |
|
1278 |
|
1279 lemma [simp]: "wcode_backto_standard_pos_2 ires rs (b, []) = False" |
|
1280 apply(auto simp: wcode_fourtimes_invs exponent_def) |
|
1281 done |
|
1282 |
|
1283 lemma [simp]: "wcode_on_left_moving_2 ires rs (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
1284 apply(simp add: wcode_fourtimes_invs, auto) |
|
1285 done |
|
1286 |
|
1287 lemma [simp]: "wcode_on_left_moving_2 ires rs (b, Bk # list) \<Longrightarrow> wcode_on_left_moving_2 ires rs (tl b, hd b # Bk # list)" |
|
1288 apply(simp only: wcode_fourtimes_invs) |
|
1289 apply(erule_tac disjE) |
|
1290 apply(erule_tac exE)+ |
|
1291 apply(case_tac ml, simp) |
|
1292 apply(rule_tac x = "mr - (Suc (Suc 0))" in exI, rule_tac x = rn in exI, simp) |
|
1293 apply(case_tac mr, simp, case_tac nat, simp, simp add: exp_ind) |
|
1294 apply(rule_tac disjI1) |
|
1295 apply(rule_tac x = nat in exI, rule_tac x = "Suc mr" in exI, rule_tac x = rn in exI, |
|
1296 simp add: exp_ind_def) |
|
1297 apply(simp) |
|
1298 done |
|
1299 |
|
1300 lemma [simp]: "wcode_on_checking_2 ires rs (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
1301 apply(auto simp: wcode_fourtimes_invs) |
|
1302 done |
|
1303 |
|
1304 lemma [simp]: "wcode_on_checking_2 ires rs (b, Bk # list) |
|
1305 \<Longrightarrow> wcode_goon_checking ires rs (tl b, hd b # Bk # list)" |
|
1306 apply(simp only: wcode_fourtimes_invs) |
|
1307 apply(auto) |
|
1308 done |
|
1309 |
|
1310 lemma [simp]: "wcode_goon_checking ires rs (b, Bk # list) = False" |
|
1311 apply(simp add: wcode_fourtimes_invs) |
|
1312 done |
|
1313 |
|
1314 lemma [simp]: " wcode_right_move ires rs (b, Bk # list) \<Longrightarrow> b\<noteq> []" |
|
1315 apply(simp add: wcode_fourtimes_invs) |
|
1316 done |
|
1317 |
|
1318 lemma [simp]: "wcode_right_move ires rs (b, Bk # list) \<Longrightarrow> wcode_erase2 ires rs (Bk # b, list)" |
|
1319 apply(auto simp:wcode_fourtimes_invs ) |
|
1320 apply(rule_tac x = ln in exI, rule_tac x = rn in exI, simp) |
|
1321 done |
|
1322 |
|
1323 lemma [simp]: "wcode_erase2 ires rs (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
1324 apply(auto simp: wcode_fourtimes_invs) |
|
1325 done |
|
1326 |
|
1327 lemma [simp]: "wcode_erase2 ires rs (b, Bk # list) \<Longrightarrow> wcode_on_right_moving_2 ires rs (Bk # b, list)" |
|
1328 apply(auto simp:wcode_fourtimes_invs ) |
|
1329 apply(rule_tac x = "Suc (Suc 0)" in exI, simp add: exp_ind) |
|
1330 apply(rule_tac x = "Suc (Suc ln)" in exI, simp add: exp_ind, auto) |
|
1331 done |
|
1332 |
|
1333 lemma [simp]: "wcode_on_right_moving_2 ires rs (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
1334 apply(auto simp:wcode_fourtimes_invs ) |
|
1335 done |
|
1336 |
|
1337 lemma [simp]: "wcode_on_right_moving_2 ires rs (b, Bk # list) |
|
1338 \<Longrightarrow> wcode_on_right_moving_2 ires rs (Bk # b, list)" |
|
1339 apply(auto simp: wcode_fourtimes_invs) |
|
1340 apply(rule_tac x = "Suc ml" in exI, simp add: exp_ind_def) |
|
1341 apply(rule_tac x = "mr - 1" in exI, case_tac mr, auto simp: exp_ind_def) |
|
1342 done |
|
1343 |
|
1344 lemma [simp]: "wcode_goon_right_moving_2 ires rs (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
1345 apply(auto simp: wcode_fourtimes_invs) |
|
1346 done |
|
1347 |
|
1348 lemma [simp]: "wcode_goon_right_moving_2 ires rs (b, Bk # list) \<Longrightarrow> |
|
1349 wcode_backto_standard_pos_2 ires rs (b, Oc # list)" |
|
1350 apply(simp add: wcode_fourtimes_invs, auto) |
|
1351 apply(rule_tac x = ml in exI, auto) |
|
1352 apply(rule_tac x = "Suc 0" in exI, simp) |
|
1353 apply(case_tac mr, simp_all add: exp_ind_def) |
|
1354 apply(rule_tac x = "rn - 1" in exI, simp) |
|
1355 apply(case_tac rn, simp, simp add: exp_ind_def) |
|
1356 done |
|
1357 |
|
1358 lemma [simp]: "wcode_backto_standard_pos_2 ires rs (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
1359 apply(simp add: wcode_fourtimes_invs, auto) |
|
1360 done |
|
1361 |
|
1362 lemma [simp]: "wcode_on_left_moving_2 ires rs (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
1363 apply(simp add: wcode_fourtimes_invs, auto) |
|
1364 done |
|
1365 |
|
1366 lemma [simp]: "wcode_on_left_moving_2 ires rs (b, Oc # list) \<Longrightarrow> |
|
1367 wcode_on_checking_2 ires rs (tl b, hd b # Oc # list)" |
|
1368 apply(auto simp: wcode_fourtimes_invs) |
|
1369 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
1370 done |
|
1371 |
|
1372 lemma [simp]: "wcode_goon_right_moving_2 ires rs (b, []) \<Longrightarrow> b \<noteq> []" |
|
1373 apply(auto simp: wcode_fourtimes_invs) |
|
1374 done |
|
1375 |
|
1376 lemma [simp]: "wcode_goon_right_moving_2 ires rs (b, []) \<Longrightarrow> |
|
1377 wcode_backto_standard_pos_2 ires rs (b, [Oc])" |
|
1378 apply(simp only: wcode_fourtimes_invs) |
|
1379 apply(erule_tac exE)+ |
|
1380 apply(rule_tac disjI1) |
|
1381 apply(rule_tac x = ml in exI, rule_tac x = "Suc 0" in exI, |
|
1382 rule_tac x = ln in exI, rule_tac x = rn in exI, simp) |
|
1383 apply(case_tac mr, simp, simp add: exp_ind_def) |
|
1384 done |
|
1385 |
|
1386 lemma "wcode_backto_standard_pos_2 ires rs (b, Bk # list) |
|
1387 \<Longrightarrow> (\<exists>ln. b = Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires) \<and> (\<exists>rn. list = Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1388 apply(auto simp: wcode_fourtimes_invs) |
|
1389 apply(case_tac [!] mr, auto simp: exp_ind_def) |
|
1390 done |
|
1391 |
|
1392 |
|
1393 lemma [simp]: "wcode_on_checking_2 ires rs (b, Oc # list) \<Longrightarrow> False" |
|
1394 apply(simp add: wcode_fourtimes_invs) |
|
1395 done |
|
1396 |
|
1397 lemma [simp]: "wcode_goon_checking ires rs (b, Oc # list) \<Longrightarrow> |
|
1398 (b = [] \<longrightarrow> wcode_right_move ires rs ([Oc], list)) \<and> |
|
1399 (b \<noteq> [] \<longrightarrow> wcode_right_move ires rs (Oc # b, list))" |
|
1400 apply(simp only: wcode_fourtimes_invs) |
|
1401 apply(erule_tac exE)+ |
|
1402 apply(auto) |
|
1403 done |
|
1404 |
|
1405 lemma [simp]: "wcode_right_move ires rs (b, Oc # list) = False" |
|
1406 apply(auto simp: wcode_fourtimes_invs) |
|
1407 done |
|
1408 |
|
1409 lemma [simp]: " wcode_erase2 ires rs (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
1410 apply(simp add: wcode_fourtimes_invs) |
|
1411 done |
|
1412 |
|
1413 lemma [simp]: "wcode_erase2 ires rs (b, Oc # list) |
|
1414 \<Longrightarrow> wcode_erase2 ires rs (b, Bk # list)" |
|
1415 apply(auto simp: wcode_fourtimes_invs) |
|
1416 done |
|
1417 |
|
1418 lemma [simp]: "wcode_on_right_moving_2 ires rs (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
1419 apply(simp only: wcode_fourtimes_invs) |
|
1420 apply(auto) |
|
1421 done |
|
1422 |
|
1423 lemma [simp]: "wcode_on_right_moving_2 ires rs (b, Oc # list) |
|
1424 \<Longrightarrow> wcode_goon_right_moving_2 ires rs (Oc # b, list)" |
|
1425 apply(auto simp: wcode_fourtimes_invs) |
|
1426 apply(case_tac mr, simp_all add: exp_ind_def) |
|
1427 apply(rule_tac x = "Suc 0" in exI, auto) |
|
1428 apply(rule_tac x = "ml - 2" in exI) |
|
1429 apply(case_tac ml, simp, case_tac nat, simp_all add: exp_ind_def) |
|
1430 done |
|
1431 |
|
1432 lemma [simp]: "wcode_goon_right_moving_2 ires rs (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
1433 apply(simp only:wcode_fourtimes_invs, auto) |
|
1434 done |
|
1435 |
|
1436 lemma [simp]: "wcode_backto_standard_pos_2 ires rs (b, Bk # list) |
|
1437 \<Longrightarrow> (\<exists>ln. b = Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires) \<and> (\<exists>rn. list = Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1438 apply(simp add: wcode_fourtimes_invs, auto) |
|
1439 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
1440 done |
|
1441 |
|
1442 lemma [simp]: "wcode_on_checking_2 ires rs (b, Oc # list) = False" |
|
1443 apply(simp add: wcode_fourtimes_invs) |
|
1444 done |
|
1445 |
|
1446 lemma [simp]: "wcode_goon_right_moving_2 ires rs (b, Oc # list) \<Longrightarrow> |
|
1447 wcode_goon_right_moving_2 ires rs (Oc # b, list)" |
|
1448 apply(simp only:wcode_fourtimes_invs, auto) |
|
1449 apply(rule_tac x = "Suc ml" in exI, auto simp: exp_ind_def) |
|
1450 apply(rule_tac x = "mr - 1" in exI) |
|
1451 apply(case_tac mr, case_tac rn, auto simp: exp_ind_def) |
|
1452 done |
|
1453 |
|
1454 lemma [simp]: "wcode_backto_standard_pos_2 ires rs (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
1455 apply(simp only: wcode_fourtimes_invs, auto) |
|
1456 done |
|
1457 |
|
1458 lemma [simp]: "wcode_backto_standard_pos_2 ires rs (b, Oc # list) |
|
1459 \<Longrightarrow> wcode_backto_standard_pos_2 ires rs (tl b, hd b # Oc # list)" |
|
1460 apply(simp only: wcode_fourtimes_invs) |
|
1461 apply(erule_tac disjE) |
|
1462 apply(erule_tac exE)+ |
|
1463 apply(case_tac ml, simp) |
|
1464 apply(rule_tac disjI2) |
|
1465 apply(rule_tac conjI, rule_tac x = ln in exI, simp) |
|
1466 apply(rule_tac x = rn in exI, simp) |
|
1467 apply(rule_tac disjI1) |
|
1468 apply(rule_tac x = nat in exI, rule_tac x = "Suc mr" in exI, |
|
1469 rule_tac x = ln in exI, rule_tac x = rn in exI, simp add: exp_ind_def) |
|
1470 apply(simp) |
|
1471 done |
|
1472 |
|
1473 lemma wcode_fourtimes_case_first_correctness: |
|
1474 shows "let P = (\<lambda> (st, l, r). st = t_twice_len + 14) in |
|
1475 let Q = (\<lambda> (st, l, r). wcode_fourtimes_case_inv st ires rs (l, r)) in |
|
1476 let f = (\<lambda> stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp) in |
|
1477 \<exists> n .P (f n) \<and> Q (f (n::nat))" |
|
1478 proof - |
|
1479 let ?P = "(\<lambda> (st, l, r). st = t_twice_len + 14)" |
|
1480 let ?Q = "(\<lambda> (st, l, r). wcode_fourtimes_case_inv st ires rs (l, r))" |
|
1481 let ?f = "(\<lambda> stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp)" |
|
1482 have "\<exists> n . ?P (?f n) \<and> ?Q (?f (n::nat))" |
|
1483 proof(rule_tac halt_lemma2) |
|
1484 show "wf wcode_fourtimes_case_le" |
|
1485 by auto |
|
1486 next |
|
1487 show "\<forall> na. \<not> ?P (?f na) \<and> ?Q (?f na) \<longrightarrow> |
|
1488 ?Q (?f (Suc na)) \<and> (?f (Suc na), ?f na) \<in> wcode_fourtimes_case_le" |
|
1489 apply(rule_tac allI, |
|
1490 case_tac "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main na", simp, |
|
1491 rule_tac impI) |
|
1492 apply(simp add: tstep_red tstep.simps, case_tac c, simp, case_tac [2] aa, simp_all) |
|
1493 |
|
1494 apply(simp_all add: wcode_fourtimes_case_inv.simps new_tape.simps |
|
1495 wcode_fourtimes_case_le_def lex_pair_def split: if_splits) |
|
1496 done |
|
1497 next |
|
1498 show "?Q (?f 0)" |
|
1499 apply(simp add: steps.simps wcode_fourtimes_case_inv.simps) |
|
1500 apply(simp add: wcode_on_left_moving_2.simps wcode_on_left_moving_2_B.simps |
|
1501 wcode_on_left_moving_2_O.simps) |
|
1502 apply(rule_tac x = "Suc m" in exI, simp add: exp_ind_def) |
|
1503 apply(rule_tac x ="Suc 0" in exI, auto) |
|
1504 done |
|
1505 next |
|
1506 show "\<not> ?P (?f 0)" |
|
1507 apply(simp add: steps.simps) |
|
1508 done |
|
1509 qed |
|
1510 thus "?thesis" |
|
1511 apply(erule_tac exE, simp) |
|
1512 done |
|
1513 qed |
|
1514 |
|
1515 definition t_fourtimes_len :: "nat" |
|
1516 where |
|
1517 "t_fourtimes_len = (length t_fourtimes div 2)" |
|
1518 |
|
1519 lemma t_fourtimes_len_gr: "t_fourtimes_len > 0" |
|
1520 apply(simp add: t_fourtimes_len_def t_fourtimes_def) |
|
1521 done |
|
1522 |
|
1523 lemma t_fourtimes_correct: |
|
1524 "\<exists>stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
1525 (tm_of abc_fourtimes @ tMp (Suc 0) (start_of fourtimes_ly (length abc_fourtimes) - Suc 0)) stp = |
|
1526 (0, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1527 proof(case_tac "rec_ci rec_fourtimes") |
|
1528 fix a b c |
|
1529 assume h: "rec_ci rec_fourtimes = (a, b, c)" |
|
1530 have "\<exists>stp m l. steps (Suc 0, Bk # Bk # ires, <[rs]> @ Bk\<^bsup>n\<^esup>) (tm_of abc_fourtimes @ tMp (Suc 0) |
|
1531 (start_of fourtimes_ly (length abc_fourtimes) - 1)) stp = (0, Bk\<^bsup>m\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4*rs)\<^esup> @ Bk\<^bsup>l\<^esup>)" |
|
1532 proof(rule_tac t_compiled_by_rec) |
|
1533 show "rec_ci rec_fourtimes = (a, b, c)" by (simp add: h) |
|
1534 next |
|
1535 show "rec_calc_rel rec_fourtimes [rs] (4 * rs)" |
|
1536 using prime_rel_exec_eq [of rec_fourtimes "[rs]" "4 * rs"] |
|
1537 apply(subgoal_tac "primerec rec_fourtimes (length [rs])") |
|
1538 apply(simp_all add: rec_fourtimes_def rec_exec.simps) |
|
1539 apply(auto) |
|
1540 apply(simp only: Nat.One_nat_def[THEN sym], auto) |
|
1541 done |
|
1542 next |
|
1543 show "length [rs] = Suc 0" by simp |
|
1544 next |
|
1545 show "layout_of (a [+] dummy_abc (Suc 0)) = layout_of (a [+] dummy_abc (Suc 0))" |
|
1546 by simp |
|
1547 next |
|
1548 show "start_of fourtimes_ly (length abc_fourtimes) = |
|
1549 start_of (layout_of (a [+] dummy_abc (Suc 0))) (length (a [+] dummy_abc (Suc 0)))" |
|
1550 using h |
|
1551 apply(simp add: fourtimes_ly_def abc_fourtimes_def) |
|
1552 done |
|
1553 next |
|
1554 show "tm_of abc_fourtimes = tm_of (a [+] dummy_abc (Suc 0))" |
|
1555 using h |
|
1556 apply(simp add: abc_fourtimes_def) |
|
1557 done |
|
1558 qed |
|
1559 thus "\<exists>stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
1560 (tm_of abc_fourtimes @ tMp (Suc 0) (start_of fourtimes_ly (length abc_fourtimes) - Suc 0)) stp = |
|
1561 (0, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1562 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
1563 done |
|
1564 qed |
|
1565 |
|
1566 lemma t_fourtimes_change_term_state: |
|
1567 "\<exists> stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_fourtimes stp |
|
1568 = (Suc t_fourtimes_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1569 using t_fourtimes_correct[of ires rs n] |
|
1570 apply(erule_tac exE) |
|
1571 apply(erule_tac exE) |
|
1572 apply(erule_tac exE) |
|
1573 proof(drule_tac turing_change_termi_state) |
|
1574 fix stp ln rn |
|
1575 show "t_correct (tm_of abc_fourtimes @ tMp (Suc 0) |
|
1576 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0))" |
|
1577 apply(rule_tac t_compiled_correct, auto simp: fourtimes_ly_def) |
|
1578 done |
|
1579 next |
|
1580 fix stp ln rn |
|
1581 show "\<exists>stp. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
1582 (change_termi_state (tm_of abc_fourtimes @ tMp (Suc 0) |
|
1583 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0))) stp = |
|
1584 (Suc (length (tm_of abc_fourtimes @ tMp (Suc 0) (start_of fourtimes_ly |
|
1585 (length abc_fourtimes) - Suc 0)) div 2), Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>) \<Longrightarrow> |
|
1586 \<exists>stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_fourtimes stp = |
|
1587 (Suc t_fourtimes_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1588 apply(erule_tac exE) |
|
1589 apply(simp add: t_fourtimes_len_def t_fourtimes_def) |
|
1590 apply(rule_tac x = stp in exI, rule_tac x = ln in exI, rule_tac x = rn in exI, simp) |
|
1591 done |
|
1592 qed |
|
1593 |
|
1594 lemma t_fourtimes_append_pre: |
|
1595 "steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_fourtimes stp |
|
1596 = (Suc t_fourtimes_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>) |
|
1597 \<Longrightarrow> \<exists> stp>0. steps (Suc 0 + length (t_wcode_main_first_part @ |
|
1598 tshift t_twice (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2, |
|
1599 Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
1600 ((t_wcode_main_first_part @ |
|
1601 tshift t_twice (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) @ |
|
1602 tshift t_fourtimes (length (t_wcode_main_first_part @ |
|
1603 tshift t_twice (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2) @ ([(L, 1), (L, 1)])) stp |
|
1604 = (Suc t_fourtimes_len + length (t_wcode_main_first_part @ |
|
1605 tshift t_twice (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2, |
|
1606 Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1607 proof(rule_tac t_tshift_lemma, auto) |
|
1608 assume "steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_fourtimes stp = |
|
1609 (Suc t_fourtimes_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1610 thus "0 < stp" |
|
1611 using t_fourtimes_len_gr |
|
1612 apply(case_tac stp, simp_all add: steps.simps) |
|
1613 done |
|
1614 next |
|
1615 show "Suc 0 \<le> length t_fourtimes div 2" |
|
1616 apply(simp add: t_fourtimes_def shift_length tMp.simps) |
|
1617 done |
|
1618 next |
|
1619 show "t_ncorrect (t_wcode_main_first_part @ |
|
1620 abacus.tshift t_twice (length t_wcode_main_first_part div 2) @ |
|
1621 [(L, Suc 0), (L, Suc 0)])" |
|
1622 apply(simp add: t_ncorrect.simps t_wcode_main_first_part_def shift_length |
|
1623 t_twice_def) |
|
1624 using tm_even[of abc_twice] |
|
1625 by arith |
|
1626 next |
|
1627 show "t_ncorrect t_fourtimes" |
|
1628 apply(simp add: t_fourtimes_def steps.simps t_ncorrect.simps) |
|
1629 using tm_even[of abc_fourtimes] |
|
1630 by arith |
|
1631 next |
|
1632 show "t_ncorrect [(L, Suc 0), (L, Suc 0)]" |
|
1633 apply(simp add: t_ncorrect.simps) |
|
1634 done |
|
1635 qed |
|
1636 |
|
1637 lemma [simp]: "length t_wcode_main_first_part = 24" |
|
1638 apply(simp add: t_wcode_main_first_part_def) |
|
1639 done |
|
1640 |
|
1641 lemma [simp]: "(26 + length t_twice) div 2 = (length t_twice) div 2 + 13" |
|
1642 using tm_even[of abc_twice] |
|
1643 apply(simp add: t_twice_def) |
|
1644 done |
|
1645 |
|
1646 lemma [simp]: "((26 + length (abacus.tshift t_twice 12)) div 2) |
|
1647 = (length (abacus.tshift t_twice 12) div 2 + 13)" |
|
1648 using tm_even[of abc_twice] |
|
1649 apply(simp add: t_twice_def) |
|
1650 done |
|
1651 |
|
1652 lemma [simp]: "t_twice_len + 14 = 14 + length (abacus.tshift t_twice 12) div 2" |
|
1653 using tm_even[of abc_twice] |
|
1654 apply(simp add: t_twice_def t_twice_len_def shift_length) |
|
1655 done |
|
1656 |
|
1657 lemma t_fourtimes_append: |
|
1658 "\<exists> stp ln rn. |
|
1659 steps (Suc 0 + length (t_wcode_main_first_part @ tshift t_twice |
|
1660 (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2, |
|
1661 Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
1662 ((t_wcode_main_first_part @ tshift t_twice (length t_wcode_main_first_part div 2) @ |
|
1663 [(L, 1), (L, 1)]) @ tshift t_fourtimes (t_twice_len + 13) @ [(L, 1), (L, 1)]) stp |
|
1664 = (Suc t_fourtimes_len + length (t_wcode_main_first_part @ tshift t_twice |
|
1665 (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, |
|
1666 Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1667 using t_fourtimes_change_term_state[of ires rs n] |
|
1668 apply(erule_tac exE) |
|
1669 apply(erule_tac exE) |
|
1670 apply(erule_tac exE) |
|
1671 apply(drule_tac t_fourtimes_append_pre) |
|
1672 apply(erule_tac exE) |
|
1673 apply(rule_tac x = stpa in exI, rule_tac x = ln in exI, rule_tac x = rn in exI) |
|
1674 apply(simp add: t_twice_len_def shift_length) |
|
1675 done |
|
1676 |
|
1677 lemma t_wcode_main_len: "length t_wcode_main = length t_twice + length t_fourtimes + 28" |
|
1678 apply(simp add: t_wcode_main_def shift_length) |
|
1679 done |
|
1680 |
|
1681 lemma [simp]: "fetch t_wcode_main (14 + length t_twice div 2 + t_fourtimes_len) b |
|
1682 = (L, Suc 0)" |
|
1683 using tm_even[of "abc_twice"] tm_even[of "abc_fourtimes"] |
|
1684 apply(case_tac b) |
|
1685 apply(simp_all only: fetch.simps) |
|
1686 apply(auto simp: nth_of.simps t_wcode_main_len t_twice_len_def |
|
1687 t_fourtimes_def t_twice_def t_fourtimes_def t_fourtimes_len_def) |
|
1688 apply(auto simp: t_wcode_main_def t_wcode_main_first_part_def shift_length t_twice_def nth_append |
|
1689 t_fourtimes_def) |
|
1690 done |
|
1691 |
|
1692 lemma wcode_jump2: |
|
1693 "\<exists> stp ln rn. steps (t_twice_len + 14 + t_fourtimes_len |
|
1694 , Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, Oc\<^bsup>Suc (4 * rs + 4)\<^esup> @ Bk\<^bsup>rnb\<^esup>) t_wcode_main stp = |
|
1695 (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (4 * rs + 4)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1696 apply(rule_tac x = "Suc 0" in exI) |
|
1697 apply(simp add: steps.simps shift_length) |
|
1698 apply(rule_tac x = lnb in exI, rule_tac x = rnb in exI) |
|
1699 apply(simp add: tstep.simps new_tape.simps) |
|
1700 done |
|
1701 |
|
1702 lemma wcode_fourtimes_case: |
|
1703 shows "\<exists>stp ln rn. |
|
1704 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
1705 (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1706 proof - |
|
1707 have "\<exists>stp ln rn. |
|
1708 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
1709 (t_twice_len + 14, Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Oc\<^bsup>Suc (rs + 1)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1710 using wcode_fourtimes_case_first_correctness[of ires rs m n] |
|
1711 apply(simp add: wcode_fourtimes_case_inv.simps, auto) |
|
1712 apply(rule_tac x = na in exI, rule_tac x = ln in exI, |
|
1713 rule_tac x = rn in exI) |
|
1714 apply(simp) |
|
1715 done |
|
1716 from this obtain stpa lna rna where stp1: |
|
1717 "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stpa = |
|
1718 (t_twice_len + 14, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (rs + 1)\<^esup> @ Bk\<^bsup>rna\<^esup>)" by blast |
|
1719 have "\<exists>stp ln rn. steps (t_twice_len + 14, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (rs + 1)\<^esup> @ Bk\<^bsup>rna\<^esup>) |
|
1720 t_wcode_main stp = |
|
1721 (t_twice_len + 14 + t_fourtimes_len, Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1722 using t_fourtimes_append[of " Bk\<^bsup>lna\<^esup> @ Oc # ires" "rs + 1" rna] |
|
1723 apply(erule_tac exE) |
|
1724 apply(erule_tac exE) |
|
1725 apply(erule_tac exE) |
|
1726 apply(simp add: t_wcode_main_def) |
|
1727 apply(rule_tac x = stp in exI, |
|
1728 rule_tac x = "ln + lna" in exI, |
|
1729 rule_tac x = rn in exI, simp) |
|
1730 apply(simp add: exp_ind_def[THEN sym] exp_add[THEN sym]) |
|
1731 done |
|
1732 from this obtain stpb lnb rnb where stp2: |
|
1733 "steps (t_twice_len + 14, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (rs + 1)\<^esup> @ Bk\<^bsup>rna\<^esup>) |
|
1734 t_wcode_main stpb = |
|
1735 (t_twice_len + 14 + t_fourtimes_len, Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rnb\<^esup>)" |
|
1736 by blast |
|
1737 have "\<exists>stp ln rn. steps (t_twice_len + 14 + t_fourtimes_len, |
|
1738 Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rnb\<^esup>) |
|
1739 t_wcode_main stp = |
|
1740 (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1741 apply(rule wcode_jump2) |
|
1742 done |
|
1743 from this obtain stpc lnc rnc where stp3: |
|
1744 "steps (t_twice_len + 14 + t_fourtimes_len, |
|
1745 Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rnb\<^esup>) |
|
1746 t_wcode_main stpc = |
|
1747 (Suc 0, Bk # Bk\<^bsup>lnc\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rnc\<^esup>)" |
|
1748 by blast |
|
1749 from stp1 stp2 stp3 show "?thesis" |
|
1750 apply(rule_tac x = "stpa + stpb + stpc" in exI, |
|
1751 rule_tac x = lnc in exI, rule_tac x = rnc in exI) |
|
1752 apply(simp add: steps_add) |
|
1753 done |
|
1754 qed |
|
1755 |
|
1756 (**********************************************************) |
|
1757 |
|
1758 fun wcode_on_left_moving_3_B :: "bin_inv_t" |
|
1759 where |
|
1760 "wcode_on_left_moving_3_B ires rs (l, r) = |
|
1761 (\<exists> ml mr rn. l = Bk\<^bsup>ml\<^esup> @ Oc # Bk # Bk # ires \<and> |
|
1762 r = Bk\<^bsup>mr\<^esup> @ Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
1763 ml + mr > Suc 0 \<and> mr > 0 )" |
|
1764 |
|
1765 fun wcode_on_left_moving_3_O :: "bin_inv_t" |
|
1766 where |
|
1767 "wcode_on_left_moving_3_O ires rs (l, r) = |
|
1768 (\<exists> ln rn. l = Bk # Bk # ires \<and> |
|
1769 r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1770 |
|
1771 fun wcode_on_left_moving_3 :: "bin_inv_t" |
|
1772 where |
|
1773 "wcode_on_left_moving_3 ires rs (l, r) = |
|
1774 (wcode_on_left_moving_3_B ires rs (l, r) \<or> |
|
1775 wcode_on_left_moving_3_O ires rs (l, r))" |
|
1776 |
|
1777 fun wcode_on_checking_3 :: "bin_inv_t" |
|
1778 where |
|
1779 "wcode_on_checking_3 ires rs (l, r) = |
|
1780 (\<exists> ln rn. l = Bk # ires \<and> |
|
1781 r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1782 |
|
1783 fun wcode_goon_checking_3 :: "bin_inv_t" |
|
1784 where |
|
1785 "wcode_goon_checking_3 ires rs (l, r) = |
|
1786 (\<exists> ln rn. l = ires \<and> |
|
1787 r = Bk # Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1788 |
|
1789 fun wcode_stop :: "bin_inv_t" |
|
1790 where |
|
1791 "wcode_stop ires rs (l, r) = |
|
1792 (\<exists> ln rn. l = Bk # ires \<and> |
|
1793 r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1794 |
|
1795 fun wcode_halt_case_inv :: "nat \<Rightarrow> bin_inv_t" |
|
1796 where |
|
1797 "wcode_halt_case_inv st ires rs (l, r) = |
|
1798 (if st = 0 then wcode_stop ires rs (l, r) |
|
1799 else if st = Suc 0 then wcode_on_left_moving_3 ires rs (l, r) |
|
1800 else if st = Suc (Suc 0) then wcode_on_checking_3 ires rs (l, r) |
|
1801 else if st = 7 then wcode_goon_checking_3 ires rs (l, r) |
|
1802 else False)" |
|
1803 |
|
1804 fun wcode_halt_case_state :: "t_conf \<Rightarrow> nat" |
|
1805 where |
|
1806 "wcode_halt_case_state (st, l, r) = |
|
1807 (if st = 1 then 5 |
|
1808 else if st = Suc (Suc 0) then 4 |
|
1809 else if st = 7 then 3 |
|
1810 else 0)" |
|
1811 |
|
1812 fun wcode_halt_case_step :: "t_conf \<Rightarrow> nat" |
|
1813 where |
|
1814 "wcode_halt_case_step (st, l, r) = |
|
1815 (if st = 1 then length l |
|
1816 else 0)" |
|
1817 |
|
1818 fun wcode_halt_case_measure :: "t_conf \<Rightarrow> nat \<times> nat" |
|
1819 where |
|
1820 "wcode_halt_case_measure (st, l, r) = |
|
1821 (wcode_halt_case_state (st, l, r), |
|
1822 wcode_halt_case_step (st, l, r))" |
|
1823 |
|
1824 definition wcode_halt_case_le :: "(t_conf \<times> t_conf) set" |
|
1825 where "wcode_halt_case_le \<equiv> (inv_image lex_pair wcode_halt_case_measure)" |
|
1826 |
|
1827 lemma wf_wcode_halt_case_le[intro]: "wf wcode_halt_case_le" |
|
1828 by(auto intro:wf_inv_image simp: wcode_halt_case_le_def) |
|
1829 |
|
1830 declare wcode_on_left_moving_3_B.simps[simp del] wcode_on_left_moving_3_O.simps[simp del] |
|
1831 wcode_on_checking_3.simps[simp del] wcode_goon_checking_3.simps[simp del] |
|
1832 wcode_on_left_moving_3.simps[simp del] wcode_stop.simps[simp del] |
|
1833 |
|
1834 lemmas wcode_halt_invs = |
|
1835 wcode_on_left_moving_3_B.simps wcode_on_left_moving_3_O.simps |
|
1836 wcode_on_checking_3.simps wcode_goon_checking_3.simps |
|
1837 wcode_on_left_moving_3.simps wcode_stop.simps |
|
1838 |
|
1839 lemma [simp]: "fetch t_wcode_main 7 Bk = (R, 0)" |
|
1840 apply(simp add: fetch.simps t_wcode_main_def nth_append nth_of.simps |
|
1841 t_wcode_main_first_part_def) |
|
1842 done |
|
1843 |
|
1844 lemma [simp]: "wcode_on_left_moving_3 ires rs (b, []) = False" |
|
1845 apply(simp only: wcode_halt_invs) |
|
1846 apply(simp add: exp_ind_def) |
|
1847 done |
|
1848 |
|
1849 lemma [simp]: "wcode_on_checking_3 ires rs (b, []) = False" |
|
1850 apply(simp add: wcode_halt_invs) |
|
1851 done |
|
1852 |
|
1853 lemma [simp]: "wcode_goon_checking_3 ires rs (b, []) = False" |
|
1854 apply(simp add: wcode_halt_invs) |
|
1855 done |
|
1856 |
|
1857 lemma [simp]: "wcode_on_left_moving_3 ires rs (b, Bk # list) |
|
1858 \<Longrightarrow> wcode_on_left_moving_3 ires rs (tl b, hd b # Bk # list)" |
|
1859 apply(simp only: wcode_halt_invs) |
|
1860 apply(erule_tac disjE) |
|
1861 apply(erule_tac exE)+ |
|
1862 apply(case_tac ml, simp) |
|
1863 apply(rule_tac x = "mr - 2" in exI, rule_tac x = rn in exI) |
|
1864 apply(case_tac mr, simp, simp add: exp_ind, simp add: exp_ind[THEN sym]) |
|
1865 apply(rule_tac disjI1) |
|
1866 apply(rule_tac x = nat in exI, rule_tac x = "Suc mr" in exI, |
|
1867 rule_tac x = rn in exI, simp add: exp_ind_def) |
|
1868 apply(simp) |
|
1869 done |
|
1870 |
|
1871 lemma [simp]: "wcode_goon_checking_3 ires rs (b, Bk # list) \<Longrightarrow> |
|
1872 (b = [] \<longrightarrow> wcode_stop ires rs ([Bk], list)) \<and> |
|
1873 (b \<noteq> [] \<longrightarrow> wcode_stop ires rs (Bk # b, list))" |
|
1874 apply(auto simp: wcode_halt_invs) |
|
1875 done |
|
1876 |
|
1877 lemma [simp]: "wcode_on_left_moving_3 ires rs (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
1878 apply(auto simp: wcode_halt_invs) |
|
1879 done |
|
1880 |
|
1881 lemma [simp]: "wcode_on_left_moving_3 ires rs (b, Oc # list) \<Longrightarrow> |
|
1882 wcode_on_checking_3 ires rs (tl b, hd b # Oc # list)" |
|
1883 apply(simp add:wcode_halt_invs, auto) |
|
1884 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
1885 done |
|
1886 |
|
1887 lemma [simp]: "wcode_on_checking_3 ires rs (b, Oc # list) = False" |
|
1888 apply(auto simp: wcode_halt_invs) |
|
1889 done |
|
1890 |
|
1891 lemma [simp]: "wcode_on_left_moving_3 ires rs (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
1892 apply(simp add: wcode_halt_invs, auto) |
|
1893 done |
|
1894 |
|
1895 |
|
1896 lemma [simp]: "wcode_on_checking_3 ires rs (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
1897 apply(auto simp: wcode_halt_invs) |
|
1898 done |
|
1899 |
|
1900 lemma [simp]: "wcode_on_checking_3 ires rs (b, Bk # list) \<Longrightarrow> |
|
1901 wcode_goon_checking_3 ires rs (tl b, hd b # Bk # list)" |
|
1902 apply(auto simp: wcode_halt_invs) |
|
1903 done |
|
1904 |
|
1905 lemma [simp]: "wcode_goon_checking_3 ires rs (b, Oc # list) = False" |
|
1906 apply(simp add: wcode_goon_checking_3.simps) |
|
1907 done |
|
1908 |
|
1909 lemma t_halt_case_correctness: |
|
1910 shows "let P = (\<lambda> (st, l, r). st = 0) in |
|
1911 let Q = (\<lambda> (st, l, r). wcode_halt_case_inv st ires rs (l, r)) in |
|
1912 let f = (\<lambda> stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp) in |
|
1913 \<exists> n .P (f n) \<and> Q (f (n::nat))" |
|
1914 proof - |
|
1915 let ?P = "(\<lambda> (st, l, r). st = 0)" |
|
1916 let ?Q = "(\<lambda> (st, l, r). wcode_halt_case_inv st ires rs (l, r))" |
|
1917 let ?f = "(\<lambda> stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp)" |
|
1918 have "\<exists> n. ?P (?f n) \<and> ?Q (?f (n::nat))" |
|
1919 proof(rule_tac halt_lemma2) |
|
1920 show "wf wcode_halt_case_le" by auto |
|
1921 next |
|
1922 show "\<forall> na. \<not> ?P (?f na) \<and> ?Q (?f na) \<longrightarrow> |
|
1923 ?Q (?f (Suc na)) \<and> (?f (Suc na), ?f na) \<in> wcode_halt_case_le" |
|
1924 apply(rule_tac allI, rule_tac impI, case_tac "?f na") |
|
1925 apply(simp add: tstep_red tstep.simps) |
|
1926 apply(case_tac c, simp, case_tac [2] aa) |
|
1927 apply(simp_all split: if_splits add: new_tape.simps wcode_halt_case_le_def lex_pair_def) |
|
1928 done |
|
1929 next |
|
1930 show "?Q (?f 0)" |
|
1931 apply(simp add: steps.simps wcode_halt_invs) |
|
1932 apply(rule_tac x = "Suc m" in exI, simp add: exp_ind_def) |
|
1933 apply(rule_tac x = "Suc 0" in exI, auto) |
|
1934 done |
|
1935 next |
|
1936 show "\<not> ?P (?f 0)" |
|
1937 apply(simp add: steps.simps) |
|
1938 done |
|
1939 qed |
|
1940 thus "?thesis" |
|
1941 apply(auto) |
|
1942 done |
|
1943 qed |
|
1944 |
|
1945 declare wcode_halt_case_inv.simps[simp del] |
|
1946 lemma [intro]: "\<exists> xs. (<rev list @ [aa::nat]> :: block list) = Oc # xs" |
|
1947 apply(case_tac "rev list", simp) |
|
1948 apply(simp add: tape_of_nat_abv tape_of_nat_list.simps exp_ind_def) |
|
1949 apply(case_tac list, simp, simp) |
|
1950 done |
|
1951 |
|
1952 lemma wcode_halt_case: |
|
1953 "\<exists>stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
1954 t_wcode_main stp = (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1955 using t_halt_case_correctness[of ires rs m n] |
|
1956 apply(simp) |
|
1957 apply(erule_tac exE) |
|
1958 apply(case_tac "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Bk # ires, |
|
1959 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main na") |
|
1960 apply(auto simp: wcode_halt_case_inv.simps wcode_stop.simps) |
|
1961 apply(rule_tac x = na in exI, rule_tac x = ln in exI, |
|
1962 rule_tac x = rn in exI, simp) |
|
1963 done |
|
1964 |
|
1965 lemma bl_bin_one: "bl_bin [Oc] = Suc 0" |
|
1966 apply(simp add: bl_bin.simps) |
|
1967 done |
|
1968 |
|
1969 lemma t_wcode_main_lemma_pre: |
|
1970 "\<lbrakk>args \<noteq> []; lm = <args::nat list>\<rbrakk> \<Longrightarrow> |
|
1971 \<exists> stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev lm @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main |
|
1972 stp |
|
1973 = (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin lm + rs * 2^(length lm - 1) \<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1974 proof(induct "length args" arbitrary: args lm rs m n, simp) |
|
1975 fix x args lm rs m n |
|
1976 assume ind: |
|
1977 "\<And>args lm rs m n. |
|
1978 \<lbrakk>x = length args; (args::nat list) \<noteq> []; lm = <args>\<rbrakk> |
|
1979 \<Longrightarrow> \<exists>stp ln rn. |
|
1980 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev lm @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
1981 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin lm + rs * 2 ^ (length lm - 1)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1982 |
|
1983 and h: "Suc x = length args" "(args::nat list) \<noteq> []" "lm = <args>" |
|
1984 from h have "\<exists> (a::nat) xs. args = xs @ [a]" |
|
1985 apply(rule_tac x = "last args" in exI) |
|
1986 apply(rule_tac x = "butlast args" in exI, auto) |
|
1987 done |
|
1988 from this obtain a xs where "args = xs @ [a]" by blast |
|
1989 from h and this show |
|
1990 "\<exists>stp ln rn. |
|
1991 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev lm @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
1992 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin lm + rs * 2 ^ (length lm - 1)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1993 proof(case_tac "xs::nat list", simp) |
|
1994 show "\<exists>stp ln rn. |
|
1995 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev (<a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
1996 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<a>) + rs * 2 ^ a\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1997 proof(induct "a" arbitrary: m n rs ires, simp) |
|
1998 fix m n rs ires |
|
1999 show "\<exists>stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
2000 t_wcode_main stp = (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin [Oc] + rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2001 apply(simp add: bl_bin_one) |
|
2002 apply(rule_tac wcode_halt_case) |
|
2003 done |
|
2004 next |
|
2005 fix a m n rs ires |
|
2006 assume ind2: |
|
2007 "\<And>m n rs ires. |
|
2008 \<exists>stp ln rn. |
|
2009 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev (<a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2010 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<a>) + rs * 2 ^ a\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2011 show "\<exists>stp ln rn. |
|
2012 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev (<Suc a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2013 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<Suc a>) + rs * 2 ^ Suc a\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2014 proof - |
|
2015 have "\<exists>stp ln rn. |
|
2016 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev (<Suc a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2017 (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ rev (<a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc (2 * rs + 2)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2018 apply(simp add: tape_of_nat) |
|
2019 using wcode_double_case[of m "Oc\<^bsup>a\<^esup> @ Bk # Bk # ires" rs n] |
|
2020 apply(simp add: exp_ind_def) |
|
2021 done |
|
2022 from this obtain stpa lna rna where stp1: |
|
2023 "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev (<Suc a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stpa = |
|
2024 (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev (<a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc (2 * rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>)" by blast |
|
2025 moreover have |
|
2026 "\<exists>stp ln rn. |
|
2027 steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev (<a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc (2 * rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stp = |
|
2028 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<a>) + (2*rs + 2) * 2 ^ a\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2029 using ind2[of lna ires "2*rs + 2" rna] by simp |
|
2030 from this obtain stpb lnb rnb where stp2: |
|
2031 "steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev (<a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc (2 * rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stpb = |
|
2032 (0, Bk # ires, Bk # Oc # Bk\<^bsup>lnb\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<a>) + (2*rs + 2) * 2 ^ a\<^esup> @ Bk\<^bsup>rnb\<^esup>)" |
|
2033 by blast |
|
2034 from stp1 and stp2 show "?thesis" |
|
2035 apply(rule_tac x = "stpa + stpb" in exI, |
|
2036 rule_tac x = lnb in exI, rule_tac x = rnb in exI, simp) |
|
2037 apply(simp add: steps_add bl_bin_nat_Suc exponent_def) |
|
2038 done |
|
2039 qed |
|
2040 qed |
|
2041 next |
|
2042 fix aa list |
|
2043 assume g: "Suc x = length args" "args \<noteq> []" "lm = <args>" "args = xs @ [a::nat]" "xs = (aa::nat) # list" |
|
2044 thus "\<exists>stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev lm @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2045 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin lm + rs * 2 ^ (length lm - 1)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2046 proof(induct a arbitrary: m n rs args lm, simp_all add: tape_of_nl_rev, |
|
2047 simp only: tape_of_nl_cons_app1, simp) |
|
2048 fix m n rs args lm |
|
2049 have "\<exists>stp ln rn. |
|
2050 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # rev (<(aa::nat) # list>) @ Bk # Bk # ires, |
|
2051 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2052 (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ rev (<aa # list>) @ Bk # Bk # ires, |
|
2053 Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2054 proof(simp add: tape_of_nl_rev) |
|
2055 have "\<exists> xs. (<rev list @ [aa]>) = Oc # xs" by auto |
|
2056 from this obtain xs where "(<rev list @ [aa]>) = Oc # xs" .. |
|
2057 thus "\<exists>stp ln rn. |
|
2058 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # <rev list @ [aa]> @ Bk # Bk # ires, |
|
2059 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2060 (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ <rev list @ [aa]> @ Bk # Bk # ires, Bk # Oc\<^bsup>5 + 4 * rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2061 apply(simp) |
|
2062 using wcode_fourtimes_case[of m "xs @ Bk # Bk # ires" rs n] |
|
2063 apply(simp) |
|
2064 done |
|
2065 qed |
|
2066 from this obtain stpa lna rna where stp1: |
|
2067 "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # rev (<aa # list>) @ Bk # Bk # ires, |
|
2068 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stpa = |
|
2069 (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev (<aa # list>) @ Bk # Bk # ires, |
|
2070 Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rna\<^esup>)" by blast |
|
2071 from g have |
|
2072 "\<exists> stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev (<(aa::nat) # list>) @ Bk # Bk # ires, |
|
2073 Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stp = (0, Bk # ires, |
|
2074 Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<aa#list>)+ (4*rs + 4) * 2^(length (<aa#list>) - 1) \<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2075 apply(rule_tac args = "(aa::nat)#list" in ind, simp_all) |
|
2076 done |
|
2077 from this obtain stpb lnb rnb where stp2: |
|
2078 "steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev (<(aa::nat) # list>) @ Bk # Bk # ires, |
|
2079 Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stpb = (0, Bk # ires, |
|
2080 Bk # Oc # Bk\<^bsup>lnb\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<aa#list>)+ (4*rs + 4) * 2^(length (<aa#list>) - 1) \<^esup> @ Bk\<^bsup>rnb\<^esup>)" |
|
2081 by blast |
|
2082 from stp1 and stp2 and h |
|
2083 show "\<exists>stp ln rn. |
|
2084 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # <rev list @ [aa]> @ Bk # Bk # ires, |
|
2085 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2086 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # |
|
2087 Bk # Oc\<^bsup>bl_bin (Oc\<^bsup>Suc aa\<^esup> @ Bk # <list @ [0]>) + rs * (2 * 2 ^ (aa + length (<list @ [0]>)))\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2088 apply(rule_tac x = "stpa + stpb" in exI, rule_tac x = lnb in exI, |
|
2089 rule_tac x = rnb in exI, simp add: steps_add tape_of_nl_rev) |
|
2090 done |
|
2091 next |
|
2092 fix ab m n rs args lm |
|
2093 assume ind2: |
|
2094 "\<And> m n rs args lm. |
|
2095 \<lbrakk>lm = <aa # list @ [ab]>; args = aa # list @ [ab]\<rbrakk> |
|
2096 \<Longrightarrow> \<exists>stp ln rn. |
|
2097 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ <ab # rev list @ [aa]> @ Bk # Bk # ires, |
|
2098 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2099 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # |
|
2100 Bk # Oc\<^bsup>bl_bin (<aa # list @ [ab]>) + rs * 2 ^ (length (<aa # list @ [ab]>) - Suc 0)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2101 and k: "args = aa # list @ [Suc ab]" "lm = <aa # list @ [Suc ab]>" |
|
2102 show "\<exists>stp ln rn. |
|
2103 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ <Suc ab # rev list @ [aa]> @ Bk # Bk # ires, |
|
2104 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2105 (0, Bk # ires,Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # |
|
2106 Bk # Oc\<^bsup>bl_bin (<aa # list @ [Suc ab]>) + rs * 2 ^ (length (<aa # list @ [Suc ab]>) - Suc 0)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2107 proof(simp add: tape_of_nl_cons_app1) |
|
2108 have "\<exists>stp ln rn. |
|
2109 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc\<^bsup>Suc (Suc ab)\<^esup> @ Bk # <rev list @ [aa]> @ Bk # Bk # ires, |
|
2110 Bk # Oc # Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp |
|
2111 = (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc\<^bsup>Suc ab\<^esup> @ Bk # <rev list @ [aa]> @ Bk # Bk # ires, |
|
2112 Bk # Oc\<^bsup>Suc (2*rs + 2)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2113 using wcode_double_case[of m "Oc\<^bsup>ab\<^esup> @ Bk # <rev list @ [aa]> @ Bk # Bk # ires" |
|
2114 rs n] |
|
2115 apply(simp add: exp_ind_def) |
|
2116 done |
|
2117 from this obtain stpa lna rna where stp1: |
|
2118 "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc\<^bsup>Suc (Suc ab)\<^esup> @ Bk # <rev list @ [aa]> @ Bk # Bk # ires, |
|
2119 Bk # Oc # Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stpa |
|
2120 = (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ Oc\<^bsup>Suc ab\<^esup> @ Bk # <rev list @ [aa]> @ Bk # Bk # ires, |
|
2121 Bk # Oc\<^bsup>Suc (2*rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>)" by blast |
|
2122 from k have |
|
2123 "\<exists> stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ <ab # rev list @ [aa]> @ Bk # Bk # ires, |
|
2124 Bk # Oc\<^bsup>Suc (2*rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stp |
|
2125 = (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # |
|
2126 Bk # Oc\<^bsup>bl_bin (<aa # list @ [ab]> ) + (2*rs + 2)* 2^(length (<aa # list @ [ab]>) - Suc 0)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2127 apply(rule_tac ind2, simp_all) |
|
2128 done |
|
2129 from this obtain stpb lnb rnb where stp2: |
|
2130 "steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ <ab # rev list @ [aa]> @ Bk # Bk # ires, |
|
2131 Bk # Oc\<^bsup>Suc (2*rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stpb |
|
2132 = (0, Bk # ires, Bk # Oc # Bk\<^bsup>lnb\<^esup> @ Bk # |
|
2133 Bk # Oc\<^bsup>bl_bin (<aa # list @ [ab]> ) + (2*rs + 2)* 2^(length (<aa # list @ [ab]>) - Suc 0)\<^esup> @ Bk\<^bsup>rnb\<^esup>)" |
|
2134 by blast |
|
2135 from stp1 and stp2 show |
|
2136 "\<exists>stp ln rn. |
|
2137 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc\<^bsup>Suc (Suc ab)\<^esup> @ Bk # <rev list @ [aa]> @ Bk # Bk # ires, |
|
2138 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2139 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # |
|
2140 Oc\<^bsup>bl_bin (Oc\<^bsup>Suc aa\<^esup> @ Bk # <list @ [Suc ab]>) + rs * (2 * 2 ^ (aa + length (<list @ [Suc ab]>)))\<^esup> |
|
2141 @ Bk\<^bsup>rn\<^esup>)" |
|
2142 apply(rule_tac x = "stpa + stpb" in exI, rule_tac x = lnb in exI, |
|
2143 rule_tac x = rnb in exI, simp add: steps_add tape_of_nl_cons_app1 exp_ind_def) |
|
2144 done |
|
2145 qed |
|
2146 qed |
|
2147 qed |
|
2148 qed |
|
2149 |
|
2150 |
|
2151 |
|
2152 (* turing_shift can be used*) |
|
2153 term t_wcode_main |
|
2154 definition t_wcode_prepare :: "tprog" |
|
2155 where |
|
2156 "t_wcode_prepare \<equiv> |
|
2157 [(W1, 2), (L, 1), (L, 3), (R, 2), (R, 4), (W0, 3), |
|
2158 (R, 4), (R, 5), (R, 6), (R, 5), (R, 7), (R, 5), |
|
2159 (W1, 7), (L, 0)]" |
|
2160 |
|
2161 fun wprepare_add_one :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2162 where |
|
2163 "wprepare_add_one m lm (l, r) = |
|
2164 (\<exists> rn. l = [] \<and> |
|
2165 (r = <m # lm> @ Bk\<^bsup>rn\<^esup> \<or> |
|
2166 r = Bk # <m # lm> @ Bk\<^bsup>rn\<^esup>))" |
|
2167 |
|
2168 fun wprepare_goto_first_end :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2169 where |
|
2170 "wprepare_goto_first_end m lm (l, r) = |
|
2171 (\<exists> ml mr rn. l = Oc\<^bsup>ml\<^esup> \<and> |
|
2172 r = Oc\<^bsup>mr\<^esup> @ Bk # <lm> @ Bk\<^bsup>rn\<^esup> \<and> |
|
2173 ml + mr = Suc (Suc m))" |
|
2174 |
|
2175 fun wprepare_erase :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2176 where |
|
2177 "wprepare_erase m lm (l, r) = |
|
2178 (\<exists> rn. l = Oc\<^bsup>Suc m\<^esup> \<and> |
|
2179 tl r = Bk # <lm> @ Bk\<^bsup>rn\<^esup>)" |
|
2180 |
|
2181 fun wprepare_goto_start_pos_B :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2182 where |
|
2183 "wprepare_goto_start_pos_B m lm (l, r) = |
|
2184 (\<exists> rn. l = Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
2185 r = Bk # <lm> @ Bk\<^bsup>rn\<^esup>)" |
|
2186 |
|
2187 fun wprepare_goto_start_pos_O :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2188 where |
|
2189 "wprepare_goto_start_pos_O m lm (l, r) = |
|
2190 (\<exists> rn. l = Bk # Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
2191 r = <lm> @ Bk\<^bsup>rn\<^esup>)" |
|
2192 |
|
2193 fun wprepare_goto_start_pos :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2194 where |
|
2195 "wprepare_goto_start_pos m lm (l, r) = |
|
2196 (wprepare_goto_start_pos_B m lm (l, r) \<or> |
|
2197 wprepare_goto_start_pos_O m lm (l, r))" |
|
2198 |
|
2199 fun wprepare_loop_start_on_rightmost :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2200 where |
|
2201 "wprepare_loop_start_on_rightmost m lm (l, r) = |
|
2202 (\<exists> rn mr. rev l @ r = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # <lm> @ Bk\<^bsup>rn\<^esup> \<and> l \<noteq> [] \<and> |
|
2203 r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2204 |
|
2205 fun wprepare_loop_start_in_middle :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2206 where |
|
2207 "wprepare_loop_start_in_middle m lm (l, r) = |
|
2208 (\<exists> rn (mr:: nat) (lm1::nat list). |
|
2209 rev l @ r = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # <lm> @ Bk\<^bsup>rn\<^esup> \<and> l \<noteq> [] \<and> |
|
2210 r = Oc\<^bsup>mr\<^esup> @ Bk # <lm1> @ Bk\<^bsup>rn\<^esup> \<and> lm1 \<noteq> [])" |
|
2211 |
|
2212 fun wprepare_loop_start :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2213 where |
|
2214 "wprepare_loop_start m lm (l, r) = (wprepare_loop_start_on_rightmost m lm (l, r) \<or> |
|
2215 wprepare_loop_start_in_middle m lm (l, r))" |
|
2216 |
|
2217 fun wprepare_loop_goon_on_rightmost :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2218 where |
|
2219 "wprepare_loop_goon_on_rightmost m lm (l, r) = |
|
2220 (\<exists> rn. l = Bk # <rev lm> @ Bk # Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
2221 r = Bk\<^bsup>rn\<^esup>)" |
|
2222 |
|
2223 fun wprepare_loop_goon_in_middle :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2224 where |
|
2225 "wprepare_loop_goon_in_middle m lm (l, r) = |
|
2226 (\<exists> rn (mr:: nat) (lm1::nat list). |
|
2227 rev l @ r = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # <lm> @ Bk\<^bsup>rn\<^esup> \<and> l \<noteq> [] \<and> |
|
2228 (if lm1 = [] then r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> |
|
2229 else r = Oc\<^bsup>mr\<^esup> @ Bk # <lm1> @ Bk\<^bsup>rn\<^esup>) \<and> mr > 0)" |
|
2230 |
|
2231 fun wprepare_loop_goon :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2232 where |
|
2233 "wprepare_loop_goon m lm (l, r) = |
|
2234 (wprepare_loop_goon_in_middle m lm (l, r) \<or> |
|
2235 wprepare_loop_goon_on_rightmost m lm (l, r))" |
|
2236 |
|
2237 fun wprepare_add_one2 :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2238 where |
|
2239 "wprepare_add_one2 m lm (l, r) = |
|
2240 (\<exists> rn. l = Bk # Bk # <rev lm> @ Bk # Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
2241 (r = [] \<or> tl r = Bk\<^bsup>rn\<^esup>))" |
|
2242 |
|
2243 fun wprepare_stop :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2244 where |
|
2245 "wprepare_stop m lm (l, r) = |
|
2246 (\<exists> rn. l = Bk # <rev lm> @ Bk # Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
2247 r = Bk # Oc # Bk\<^bsup>rn\<^esup>)" |
|
2248 |
|
2249 fun wprepare_inv :: "nat \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2250 where |
|
2251 "wprepare_inv st m lm (l, r) = |
|
2252 (if st = 0 then wprepare_stop m lm (l, r) |
|
2253 else if st = Suc 0 then wprepare_add_one m lm (l, r) |
|
2254 else if st = Suc (Suc 0) then wprepare_goto_first_end m lm (l, r) |
|
2255 else if st = Suc (Suc (Suc 0)) then wprepare_erase m lm (l, r) |
|
2256 else if st = 4 then wprepare_goto_start_pos m lm (l, r) |
|
2257 else if st = 5 then wprepare_loop_start m lm (l, r) |
|
2258 else if st = 6 then wprepare_loop_goon m lm (l, r) |
|
2259 else if st = 7 then wprepare_add_one2 m lm (l, r) |
|
2260 else False)" |
|
2261 |
|
2262 fun wprepare_stage :: "t_conf \<Rightarrow> nat" |
|
2263 where |
|
2264 "wprepare_stage (st, l, r) = |
|
2265 (if st \<ge> 1 \<and> st \<le> 4 then 3 |
|
2266 else if st = 5 \<or> st = 6 then 2 |
|
2267 else 1)" |
|
2268 |
|
2269 fun wprepare_state :: "t_conf \<Rightarrow> nat" |
|
2270 where |
|
2271 "wprepare_state (st, l, r) = |
|
2272 (if st = 1 then 4 |
|
2273 else if st = Suc (Suc 0) then 3 |
|
2274 else if st = Suc (Suc (Suc 0)) then 2 |
|
2275 else if st = 4 then 1 |
|
2276 else if st = 7 then 2 |
|
2277 else 0)" |
|
2278 |
|
2279 fun wprepare_step :: "t_conf \<Rightarrow> nat" |
|
2280 where |
|
2281 "wprepare_step (st, l, r) = |
|
2282 (if st = 1 then (if hd r = Oc then Suc (length l) |
|
2283 else 0) |
|
2284 else if st = Suc (Suc 0) then length r |
|
2285 else if st = Suc (Suc (Suc 0)) then (if hd r = Oc then 1 |
|
2286 else 0) |
|
2287 else if st = 4 then length r |
|
2288 else if st = 5 then Suc (length r) |
|
2289 else if st = 6 then (if r = [] then 0 else Suc (length r)) |
|
2290 else if st = 7 then (if (r \<noteq> [] \<and> hd r = Oc) then 0 |
|
2291 else 1) |
|
2292 else 0)" |
|
2293 |
|
2294 fun wcode_prepare_measure :: "t_conf \<Rightarrow> nat \<times> nat \<times> nat" |
|
2295 where |
|
2296 "wcode_prepare_measure (st, l, r) = |
|
2297 (wprepare_stage (st, l, r), |
|
2298 wprepare_state (st, l, r), |
|
2299 wprepare_step (st, l, r))" |
|
2300 |
|
2301 definition wcode_prepare_le :: "(t_conf \<times> t_conf) set" |
|
2302 where "wcode_prepare_le \<equiv> (inv_image lex_triple wcode_prepare_measure)" |
|
2303 |
|
2304 lemma [intro]: "wf lex_pair" |
|
2305 by(auto intro:wf_lex_prod simp:lex_pair_def) |
|
2306 |
|
2307 lemma wf_wcode_prepare_le[intro]: "wf wcode_prepare_le" |
|
2308 by(auto intro:wf_inv_image simp: wcode_prepare_le_def |
|
2309 recursive.lex_triple_def) |
|
2310 |
|
2311 declare wprepare_add_one.simps[simp del] wprepare_goto_first_end.simps[simp del] |
|
2312 wprepare_erase.simps[simp del] wprepare_goto_start_pos.simps[simp del] |
|
2313 wprepare_loop_start.simps[simp del] wprepare_loop_goon.simps[simp del] |
|
2314 wprepare_add_one2.simps[simp del] |
|
2315 |
|
2316 lemmas wprepare_invs = wprepare_add_one.simps wprepare_goto_first_end.simps |
|
2317 wprepare_erase.simps wprepare_goto_start_pos.simps |
|
2318 wprepare_loop_start.simps wprepare_loop_goon.simps |
|
2319 wprepare_add_one2.simps |
|
2320 |
|
2321 declare wprepare_inv.simps[simp del] |
|
2322 lemma [simp]: "fetch t_wcode_prepare (Suc 0) Bk = (W1, 2)" |
|
2323 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2324 done |
|
2325 |
|
2326 lemma [simp]: "fetch t_wcode_prepare (Suc 0) Oc = (L, 1)" |
|
2327 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2328 done |
|
2329 |
|
2330 lemma [simp]: "fetch t_wcode_prepare (Suc (Suc 0)) Bk = (L, 3)" |
|
2331 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2332 done |
|
2333 |
|
2334 lemma [simp]: "fetch t_wcode_prepare (Suc (Suc 0)) Oc = (R, 2)" |
|
2335 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2336 done |
|
2337 |
|
2338 lemma [simp]: "fetch t_wcode_prepare (Suc (Suc (Suc 0))) Bk = (R, 4)" |
|
2339 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2340 done |
|
2341 |
|
2342 lemma [simp]: "fetch t_wcode_prepare (Suc (Suc (Suc 0))) Oc = (W0, 3)" |
|
2343 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2344 done |
|
2345 |
|
2346 lemma [simp]: "fetch t_wcode_prepare 4 Bk = (R, 4)" |
|
2347 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2348 done |
|
2349 |
|
2350 lemma [simp]: "fetch t_wcode_prepare 4 Oc = (R, 5)" |
|
2351 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2352 done |
|
2353 |
|
2354 lemma [simp]: "fetch t_wcode_prepare 5 Oc = (R, 5)" |
|
2355 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2356 done |
|
2357 |
|
2358 lemma [simp]: "fetch t_wcode_prepare 5 Bk = (R, 6)" |
|
2359 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2360 done |
|
2361 |
|
2362 lemma [simp]: "fetch t_wcode_prepare 6 Oc = (R, 5)" |
|
2363 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2364 done |
|
2365 |
|
2366 lemma [simp]: "fetch t_wcode_prepare 6 Bk = (R, 7)" |
|
2367 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2368 done |
|
2369 |
|
2370 lemma [simp]: "fetch t_wcode_prepare 7 Oc = (L, 0)" |
|
2371 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2372 done |
|
2373 |
|
2374 lemma [simp]: "fetch t_wcode_prepare 7 Bk = (W1, 7)" |
|
2375 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2376 done |
|
2377 |
|
2378 lemma tape_of_nl_not_null: "lm \<noteq> [] \<Longrightarrow> <lm::nat list> \<noteq> []" |
|
2379 apply(case_tac lm, auto) |
|
2380 apply(case_tac list, auto simp: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) |
|
2381 done |
|
2382 |
|
2383 lemma [simp]: "lm \<noteq> [] \<Longrightarrow> wprepare_add_one m lm (b, []) = False" |
|
2384 apply(simp add: wprepare_invs) |
|
2385 apply(simp add: tape_of_nl_not_null) |
|
2386 done |
|
2387 |
|
2388 lemma [simp]: "lm \<noteq> [] \<Longrightarrow> wprepare_goto_first_end m lm (b, []) = False" |
|
2389 apply(simp add: wprepare_invs) |
|
2390 done |
|
2391 |
|
2392 lemma [simp]: "lm \<noteq> [] \<Longrightarrow> wprepare_erase m lm (b, []) = False" |
|
2393 apply(simp add: wprepare_invs) |
|
2394 done |
|
2395 |
|
2396 |
|
2397 |
|
2398 lemma [simp]: "lm \<noteq> [] \<Longrightarrow> wprepare_goto_start_pos m lm (b, []) = False" |
|
2399 apply(simp add: wprepare_invs tape_of_nl_not_null) |
|
2400 done |
|
2401 |
|
2402 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_start m lm (b, [])\<rbrakk> \<Longrightarrow> b \<noteq> []" |
|
2403 apply(simp add: wprepare_invs tape_of_nl_not_null, auto) |
|
2404 done |
|
2405 |
|
2406 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_start m lm (b, [])\<rbrakk> \<Longrightarrow> |
|
2407 wprepare_loop_goon m lm (Bk # b, [])" |
|
2408 apply(simp only: wprepare_invs tape_of_nl_not_null) |
|
2409 apply(erule_tac disjE) |
|
2410 apply(rule_tac disjI2) |
|
2411 apply(simp add: wprepare_loop_start_on_rightmost.simps |
|
2412 wprepare_loop_goon_on_rightmost.simps, auto) |
|
2413 apply(rule_tac rev_eq, simp add: tape_of_nl_rev) |
|
2414 done |
|
2415 |
|
2416 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_goon m lm (b, [])\<rbrakk> \<Longrightarrow> b \<noteq> []" |
|
2417 apply(simp only: wprepare_invs tape_of_nl_not_null, auto) |
|
2418 done |
|
2419 |
|
2420 lemma [simp]:"\<lbrakk>lm \<noteq> []; wprepare_loop_goon m lm (b, [])\<rbrakk> \<Longrightarrow> |
|
2421 wprepare_add_one2 m lm (Bk # b, [])" |
|
2422 apply(simp only: wprepare_invs tape_of_nl_not_null, auto split: if_splits) |
|
2423 apply(case_tac mr, simp, simp add: exp_ind_def) |
|
2424 done |
|
2425 |
|
2426 lemma [simp]: "wprepare_add_one2 m lm (b, []) \<Longrightarrow> b \<noteq> []" |
|
2427 apply(simp only: wprepare_invs tape_of_nl_not_null, auto) |
|
2428 done |
|
2429 |
|
2430 lemma [simp]: "wprepare_add_one2 m lm (b, []) \<Longrightarrow> wprepare_add_one2 m lm (b, [Oc])" |
|
2431 apply(simp only: wprepare_invs tape_of_nl_not_null, auto) |
|
2432 done |
|
2433 |
|
2434 lemma [simp]: "Bk # list = <(m::nat) # lm> @ ys = False" |
|
2435 apply(case_tac lm, auto simp: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) |
|
2436 done |
|
2437 |
|
2438 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_add_one m lm (b, Bk # list)\<rbrakk> |
|
2439 \<Longrightarrow> (b = [] \<longrightarrow> wprepare_goto_first_end m lm ([], Oc # list)) \<and> |
|
2440 (b \<noteq> [] \<longrightarrow> wprepare_goto_first_end m lm (b, Oc # list))" |
|
2441 apply(simp only: wprepare_invs, auto) |
|
2442 apply(rule_tac x = 0 in exI, simp add: exp_ind_def) |
|
2443 apply(case_tac lm, simp, simp add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) |
|
2444 apply(rule_tac x = rn in exI, simp) |
|
2445 done |
|
2446 |
|
2447 lemma [simp]: "wprepare_goto_first_end m lm (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
2448 apply(simp only: wprepare_invs tape_of_nl_not_null, auto) |
|
2449 apply(case_tac mr, simp_all add: exp_ind_def) |
|
2450 done |
|
2451 |
|
2452 lemma [simp]: "wprepare_goto_first_end m lm (b, Bk # list) \<Longrightarrow> |
|
2453 wprepare_erase m lm (tl b, hd b # Bk # list)" |
|
2454 apply(simp only: wprepare_invs tape_of_nl_not_null, auto) |
|
2455 apply(case_tac mr, simp_all add: exp_ind_def) |
|
2456 apply(case_tac mr, auto simp: exp_ind_def) |
|
2457 done |
|
2458 |
|
2459 lemma [simp]: "wprepare_erase m lm (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
2460 apply(simp only: wprepare_invs exp_ind_def, auto) |
|
2461 done |
|
2462 |
|
2463 lemma [simp]: "wprepare_erase m lm (b, Bk # list) \<Longrightarrow> |
|
2464 wprepare_goto_start_pos m lm (Bk # b, list)" |
|
2465 apply(simp only: wprepare_invs, auto) |
|
2466 done |
|
2467 |
|
2468 lemma [simp]: "\<lbrakk>wprepare_add_one m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> list \<noteq> []" |
|
2469 apply(simp only: wprepare_invs) |
|
2470 apply(case_tac lm, simp_all add: tape_of_nl_abv |
|
2471 tape_of_nat_list.simps exp_ind_def, auto) |
|
2472 done |
|
2473 |
|
2474 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_goto_first_end m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> list \<noteq> []" |
|
2475 apply(simp only: wprepare_invs, auto) |
|
2476 apply(case_tac mr, simp_all add: exp_ind_def) |
|
2477 apply(simp add: tape_of_nl_not_null) |
|
2478 done |
|
2479 |
|
2480 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_goto_first_end m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> b \<noteq> []" |
|
2481 apply(simp only: wprepare_invs, auto) |
|
2482 apply(case_tac mr, simp_all add: exp_ind_def tape_of_nl_not_null) |
|
2483 done |
|
2484 |
|
2485 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_erase m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> list \<noteq> []" |
|
2486 apply(simp only: wprepare_invs, auto) |
|
2487 done |
|
2488 |
|
2489 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_erase m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> b \<noteq> []" |
|
2490 apply(simp only: wprepare_invs, auto simp: exp_ind_def) |
|
2491 done |
|
2492 |
|
2493 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_goto_start_pos m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> list \<noteq> []" |
|
2494 apply(simp only: wprepare_invs, auto) |
|
2495 apply(simp add: tape_of_nl_not_null) |
|
2496 apply(case_tac lm, simp, case_tac list) |
|
2497 apply(simp_all add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) |
|
2498 done |
|
2499 |
|
2500 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_goto_start_pos m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> b \<noteq> []" |
|
2501 apply(simp only: wprepare_invs) |
|
2502 apply(auto) |
|
2503 done |
|
2504 |
|
2505 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_goon m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> b \<noteq> []" |
|
2506 apply(simp only: wprepare_invs, auto) |
|
2507 done |
|
2508 |
|
2509 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_goon m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> |
|
2510 (list = [] \<longrightarrow> wprepare_add_one2 m lm (Bk # b, [])) \<and> |
|
2511 (list \<noteq> [] \<longrightarrow> wprepare_add_one2 m lm (Bk # b, list))" |
|
2512 apply(simp only: wprepare_invs, simp) |
|
2513 apply(case_tac list, simp_all split: if_splits, auto) |
|
2514 apply(case_tac [1-3] mr, simp_all add: exp_ind_def) |
|
2515 apply(case_tac mr, simp_all add: exp_ind_def tape_of_nl_not_null) |
|
2516 apply(case_tac [1-2] mr, simp_all add: exp_ind_def) |
|
2517 apply(case_tac rn, simp, case_tac nat, auto simp: exp_ind_def) |
|
2518 done |
|
2519 |
|
2520 lemma [simp]: "wprepare_add_one2 m lm (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
2521 apply(simp only: wprepare_invs, simp) |
|
2522 done |
|
2523 |
|
2524 lemma [simp]: "wprepare_add_one2 m lm (b, Bk # list) \<Longrightarrow> |
|
2525 (list = [] \<longrightarrow> wprepare_add_one2 m lm (b, [Oc])) \<and> |
|
2526 (list \<noteq> [] \<longrightarrow> wprepare_add_one2 m lm (b, Oc # list))" |
|
2527 apply(simp only: wprepare_invs, auto) |
|
2528 done |
|
2529 |
|
2530 lemma [simp]: "wprepare_goto_first_end m lm (b, Oc # list) |
|
2531 \<Longrightarrow> (b = [] \<longrightarrow> wprepare_goto_first_end m lm ([Oc], list)) \<and> |
|
2532 (b \<noteq> [] \<longrightarrow> wprepare_goto_first_end m lm (Oc # b, list))" |
|
2533 apply(simp only: wprepare_invs, auto) |
|
2534 apply(rule_tac x = 1 in exI, auto) |
|
2535 apply(case_tac mr, simp_all add: exp_ind_def) |
|
2536 apply(case_tac ml, simp_all add: exp_ind_def) |
|
2537 apply(rule_tac x = rn in exI, simp) |
|
2538 apply(rule_tac x = "Suc ml" in exI, simp_all add: exp_ind_def) |
|
2539 apply(rule_tac x = "mr - 1" in exI, simp) |
|
2540 apply(case_tac mr, simp_all add: exp_ind_def, auto) |
|
2541 done |
|
2542 |
|
2543 lemma [simp]: "wprepare_erase m lm (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
2544 apply(simp only: wprepare_invs, auto simp: exp_ind_def) |
|
2545 done |
|
2546 |
|
2547 lemma [simp]: "wprepare_erase m lm (b, Oc # list) |
|
2548 \<Longrightarrow> wprepare_erase m lm (b, Bk # list)" |
|
2549 apply(simp only:wprepare_invs, auto simp: exp_ind_def) |
|
2550 done |
|
2551 |
|
2552 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_goto_start_pos m lm (b, Bk # list)\<rbrakk> |
|
2553 \<Longrightarrow> wprepare_goto_start_pos m lm (Bk # b, list)" |
|
2554 apply(simp only:wprepare_invs, auto) |
|
2555 apply(case_tac [!] lm, simp, simp_all) |
|
2556 done |
|
2557 |
|
2558 lemma [simp]: "wprepare_loop_start m lm (b, aa) \<Longrightarrow> b \<noteq> []" |
|
2559 apply(simp only:wprepare_invs, auto) |
|
2560 done |
|
2561 lemma [elim]: "Bk # list = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<Longrightarrow> \<exists>rn. list = Bk\<^bsup>rn\<^esup>" |
|
2562 apply(case_tac mr, simp_all) |
|
2563 apply(case_tac rn, simp_all add: exp_ind_def, auto) |
|
2564 done |
|
2565 |
|
2566 lemma rev_equal_iff: "x = y \<Longrightarrow> rev x = rev y" |
|
2567 by simp |
|
2568 |
|
2569 lemma tape_of_nl_false1: |
|
2570 "lm \<noteq> [] \<Longrightarrow> rev b @ [Bk] \<noteq> Bk\<^bsup>ln\<^esup> @ Oc # Oc\<^bsup>m\<^esup> @ Bk # Bk # <lm::nat list>" |
|
2571 apply(auto) |
|
2572 apply(drule_tac rev_equal_iff, simp add: tape_of_nl_rev) |
|
2573 apply(case_tac "rev lm") |
|
2574 apply(case_tac [2] list, auto simp: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) |
|
2575 done |
|
2576 |
|
2577 lemma [simp]: "wprepare_loop_start_in_middle m lm (b, [Bk]) = False" |
|
2578 apply(simp add: wprepare_loop_start_in_middle.simps, auto) |
|
2579 apply(case_tac mr, simp_all add: exp_ind_def) |
|
2580 apply(case_tac lm1, simp, simp add: tape_of_nl_not_null) |
|
2581 done |
|
2582 |
|
2583 declare wprepare_loop_start_in_middle.simps[simp del] |
|
2584 |
|
2585 declare wprepare_loop_start_on_rightmost.simps[simp del] |
|
2586 wprepare_loop_goon_in_middle.simps[simp del] |
|
2587 wprepare_loop_goon_on_rightmost.simps[simp del] |
|
2588 |
|
2589 lemma [simp]: "wprepare_loop_goon_in_middle m lm (Bk # b, []) = False" |
|
2590 apply(simp add: wprepare_loop_goon_in_middle.simps, auto) |
|
2591 done |
|
2592 |
|
2593 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_start m lm (b, [Bk])\<rbrakk> \<Longrightarrow> |
|
2594 wprepare_loop_goon m lm (Bk # b, [])" |
|
2595 apply(simp only: wprepare_invs, simp) |
|
2596 apply(simp add: wprepare_loop_goon_on_rightmost.simps |
|
2597 wprepare_loop_start_on_rightmost.simps, auto) |
|
2598 apply(case_tac mr, simp_all add: exp_ind_def) |
|
2599 apply(rule_tac rev_eq) |
|
2600 apply(simp add: tape_of_nl_rev) |
|
2601 apply(simp add: exp_ind_def[THEN sym] exp_ind) |
|
2602 done |
|
2603 |
|
2604 lemma [simp]: "wprepare_loop_start_on_rightmost m lm (b, Bk # a # lista) |
|
2605 \<Longrightarrow> wprepare_loop_goon_in_middle m lm (Bk # b, a # lista) = False" |
|
2606 apply(auto simp: wprepare_loop_start_on_rightmost.simps |
|
2607 wprepare_loop_goon_in_middle.simps) |
|
2608 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
2609 done |
|
2610 |
|
2611 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_start_on_rightmost m lm (b, Bk # a # lista)\<rbrakk> |
|
2612 \<Longrightarrow> wprepare_loop_goon_on_rightmost m lm (Bk # b, a # lista)" |
|
2613 apply(simp only: wprepare_loop_start_on_rightmost.simps |
|
2614 wprepare_loop_goon_on_rightmost.simps, auto) |
|
2615 apply(case_tac mr, simp_all add: exp_ind_def) |
|
2616 apply(simp add: tape_of_nl_rev) |
|
2617 apply(simp add: exp_ind_def[THEN sym] exp_ind) |
|
2618 done |
|
2619 |
|
2620 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_start_in_middle m lm (b, Bk # a # lista)\<rbrakk> |
|
2621 \<Longrightarrow> wprepare_loop_goon_on_rightmost m lm (Bk # b, a # lista) = False" |
|
2622 apply(simp add: wprepare_loop_start_in_middle.simps |
|
2623 wprepare_loop_goon_on_rightmost.simps, auto) |
|
2624 apply(case_tac mr, simp_all add: exp_ind_def) |
|
2625 apply(case_tac "lm1::nat list", simp_all, case_tac list, simp) |
|
2626 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps tape_of_nat_abv exp_ind_def) |
|
2627 apply(case_tac [!] rna, simp_all add: exp_ind_def) |
|
2628 apply(case_tac mr, simp_all add: exp_ind_def) |
|
2629 apply(case_tac lm1, simp, case_tac list, simp) |
|
2630 apply(simp_all add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def tape_of_nat_abv) |
|
2631 done |
|
2632 |
|
2633 lemma [simp]: |
|
2634 "\<lbrakk>lm \<noteq> []; wprepare_loop_start_in_middle m lm (b, Bk # a # lista)\<rbrakk> |
|
2635 \<Longrightarrow> wprepare_loop_goon_in_middle m lm (Bk # b, a # lista)" |
|
2636 apply(simp add: wprepare_loop_start_in_middle.simps |
|
2637 wprepare_loop_goon_in_middle.simps, auto) |
|
2638 apply(rule_tac x = rn in exI, simp) |
|
2639 apply(case_tac mr, simp_all add: exp_ind_def) |
|
2640 apply(case_tac lm1, simp) |
|
2641 apply(rule_tac x = "Suc aa" in exI, simp) |
|
2642 apply(rule_tac x = list in exI) |
|
2643 apply(case_tac list, simp_all add: tape_of_nl_abv tape_of_nat_list.simps) |
|
2644 done |
|
2645 |
|
2646 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_start m lm (b, Bk # a # lista)\<rbrakk> \<Longrightarrow> |
|
2647 wprepare_loop_goon m lm (Bk # b, a # lista)" |
|
2648 apply(simp add: wprepare_loop_start.simps |
|
2649 wprepare_loop_goon.simps) |
|
2650 apply(erule_tac disjE, simp, auto) |
|
2651 done |
|
2652 |
|
2653 lemma start_2_goon: |
|
2654 "\<lbrakk>lm \<noteq> []; wprepare_loop_start m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> |
|
2655 (list = [] \<longrightarrow> wprepare_loop_goon m lm (Bk # b, [])) \<and> |
|
2656 (list \<noteq> [] \<longrightarrow> wprepare_loop_goon m lm (Bk # b, list))" |
|
2657 apply(case_tac list, auto) |
|
2658 done |
|
2659 |
|
2660 lemma add_one_2_add_one: "wprepare_add_one m lm (b, Oc # list) |
|
2661 \<Longrightarrow> (hd b = Oc \<longrightarrow> (b = [] \<longrightarrow> wprepare_add_one m lm ([], Bk # Oc # list)) \<and> |
|
2662 (b \<noteq> [] \<longrightarrow> wprepare_add_one m lm (tl b, Oc # Oc # list))) \<and> |
|
2663 (hd b \<noteq> Oc \<longrightarrow> (b = [] \<longrightarrow> wprepare_add_one m lm ([], Bk # Oc # list)) \<and> |
|
2664 (b \<noteq> [] \<longrightarrow> wprepare_add_one m lm (tl b, hd b # Oc # list)))" |
|
2665 apply(simp only: wprepare_add_one.simps, auto) |
|
2666 done |
|
2667 |
|
2668 lemma [simp]: "wprepare_loop_start m lm (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
2669 apply(simp) |
|
2670 done |
|
2671 |
|
2672 lemma [simp]: "wprepare_loop_start_on_rightmost m lm (b, Oc # list) \<Longrightarrow> |
|
2673 wprepare_loop_start_on_rightmost m lm (Oc # b, list)" |
|
2674 apply(simp add: wprepare_loop_start_on_rightmost.simps, auto) |
|
2675 apply(rule_tac x = rn in exI, auto) |
|
2676 apply(case_tac mr, simp_all add: exp_ind_def) |
|
2677 apply(case_tac rn, auto simp: exp_ind_def) |
|
2678 done |
|
2679 |
|
2680 lemma [simp]: "wprepare_loop_start_in_middle m lm (b, Oc # list) \<Longrightarrow> |
|
2681 wprepare_loop_start_in_middle m lm (Oc # b, list)" |
|
2682 apply(simp add: wprepare_loop_start_in_middle.simps, auto) |
|
2683 apply(rule_tac x = rn in exI, auto) |
|
2684 apply(case_tac mr, simp, simp add: exp_ind_def) |
|
2685 apply(rule_tac x = nat in exI, simp) |
|
2686 apply(rule_tac x = lm1 in exI, simp) |
|
2687 done |
|
2688 |
|
2689 lemma start_2_start: "wprepare_loop_start m lm (b, Oc # list) \<Longrightarrow> |
|
2690 wprepare_loop_start m lm (Oc # b, list)" |
|
2691 apply(simp add: wprepare_loop_start.simps) |
|
2692 apply(erule_tac disjE, simp_all ) |
|
2693 done |
|
2694 |
|
2695 lemma [simp]: "wprepare_loop_goon m lm (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
2696 apply(simp add: wprepare_loop_goon.simps |
|
2697 wprepare_loop_goon_in_middle.simps |
|
2698 wprepare_loop_goon_on_rightmost.simps) |
|
2699 apply(auto) |
|
2700 done |
|
2701 |
|
2702 lemma [simp]: "wprepare_goto_start_pos m lm (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
2703 apply(simp add: wprepare_goto_start_pos.simps) |
|
2704 done |
|
2705 |
|
2706 lemma [simp]: "wprepare_loop_goon_on_rightmost m lm (b, Oc # list) = False" |
|
2707 apply(simp add: wprepare_loop_goon_on_rightmost.simps) |
|
2708 done |
|
2709 lemma wprepare_loop1: "\<lbrakk>rev b @ Oc\<^bsup>mr\<^esup> = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # <lm>; |
|
2710 b \<noteq> []; 0 < mr; Oc # list = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup>\<rbrakk> |
|
2711 \<Longrightarrow> wprepare_loop_start_on_rightmost m lm (Oc # b, list)" |
|
2712 apply(simp add: wprepare_loop_start_on_rightmost.simps) |
|
2713 apply(rule_tac x = rn in exI, simp) |
|
2714 apply(case_tac mr, simp, simp add: exp_ind_def, auto) |
|
2715 done |
|
2716 |
|
2717 lemma wprepare_loop2: "\<lbrakk>rev b @ Oc\<^bsup>mr\<^esup> @ Bk # <a # lista> = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # <lm>; |
|
2718 b \<noteq> []; Oc # list = Oc\<^bsup>mr\<^esup> @ Bk # <(a::nat) # lista> @ Bk\<^bsup>rn\<^esup>\<rbrakk> |
|
2719 \<Longrightarrow> wprepare_loop_start_in_middle m lm (Oc # b, list)" |
|
2720 apply(simp add: wprepare_loop_start_in_middle.simps) |
|
2721 apply(rule_tac x = rn in exI, simp) |
|
2722 apply(case_tac mr, simp_all add: exp_ind_def) |
|
2723 apply(rule_tac x = nat in exI, simp) |
|
2724 apply(rule_tac x = "a#lista" in exI, simp) |
|
2725 done |
|
2726 |
|
2727 lemma [simp]: "wprepare_loop_goon_in_middle m lm (b, Oc # list) \<Longrightarrow> |
|
2728 wprepare_loop_start_on_rightmost m lm (Oc # b, list) \<or> |
|
2729 wprepare_loop_start_in_middle m lm (Oc # b, list)" |
|
2730 apply(simp add: wprepare_loop_goon_in_middle.simps split: if_splits) |
|
2731 apply(case_tac lm1, simp_all add: wprepare_loop1 wprepare_loop2) |
|
2732 done |
|
2733 |
|
2734 lemma [simp]: "wprepare_loop_goon m lm (b, Oc # list) |
|
2735 \<Longrightarrow> wprepare_loop_start m lm (Oc # b, list)" |
|
2736 apply(simp add: wprepare_loop_goon.simps |
|
2737 wprepare_loop_start.simps) |
|
2738 done |
|
2739 |
|
2740 lemma [simp]: "wprepare_add_one m lm (b, Oc # list) |
|
2741 \<Longrightarrow> b = [] \<longrightarrow> wprepare_add_one m lm ([], Bk # Oc # list)" |
|
2742 apply(auto) |
|
2743 apply(simp add: wprepare_add_one.simps) |
|
2744 done |
|
2745 |
|
2746 lemma [simp]: "wprepare_goto_start_pos m [a] (b, Oc # list) |
|
2747 \<Longrightarrow> wprepare_loop_start_on_rightmost m [a] (Oc # b, list) " |
|
2748 apply(auto simp: wprepare_goto_start_pos.simps |
|
2749 wprepare_loop_start_on_rightmost.simps) |
|
2750 apply(rule_tac x = rn in exI, simp) |
|
2751 apply(simp add: tape_of_nat_abv tape_of_nat_list.simps exp_ind_def, auto) |
|
2752 done |
|
2753 |
|
2754 lemma [simp]: "wprepare_goto_start_pos m (a # aa # listaa) (b, Oc # list) |
|
2755 \<Longrightarrow>wprepare_loop_start_in_middle m (a # aa # listaa) (Oc # b, list)" |
|
2756 apply(auto simp: wprepare_goto_start_pos.simps |
|
2757 wprepare_loop_start_in_middle.simps) |
|
2758 apply(rule_tac x = rn in exI, simp) |
|
2759 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) |
|
2760 apply(rule_tac x = a in exI, rule_tac x = "aa#listaa" in exI, simp) |
|
2761 done |
|
2762 |
|
2763 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_goto_start_pos m lm (b, Oc # list)\<rbrakk> |
|
2764 \<Longrightarrow> wprepare_loop_start m lm (Oc # b, list)" |
|
2765 apply(case_tac lm, simp_all) |
|
2766 apply(case_tac lista, simp_all add: wprepare_loop_start.simps) |
|
2767 done |
|
2768 |
|
2769 lemma [simp]: "wprepare_add_one2 m lm (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
2770 apply(auto simp: wprepare_add_one2.simps) |
|
2771 done |
|
2772 |
|
2773 lemma add_one_2_stop: |
|
2774 "wprepare_add_one2 m lm (b, Oc # list) |
|
2775 \<Longrightarrow> wprepare_stop m lm (tl b, hd b # Oc # list)" |
|
2776 apply(simp add: wprepare_stop.simps wprepare_add_one2.simps) |
|
2777 done |
|
2778 |
|
2779 declare wprepare_stop.simps[simp del] |
|
2780 |
|
2781 lemma wprepare_correctness: |
|
2782 assumes h: "lm \<noteq> []" |
|
2783 shows "let P = (\<lambda> (st, l, r). st = 0) in |
|
2784 let Q = (\<lambda> (st, l, r). wprepare_inv st m lm (l, r)) in |
|
2785 let f = (\<lambda> stp. steps (Suc 0, [], (<m # lm>)) t_wcode_prepare stp) in |
|
2786 \<exists> n .P (f n) \<and> Q (f n)" |
|
2787 proof - |
|
2788 let ?P = "(\<lambda> (st, l, r). st = 0)" |
|
2789 let ?Q = "(\<lambda> (st, l, r). wprepare_inv st m lm (l, r))" |
|
2790 let ?f = "(\<lambda> stp. steps (Suc 0, [], (<m # lm>)) t_wcode_prepare stp)" |
|
2791 have "\<exists> n. ?P (?f n) \<and> ?Q (?f n)" |
|
2792 proof(rule_tac halt_lemma2) |
|
2793 show "wf wcode_prepare_le" by auto |
|
2794 next |
|
2795 show "\<forall> n. \<not> ?P (?f n) \<and> ?Q (?f n) \<longrightarrow> |
|
2796 ?Q (?f (Suc n)) \<and> (?f (Suc n), ?f n) \<in> wcode_prepare_le" |
|
2797 using h |
|
2798 apply(rule_tac allI, rule_tac impI, case_tac "?f n", |
|
2799 simp add: tstep_red tstep.simps) |
|
2800 apply(case_tac c, simp, case_tac [2] aa) |
|
2801 apply(simp_all add: wprepare_inv.simps wcode_prepare_le_def new_tape.simps |
|
2802 lex_triple_def lex_pair_def |
|
2803 |
|
2804 split: if_splits) |
|
2805 apply(simp_all add: start_2_goon start_2_start |
|
2806 add_one_2_add_one add_one_2_stop) |
|
2807 apply(auto simp: wprepare_add_one2.simps) |
|
2808 done |
|
2809 next |
|
2810 show "?Q (?f 0)" |
|
2811 apply(simp add: steps.simps wprepare_inv.simps wprepare_invs) |
|
2812 done |
|
2813 next |
|
2814 show "\<not> ?P (?f 0)" |
|
2815 apply(simp add: steps.simps) |
|
2816 done |
|
2817 qed |
|
2818 thus "?thesis" |
|
2819 apply(auto) |
|
2820 done |
|
2821 qed |
|
2822 |
|
2823 lemma [intro]: "t_correct t_wcode_prepare" |
|
2824 apply(simp add: t_correct.simps t_wcode_prepare_def iseven_def) |
|
2825 apply(rule_tac x = 7 in exI, simp) |
|
2826 done |
|
2827 |
|
2828 lemma twice_len_even: "length (tm_of abc_twice) mod 2 = 0" |
|
2829 apply(simp add: tm_even) |
|
2830 done |
|
2831 |
|
2832 lemma fourtimes_len_even: "length (tm_of abc_fourtimes) mod 2 = 0" |
|
2833 apply(simp add: tm_even) |
|
2834 done |
|
2835 |
|
2836 lemma t_correct_termi: "t_correct tp \<Longrightarrow> |
|
2837 list_all (\<lambda>(acn, st). (st \<le> Suc (length tp div 2))) (change_termi_state tp)" |
|
2838 apply(auto simp: t_correct.simps List.list_all_length) |
|
2839 apply(erule_tac x = n in allE, simp) |
|
2840 apply(case_tac "tp!n", auto simp: change_termi_state.simps split: if_splits) |
|
2841 done |
|
2842 |
|
2843 |
|
2844 lemma t_correct_shift: |
|
2845 "list_all (\<lambda>(acn, st). (st \<le> y)) tp \<Longrightarrow> |
|
2846 list_all (\<lambda>(acn, st). (st \<le> y + off)) (tshift tp off) " |
|
2847 apply(auto simp: t_correct.simps List.list_all_length) |
|
2848 apply(erule_tac x = n in allE, simp add: shift_length) |
|
2849 apply(case_tac "tp!n", auto simp: tshift.simps) |
|
2850 done |
|
2851 |
|
2852 lemma [intro]: |
|
2853 "t_correct (tm_of abc_twice @ tMp (Suc 0) |
|
2854 (start_of twice_ly (length abc_twice) - Suc 0))" |
|
2855 apply(rule_tac t_compiled_correct, simp_all) |
|
2856 apply(simp add: twice_ly_def) |
|
2857 done |
|
2858 |
|
2859 lemma [intro]: "t_correct (tm_of abc_fourtimes @ tMp (Suc 0) |
|
2860 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0))" |
|
2861 apply(rule_tac t_compiled_correct, simp_all) |
|
2862 apply(simp add: fourtimes_ly_def) |
|
2863 done |
|
2864 |
|
2865 |
|
2866 lemma [intro]: "t_correct t_wcode_main" |
|
2867 apply(auto simp: t_wcode_main_def t_correct.simps shift_length |
|
2868 t_twice_def t_fourtimes_def) |
|
2869 proof - |
|
2870 show "iseven (60 + (length (tm_of abc_twice) + |
|
2871 length (tm_of abc_fourtimes)))" |
|
2872 using twice_len_even fourtimes_len_even |
|
2873 apply(auto simp: iseven_def) |
|
2874 apply(rule_tac x = "30 + q + qa" in exI, simp) |
|
2875 done |
|
2876 next |
|
2877 show " list_all (\<lambda>(acn, s). s \<le> (60 + (length (tm_of abc_twice) + |
|
2878 length (tm_of abc_fourtimes))) div 2) t_wcode_main_first_part" |
|
2879 apply(auto simp: t_wcode_main_first_part_def shift_length t_twice_def) |
|
2880 done |
|
2881 next |
|
2882 have "list_all (\<lambda>(acn, s). s \<le> Suc (length (tm_of abc_twice @ tMp (Suc 0) |
|
2883 (start_of twice_ly (length abc_twice) - Suc 0)) div 2)) |
|
2884 (change_termi_state (tm_of abc_twice @ tMp (Suc 0) |
|
2885 (start_of twice_ly (length abc_twice) - Suc 0)))" |
|
2886 apply(rule_tac t_correct_termi, auto) |
|
2887 done |
|
2888 hence "list_all (\<lambda>(acn, s). s \<le> Suc (length (tm_of abc_twice @ tMp (Suc 0) |
|
2889 (start_of twice_ly (length abc_twice) - Suc 0)) div 2) + 12) |
|
2890 (abacus.tshift (change_termi_state (tm_of abc_twice @ tMp (Suc 0) |
|
2891 (start_of twice_ly (length abc_twice) - Suc 0))) 12)" |
|
2892 apply(rule_tac t_correct_shift, simp) |
|
2893 done |
|
2894 thus "list_all (\<lambda>(acn, s). s \<le> |
|
2895 (60 + (length (tm_of abc_twice) + length (tm_of abc_fourtimes))) div 2) |
|
2896 (abacus.tshift (change_termi_state (tm_of abc_twice @ tMp (Suc 0) |
|
2897 (start_of twice_ly (length abc_twice) - Suc 0))) 12)" |
|
2898 apply(simp) |
|
2899 apply(simp add: list_all_length, auto) |
|
2900 done |
|
2901 next |
|
2902 have "list_all (\<lambda>(acn, s). s \<le> Suc (length (tm_of abc_fourtimes @ tMp (Suc 0) |
|
2903 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0)) div 2)) |
|
2904 (change_termi_state (tm_of abc_fourtimes @ tMp (Suc 0) |
|
2905 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0))) " |
|
2906 apply(rule_tac t_correct_termi, auto) |
|
2907 done |
|
2908 hence "list_all (\<lambda>(acn, s). s \<le> Suc (length (tm_of abc_fourtimes @ tMp (Suc 0) |
|
2909 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0)) div 2) + (t_twice_len + 13)) |
|
2910 (abacus.tshift (change_termi_state (tm_of abc_fourtimes @ tMp (Suc 0) |
|
2911 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0))) (t_twice_len + 13))" |
|
2912 apply(rule_tac t_correct_shift, simp) |
|
2913 done |
|
2914 thus "list_all (\<lambda>(acn, s). s \<le> (60 + (length (tm_of abc_twice) + length (tm_of abc_fourtimes))) div 2) |
|
2915 (abacus.tshift (change_termi_state (tm_of abc_fourtimes @ tMp (Suc 0) |
|
2916 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0))) (t_twice_len + 13))" |
|
2917 apply(simp add: t_twice_len_def t_twice_def) |
|
2918 using twice_len_even fourtimes_len_even |
|
2919 apply(auto simp: list_all_length) |
|
2920 done |
|
2921 qed |
|
2922 |
|
2923 lemma [intro]: "t_correct (t_wcode_prepare |+| t_wcode_main)" |
|
2924 apply(auto intro: t_correct_add) |
|
2925 done |
|
2926 |
|
2927 lemma prepare_mainpart_lemma: |
|
2928 "args \<noteq> [] \<Longrightarrow> |
|
2929 \<exists> stp ln rn. steps (Suc 0, [], <m # args>) (t_wcode_prepare |+| t_wcode_main) stp |
|
2930 = (0, Bk # Oc\<^bsup>Suc m\<^esup>, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<args>)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2931 proof - |
|
2932 let ?P1 = "\<lambda> (l, r). l = [] \<and> r = <m # args>" |
|
2933 let ?Q1 = "\<lambda> (l, r). wprepare_stop m args (l, r)" |
|
2934 let ?P2 = ?Q1 |
|
2935 let ?Q2 = "\<lambda> (l, r). (\<exists> ln rn. l = Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
2936 r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<args>)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2937 let ?P3 = "\<lambda> tp. False" |
|
2938 assume h: "args \<noteq> []" |
|
2939 have "?P1 \<turnstile>-> \<lambda> tp. (\<exists> stp tp'. steps (Suc 0, tp) |
|
2940 (t_wcode_prepare |+| t_wcode_main) stp = (0, tp') \<and> ?Q2 tp')" |
|
2941 proof(rule_tac turing_merge.t_merge_halt[of t_wcode_prepare t_wcode_main ?P1 ?P2 ?P3 ?P3 ?Q1 ?Q2], |
|
2942 auto simp: turing_merge_def) |
|
2943 show "\<exists>stp. case steps (Suc 0, [], <m # args>) t_wcode_prepare stp of (st, tp') |
|
2944 \<Rightarrow> st = 0 \<and> wprepare_stop m args tp'" |
|
2945 using wprepare_correctness[of args m] h |
|
2946 apply(simp, auto) |
|
2947 apply(rule_tac x = n in exI, simp add: wprepare_inv.simps) |
|
2948 done |
|
2949 next |
|
2950 fix a b |
|
2951 assume "wprepare_stop m args (a, b)" |
|
2952 thus "\<exists>stp. case steps (Suc 0, a, b) t_wcode_main stp of |
|
2953 (st, tp') \<Rightarrow> (st = 0) \<and> (case tp' of (l, r) \<Rightarrow> l = Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
2954 (\<exists>ln rn. r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<args>)\<^esup> @ Bk\<^bsup>rn\<^esup>))" |
|
2955 proof(simp only: wprepare_stop.simps, erule_tac exE) |
|
2956 fix rn |
|
2957 assume "a = Bk # <rev args> @ Bk # Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
2958 b = Bk # Oc # Bk\<^bsup>rn\<^esup>" |
|
2959 thus "?thesis" |
|
2960 using t_wcode_main_lemma_pre[of "args" "<args>" 0 "Oc\<^bsup>Suc m\<^esup>" 0 rn] h |
|
2961 apply(simp) |
|
2962 apply(erule_tac exE)+ |
|
2963 apply(rule_tac x = stp in exI, simp add: tape_of_nl_rev, auto) |
|
2964 done |
|
2965 qed |
|
2966 next |
|
2967 show "wprepare_stop m args \<turnstile>-> wprepare_stop m args" |
|
2968 by(simp add: t_imply_def) |
|
2969 qed |
|
2970 thus "\<exists> stp ln rn. steps (Suc 0, [], <m # args>) (t_wcode_prepare |+| t_wcode_main) stp |
|
2971 = (0, Bk # Oc\<^bsup>Suc m\<^esup>, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<args>)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2972 apply(simp add: t_imply_def) |
|
2973 apply(erule_tac exE)+ |
|
2974 apply(auto) |
|
2975 done |
|
2976 qed |
|
2977 |
|
2978 |
|
2979 lemma [simp]: "tinres r r' \<Longrightarrow> |
|
2980 fetch t ss (case r of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x) = |
|
2981 fetch t ss (case r' of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)" |
|
2982 apply(simp add: fetch.simps, auto split: if_splits simp: tinres_def) |
|
2983 apply(case_tac [!] r', simp_all) |
|
2984 apply(case_tac [!] n, simp_all add: exp_ind_def) |
|
2985 apply(case_tac [!] r, simp_all) |
|
2986 done |
|
2987 |
|
2988 lemma [intro]: "\<exists> n. (a::block)\<^bsup>n\<^esup> = []" |
|
2989 by auto |
|
2990 |
|
2991 lemma [simp]: "\<lbrakk>tinres r r'; r \<noteq> []; r' \<noteq> []\<rbrakk> \<Longrightarrow> hd r = hd r'" |
|
2992 apply(auto simp: tinres_def) |
|
2993 done |
|
2994 |
|
2995 lemma [intro]: "hd (Bk\<^bsup>Suc n\<^esup>) = Bk" |
|
2996 apply(simp add: exp_ind_def) |
|
2997 done |
|
2998 |
|
2999 lemma [simp]: "\<lbrakk>tinres r []; r \<noteq> []\<rbrakk> \<Longrightarrow> hd r = Bk" |
|
3000 apply(auto simp: tinres_def) |
|
3001 apply(case_tac n, auto) |
|
3002 done |
|
3003 |
|
3004 lemma [simp]: "\<lbrakk>tinres [] r'; r' \<noteq> []\<rbrakk> \<Longrightarrow> hd r' = Bk" |
|
3005 apply(auto simp: tinres_def) |
|
3006 done |
|
3007 |
|
3008 lemma [intro]: "\<exists>na. tl r = tl (r @ Bk\<^bsup>n\<^esup>) @ Bk\<^bsup>na\<^esup> \<or> tl (r @ Bk\<^bsup>n\<^esup>) = tl r @ Bk\<^bsup>na\<^esup>" |
|
3009 apply(case_tac r, simp) |
|
3010 apply(case_tac n, simp) |
|
3011 apply(rule_tac x = 0 in exI, simp) |
|
3012 apply(rule_tac x = nat in exI, simp add: exp_ind_def) |
|
3013 apply(simp) |
|
3014 apply(rule_tac x = n in exI, simp) |
|
3015 done |
|
3016 |
|
3017 lemma [simp]: "tinres r r' \<Longrightarrow> tinres (tl r) (tl r')" |
|
3018 apply(auto simp: tinres_def) |
|
3019 apply(case_tac r', simp_all) |
|
3020 apply(case_tac n, simp_all add: exp_ind_def) |
|
3021 apply(rule_tac x = 0 in exI, simp) |
|
3022 apply(rule_tac x = nat in exI, simp_all) |
|
3023 apply(rule_tac x = n in exI, simp) |
|
3024 done |
|
3025 |
|
3026 lemma [simp]: "\<lbrakk>tinres r []; r \<noteq> []\<rbrakk> \<Longrightarrow> tinres (tl r) []" |
|
3027 apply(case_tac r, auto simp: tinres_def) |
|
3028 apply(case_tac n, simp_all add: exp_ind_def) |
|
3029 apply(rule_tac x = nat in exI, simp) |
|
3030 done |
|
3031 |
|
3032 lemma [simp]: "\<lbrakk>tinres [] r'\<rbrakk> \<Longrightarrow> tinres [] (tl r')" |
|
3033 apply(case_tac r', auto simp: tinres_def) |
|
3034 apply(case_tac n, simp_all add: exp_ind_def) |
|
3035 apply(rule_tac x = nat in exI, simp) |
|
3036 done |
|
3037 |
|
3038 lemma [simp]: "tinres r r' \<Longrightarrow> tinres (b # r) (b # r')" |
|
3039 apply(auto simp: tinres_def) |
|
3040 done |
|
3041 |
|
3042 lemma tinres_step2: |
|
3043 "\<lbrakk>tinres r r'; tstep (ss, l, r) t = (sa, la, ra); tstep (ss, l, r') t = (sb, lb, rb)\<rbrakk> |
|
3044 \<Longrightarrow> la = lb \<and> tinres ra rb \<and> sa = sb" |
|
3045 apply(case_tac "ss = 0", simp add: tstep_0) |
|
3046 apply(simp add: tstep.simps [simp del]) |
|
3047 apply(case_tac "fetch t ss (case r of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)", simp) |
|
3048 apply(auto simp: new_tape.simps) |
|
3049 apply(simp_all split: taction.splits if_splits) |
|
3050 apply(auto) |
|
3051 done |
|
3052 |
|
3053 |
|
3054 lemma tinres_steps2: |
|
3055 "\<lbrakk>tinres r r'; steps (ss, l, r) t stp = (sa, la, ra); steps (ss, l, r') t stp = (sb, lb, rb)\<rbrakk> |
|
3056 \<Longrightarrow> la = lb \<and> tinres ra rb \<and> sa = sb" |
|
3057 apply(induct stp arbitrary: sa la ra sb lb rb, simp add: steps.simps) |
|
3058 apply(simp add: tstep_red) |
|
3059 apply(case_tac "(steps (ss, l, r) t stp)") |
|
3060 apply(case_tac "(steps (ss, l, r') t stp)") |
|
3061 proof - |
|
3062 fix stp sa la ra sb lb rb a b c aa ba ca |
|
3063 assume ind: "\<And>sa la ra sb lb rb. \<lbrakk>steps (ss, l, r) t stp = (sa, la, ra); |
|
3064 steps (ss, l, r') t stp = (sb, lb, rb)\<rbrakk> \<Longrightarrow> la = lb \<and> tinres ra rb \<and> sa = sb" |
|
3065 and h: " tinres r r'" "tstep (steps (ss, l, r) t stp) t = (sa, la, ra)" |
|
3066 "tstep (steps (ss, l, r') t stp) t = (sb, lb, rb)" "steps (ss, l, r) t stp = (a, b, c)" |
|
3067 "steps (ss, l, r') t stp = (aa, ba, ca)" |
|
3068 have "b = ba \<and> tinres c ca \<and> a = aa" |
|
3069 apply(rule_tac ind, simp_all add: h) |
|
3070 done |
|
3071 thus "la = lb \<and> tinres ra rb \<and> sa = sb" |
|
3072 apply(rule_tac l = b and r = c and ss = a and r' = ca |
|
3073 and t = t in tinres_step2) |
|
3074 using h |
|
3075 apply(simp, simp, simp) |
|
3076 done |
|
3077 qed |
|
3078 |
|
3079 |
|
3080 text{**************Begin: adjust***************************} |
|
3081 definition t_wcode_adjust :: "tprog" |
|
3082 where |
|
3083 "t_wcode_adjust = [(W1, 1), (R, 2), (Nop, 2), (R, 3), (R, 3), (R, 4), |
|
3084 (L, 8), (L, 5), (L, 6), (W0, 5), (L, 6), (R, 7), |
|
3085 (W1, 2), (Nop, 7), (L, 9), (W0, 8), (L, 9), (L, 10), |
|
3086 (L, 11), (L, 10), (R, 0), (L, 11)]" |
|
3087 |
|
3088 lemma [simp]: "fetch t_wcode_adjust (Suc 0) Bk = (W1, 1)" |
|
3089 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3090 done |
|
3091 |
|
3092 lemma [simp]: "fetch t_wcode_adjust (Suc 0) Oc = (R, 2)" |
|
3093 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3094 done |
|
3095 |
|
3096 lemma [simp]: "fetch t_wcode_adjust (Suc (Suc 0)) Oc = (R, 3)" |
|
3097 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3098 done |
|
3099 |
|
3100 lemma [simp]: "fetch t_wcode_adjust (Suc (Suc (Suc 0))) Oc = (R, 4)" |
|
3101 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3102 done |
|
3103 |
|
3104 lemma [simp]: "fetch t_wcode_adjust (Suc (Suc (Suc 0))) Bk = (R, 3)" |
|
3105 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3106 done |
|
3107 |
|
3108 lemma [simp]: "fetch t_wcode_adjust 4 Bk = (L, 8)" |
|
3109 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3110 done |
|
3111 |
|
3112 lemma [simp]: "fetch t_wcode_adjust 4 Oc = (L, 5)" |
|
3113 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3114 done |
|
3115 |
|
3116 lemma [simp]: "fetch t_wcode_adjust 5 Oc = (W0, 5)" |
|
3117 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3118 done |
|
3119 |
|
3120 lemma [simp]: "fetch t_wcode_adjust 5 Bk = (L, 6)" |
|
3121 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3122 done |
|
3123 |
|
3124 lemma [simp]: "fetch t_wcode_adjust 6 Oc = (R, 7)" |
|
3125 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3126 done |
|
3127 |
|
3128 lemma [simp]: "fetch t_wcode_adjust 6 Bk = (L, 6)" |
|
3129 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3130 done |
|
3131 |
|
3132 lemma [simp]: "fetch t_wcode_adjust 7 Bk = (W1, 2)" |
|
3133 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3134 done |
|
3135 |
|
3136 lemma [simp]: "fetch t_wcode_adjust 8 Bk = (L, 9)" |
|
3137 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3138 done |
|
3139 |
|
3140 lemma [simp]: "fetch t_wcode_adjust 8 Oc = (W0, 8)" |
|
3141 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3142 done |
|
3143 |
|
3144 lemma [simp]: "fetch t_wcode_adjust 9 Oc = (L, 10)" |
|
3145 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3146 done |
|
3147 |
|
3148 lemma [simp]: "fetch t_wcode_adjust 9 Bk = (L, 9)" |
|
3149 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3150 done |
|
3151 |
|
3152 lemma [simp]: "fetch t_wcode_adjust 10 Bk = (L, 11)" |
|
3153 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3154 done |
|
3155 |
|
3156 lemma [simp]: "fetch t_wcode_adjust 10 Oc = (L, 10)" |
|
3157 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3158 done |
|
3159 |
|
3160 lemma [simp]: "fetch t_wcode_adjust 11 Oc = (L, 11)" |
|
3161 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3162 done |
|
3163 |
|
3164 lemma [simp]: "fetch t_wcode_adjust 11 Bk = (R, 0)" |
|
3165 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3166 done |
|
3167 |
|
3168 fun wadjust_start :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3169 where |
|
3170 "wadjust_start m rs (l, r) = |
|
3171 (\<exists> ln rn. l = Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3172 tl r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
3173 |
|
3174 fun wadjust_loop_start :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3175 where |
|
3176 "wadjust_loop_start m rs (l, r) = |
|
3177 (\<exists> ln rn ml mr. l = Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3178 r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
3179 ml + mr = Suc (Suc rs) \<and> mr > 0)" |
|
3180 |
|
3181 fun wadjust_loop_right_move :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3182 where |
|
3183 "wadjust_loop_right_move m rs (l, r) = |
|
3184 (\<exists> ml mr nl nr rn. l = Bk\<^bsup>nl\<^esup> @ Oc # Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3185 r = Bk\<^bsup>nr\<^esup> @ Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
3186 ml + mr = Suc (Suc rs) \<and> mr > 0 \<and> |
|
3187 nl + nr > 0)" |
|
3188 |
|
3189 fun wadjust_loop_check :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3190 where |
|
3191 "wadjust_loop_check m rs (l, r) = |
|
3192 (\<exists> ml mr ln rn. l = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc # Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3193 r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> ml + mr = (Suc rs))" |
|
3194 |
|
3195 fun wadjust_loop_erase :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3196 where |
|
3197 "wadjust_loop_erase m rs (l, r) = |
|
3198 (\<exists> ml mr ln rn. l = Bk\<^bsup>ln\<^esup> @ Bk # Oc # Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3199 tl r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> ml + mr = (Suc rs) \<and> mr > 0)" |
|
3200 |
|
3201 fun wadjust_loop_on_left_moving_O :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3202 where |
|
3203 "wadjust_loop_on_left_moving_O m rs (l, r) = |
|
3204 (\<exists> ml mr ln rn. l = Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m \<^esup>\<and> |
|
3205 r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
3206 ml + mr = Suc rs \<and> mr > 0)" |
|
3207 |
|
3208 fun wadjust_loop_on_left_moving_B :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3209 where |
|
3210 "wadjust_loop_on_left_moving_B m rs (l, r) = |
|
3211 (\<exists> ml mr nl nr rn. l = Bk\<^bsup>nl\<^esup> @ Oc # Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3212 r = Bk\<^bsup>nr\<^esup> @ Bk # Bk # Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
3213 ml + mr = Suc rs \<and> mr > 0)" |
|
3214 |
|
3215 fun wadjust_loop_on_left_moving :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3216 where |
|
3217 "wadjust_loop_on_left_moving m rs (l, r) = |
|
3218 (wadjust_loop_on_left_moving_O m rs (l, r) \<or> |
|
3219 wadjust_loop_on_left_moving_B m rs (l, r))" |
|
3220 |
|
3221 fun wadjust_loop_right_move2 :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3222 where |
|
3223 "wadjust_loop_right_move2 m rs (l, r) = |
|
3224 (\<exists> ml mr ln rn. l = Oc # Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3225 r = Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
3226 ml + mr = Suc rs \<and> mr > 0)" |
|
3227 |
|
3228 fun wadjust_erase2 :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3229 where |
|
3230 "wadjust_erase2 m rs (l, r) = |
|
3231 (\<exists> ln rn. l = Bk\<^bsup>ln\<^esup> @ Bk # Oc # Oc\<^bsup>Suc rs\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3232 tl r = Bk\<^bsup>rn\<^esup>)" |
|
3233 |
|
3234 fun wadjust_on_left_moving_O :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3235 where |
|
3236 "wadjust_on_left_moving_O m rs (l, r) = |
|
3237 (\<exists> rn. l = Oc\<^bsup>Suc rs\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3238 r = Oc # Bk\<^bsup>rn\<^esup>)" |
|
3239 |
|
3240 fun wadjust_on_left_moving_B :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3241 where |
|
3242 "wadjust_on_left_moving_B m rs (l, r) = |
|
3243 (\<exists> ln rn. l = Bk\<^bsup>ln\<^esup> @ Oc # Oc\<^bsup>Suc rs\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3244 r = Bk\<^bsup>rn\<^esup>)" |
|
3245 |
|
3246 fun wadjust_on_left_moving :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3247 where |
|
3248 "wadjust_on_left_moving m rs (l, r) = |
|
3249 (wadjust_on_left_moving_O m rs (l, r) \<or> |
|
3250 wadjust_on_left_moving_B m rs (l, r))" |
|
3251 |
|
3252 fun wadjust_goon_left_moving_B :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3253 where |
|
3254 "wadjust_goon_left_moving_B m rs (l, r) = |
|
3255 (\<exists> rn. l = Oc\<^bsup>Suc m\<^esup> \<and> |
|
3256 r = Bk # Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
3257 |
|
3258 fun wadjust_goon_left_moving_O :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3259 where |
|
3260 "wadjust_goon_left_moving_O m rs (l, r) = |
|
3261 (\<exists> ml mr rn. l = Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3262 r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
3263 ml + mr = Suc (Suc rs) \<and> mr > 0)" |
|
3264 |
|
3265 fun wadjust_goon_left_moving :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3266 where |
|
3267 "wadjust_goon_left_moving m rs (l, r) = |
|
3268 (wadjust_goon_left_moving_B m rs (l, r) \<or> |
|
3269 wadjust_goon_left_moving_O m rs (l, r))" |
|
3270 |
|
3271 fun wadjust_backto_standard_pos_B :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3272 where |
|
3273 "wadjust_backto_standard_pos_B m rs (l, r) = |
|
3274 (\<exists> rn. l = [] \<and> |
|
3275 r = Bk # Oc\<^bsup>Suc m \<^esup>@ Bk # Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
3276 |
|
3277 fun wadjust_backto_standard_pos_O :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3278 where |
|
3279 "wadjust_backto_standard_pos_O m rs (l, r) = |
|
3280 (\<exists> ml mr rn. l = Oc\<^bsup>ml\<^esup> \<and> |
|
3281 r = Oc\<^bsup>mr\<^esup> @ Bk # Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
3282 ml + mr = Suc m \<and> mr > 0)" |
|
3283 |
|
3284 fun wadjust_backto_standard_pos :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3285 where |
|
3286 "wadjust_backto_standard_pos m rs (l, r) = |
|
3287 (wadjust_backto_standard_pos_B m rs (l, r) \<or> |
|
3288 wadjust_backto_standard_pos_O m rs (l, r))" |
|
3289 |
|
3290 fun wadjust_stop :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3291 where |
|
3292 "wadjust_stop m rs (l, r) = |
|
3293 (\<exists> rn. l = [Bk] \<and> |
|
3294 r = Oc\<^bsup>Suc m \<^esup>@ Bk # Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
3295 |
|
3296 declare wadjust_start.simps[simp del] wadjust_loop_start.simps[simp del] |
|
3297 wadjust_loop_right_move.simps[simp del] wadjust_loop_check.simps[simp del] |
|
3298 wadjust_loop_erase.simps[simp del] wadjust_loop_on_left_moving.simps[simp del] |
|
3299 wadjust_loop_right_move2.simps[simp del] wadjust_erase2.simps[simp del] |
|
3300 wadjust_on_left_moving_O.simps[simp del] wadjust_on_left_moving_B.simps[simp del] |
|
3301 wadjust_on_left_moving.simps[simp del] wadjust_goon_left_moving_B.simps[simp del] |
|
3302 wadjust_goon_left_moving_O.simps[simp del] wadjust_goon_left_moving.simps[simp del] |
|
3303 wadjust_backto_standard_pos.simps[simp del] wadjust_backto_standard_pos_B.simps[simp del] |
|
3304 wadjust_backto_standard_pos_O.simps[simp del] wadjust_stop.simps[simp del] |
|
3305 |
|
3306 fun wadjust_inv :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3307 where |
|
3308 "wadjust_inv st m rs (l, r) = |
|
3309 (if st = Suc 0 then wadjust_start m rs (l, r) |
|
3310 else if st = Suc (Suc 0) then wadjust_loop_start m rs (l, r) |
|
3311 else if st = Suc (Suc (Suc 0)) then wadjust_loop_right_move m rs (l, r) |
|
3312 else if st = 4 then wadjust_loop_check m rs (l, r) |
|
3313 else if st = 5 then wadjust_loop_erase m rs (l, r) |
|
3314 else if st = 6 then wadjust_loop_on_left_moving m rs (l, r) |
|
3315 else if st = 7 then wadjust_loop_right_move2 m rs (l, r) |
|
3316 else if st = 8 then wadjust_erase2 m rs (l, r) |
|
3317 else if st = 9 then wadjust_on_left_moving m rs (l, r) |
|
3318 else if st = 10 then wadjust_goon_left_moving m rs (l, r) |
|
3319 else if st = 11 then wadjust_backto_standard_pos m rs (l, r) |
|
3320 else if st = 0 then wadjust_stop m rs (l, r) |
|
3321 else False |
|
3322 )" |
|
3323 |
|
3324 declare wadjust_inv.simps[simp del] |
|
3325 |
|
3326 fun wadjust_phase :: "nat \<Rightarrow> t_conf \<Rightarrow> nat" |
|
3327 where |
|
3328 "wadjust_phase rs (st, l, r) = |
|
3329 (if st = 1 then 3 |
|
3330 else if st \<ge> 2 \<and> st \<le> 7 then 2 |
|
3331 else if st \<ge> 8 \<and> st \<le> 11 then 1 |
|
3332 else 0)" |
|
3333 |
|
3334 thm dropWhile.simps |
|
3335 |
|
3336 fun wadjust_stage :: "nat \<Rightarrow> t_conf \<Rightarrow> nat" |
|
3337 where |
|
3338 "wadjust_stage rs (st, l, r) = |
|
3339 (if st \<ge> 2 \<and> st \<le> 7 then |
|
3340 rs - length (takeWhile (\<lambda> a. a = Oc) |
|
3341 (tl (dropWhile (\<lambda> a. a = Oc) (rev l @ r)))) |
|
3342 else 0)" |
|
3343 |
|
3344 fun wadjust_state :: "nat \<Rightarrow> t_conf \<Rightarrow> nat" |
|
3345 where |
|
3346 "wadjust_state rs (st, l, r) = |
|
3347 (if st \<ge> 2 \<and> st \<le> 7 then 8 - st |
|
3348 else if st \<ge> 8 \<and> st \<le> 11 then 12 - st |
|
3349 else 0)" |
|
3350 |
|
3351 fun wadjust_step :: "nat \<Rightarrow> t_conf \<Rightarrow> nat" |
|
3352 where |
|
3353 "wadjust_step rs (st, l, r) = |
|
3354 (if st = 1 then (if hd r = Bk then 1 |
|
3355 else 0) |
|
3356 else if st = 3 then length r |
|
3357 else if st = 5 then (if hd r = Oc then 1 |
|
3358 else 0) |
|
3359 else if st = 6 then length l |
|
3360 else if st = 8 then (if hd r = Oc then 1 |
|
3361 else 0) |
|
3362 else if st = 9 then length l |
|
3363 else if st = 10 then length l |
|
3364 else if st = 11 then (if hd r = Bk then 0 |
|
3365 else Suc (length l)) |
|
3366 else 0)" |
|
3367 |
|
3368 fun wadjust_measure :: "(nat \<times> t_conf) \<Rightarrow> nat \<times> nat \<times> nat \<times> nat" |
|
3369 where |
|
3370 "wadjust_measure (rs, (st, l, r)) = |
|
3371 (wadjust_phase rs (st, l, r), |
|
3372 wadjust_stage rs (st, l, r), |
|
3373 wadjust_state rs (st, l, r), |
|
3374 wadjust_step rs (st, l, r))" |
|
3375 |
|
3376 definition wadjust_le :: "((nat \<times> t_conf) \<times> nat \<times> t_conf) set" |
|
3377 where "wadjust_le \<equiv> (inv_image lex_square wadjust_measure)" |
|
3378 |
|
3379 lemma [intro]: "wf lex_square" |
|
3380 by(auto intro:wf_lex_prod simp: abacus.lex_pair_def lex_square_def |
|
3381 abacus.lex_triple_def) |
|
3382 |
|
3383 lemma wf_wadjust_le[intro]: "wf wadjust_le" |
|
3384 by(auto intro:wf_inv_image simp: wadjust_le_def |
|
3385 abacus.lex_triple_def abacus.lex_pair_def) |
|
3386 |
|
3387 lemma [simp]: "wadjust_start m rs (c, []) = False" |
|
3388 apply(auto simp: wadjust_start.simps) |
|
3389 done |
|
3390 |
|
3391 lemma [simp]: "wadjust_loop_right_move m rs (c, []) \<Longrightarrow> c \<noteq> []" |
|
3392 apply(auto simp: wadjust_loop_right_move.simps) |
|
3393 done |
|
3394 |
|
3395 lemma [simp]: "wadjust_loop_right_move m rs (c, []) |
|
3396 \<Longrightarrow> wadjust_loop_check m rs (Bk # c, [])" |
|
3397 apply(simp only: wadjust_loop_right_move.simps wadjust_loop_check.simps) |
|
3398 apply(auto) |
|
3399 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
3400 done |
|
3401 |
|
3402 lemma [simp]: "wadjust_loop_check m rs (c, []) \<Longrightarrow> c \<noteq> []" |
|
3403 apply(simp only: wadjust_loop_check.simps, auto) |
|
3404 done |
|
3405 |
|
3406 lemma [simp]: "wadjust_loop_start m rs (c, []) = False" |
|
3407 apply(simp add: wadjust_loop_start.simps) |
|
3408 done |
|
3409 |
|
3410 lemma [simp]: "wadjust_loop_right_move m rs (c, []) \<Longrightarrow> |
|
3411 wadjust_loop_right_move m rs (Bk # c, [])" |
|
3412 apply(simp only: wadjust_loop_right_move.simps) |
|
3413 apply(erule_tac exE)+ |
|
3414 apply(auto) |
|
3415 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
3416 done |
|
3417 |
|
3418 lemma [simp]: "wadjust_loop_check m rs (c, []) \<Longrightarrow> wadjust_erase2 m rs (tl c, [hd c])" |
|
3419 apply(simp only: wadjust_loop_check.simps wadjust_erase2.simps, auto) |
|
3420 apply(case_tac mr, simp_all add: exp_ind_def, auto) |
|
3421 done |
|
3422 |
|
3423 lemma [simp]: " wadjust_loop_erase m rs (c, []) |
|
3424 \<Longrightarrow> (c = [] \<longrightarrow> wadjust_loop_on_left_moving m rs ([], [Bk])) \<and> |
|
3425 (c \<noteq> [] \<longrightarrow> wadjust_loop_on_left_moving m rs (tl c, [hd c]))" |
|
3426 apply(simp add: wadjust_loop_erase.simps, auto) |
|
3427 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
3428 done |
|
3429 |
|
3430 lemma [simp]: "wadjust_loop_on_left_moving m rs (c, []) = False" |
|
3431 apply(auto simp: wadjust_loop_on_left_moving.simps) |
|
3432 done |
|
3433 |
|
3434 |
|
3435 lemma [simp]: "wadjust_loop_right_move2 m rs (c, []) = False" |
|
3436 apply(auto simp: wadjust_loop_right_move2.simps) |
|
3437 done |
|
3438 |
|
3439 lemma [simp]: "wadjust_erase2 m rs ([], []) = False" |
|
3440 apply(auto simp: wadjust_erase2.simps) |
|
3441 done |
|
3442 |
|
3443 lemma [simp]: "wadjust_on_left_moving_B m rs |
|
3444 (Oc # Oc # Oc\<^bsup>rs\<^esup> @ Bk # Oc # Oc\<^bsup>m\<^esup>, [Bk])" |
|
3445 apply(simp add: wadjust_on_left_moving_B.simps, auto) |
|
3446 apply(rule_tac x = 0 in exI, simp add: exp_ind_def) |
|
3447 done |
|
3448 |
|
3449 lemma [simp]: "wadjust_on_left_moving_B m rs |
|
3450 (Bk\<^bsup>n\<^esup> @ Bk # Oc # Oc # Oc\<^bsup>rs\<^esup> @ Bk # Oc # Oc\<^bsup>m\<^esup>, [Bk])" |
|
3451 apply(simp add: wadjust_on_left_moving_B.simps exp_ind_def, auto) |
|
3452 apply(rule_tac x = "Suc n" in exI, simp add: exp_ind) |
|
3453 done |
|
3454 |
|
3455 lemma [simp]: "\<lbrakk>wadjust_erase2 m rs (c, []); c \<noteq> []\<rbrakk> \<Longrightarrow> |
|
3456 wadjust_on_left_moving m rs (tl c, [hd c])" |
|
3457 apply(simp only: wadjust_erase2.simps) |
|
3458 apply(erule_tac exE)+ |
|
3459 apply(case_tac ln, simp_all add: exp_ind_def wadjust_on_left_moving.simps) |
|
3460 done |
|
3461 |
|
3462 lemma [simp]: "wadjust_erase2 m rs (c, []) |
|
3463 \<Longrightarrow> (c = [] \<longrightarrow> wadjust_on_left_moving m rs ([], [Bk])) \<and> |
|
3464 (c \<noteq> [] \<longrightarrow> wadjust_on_left_moving m rs (tl c, [hd c]))" |
|
3465 apply(auto) |
|
3466 done |
|
3467 |
|
3468 lemma [simp]: "wadjust_on_left_moving m rs ([], []) = False" |
|
3469 apply(simp add: wadjust_on_left_moving.simps |
|
3470 wadjust_on_left_moving_O.simps wadjust_on_left_moving_B.simps) |
|
3471 done |
|
3472 |
|
3473 lemma [simp]: "wadjust_on_left_moving_O m rs (c, []) = False" |
|
3474 apply(simp add: wadjust_on_left_moving_O.simps) |
|
3475 done |
|
3476 |
|
3477 lemma [simp]: " \<lbrakk>wadjust_on_left_moving_B m rs (c, []); c \<noteq> []; hd c = Bk\<rbrakk> \<Longrightarrow> |
|
3478 wadjust_on_left_moving_B m rs (tl c, [Bk])" |
|
3479 apply(simp add: wadjust_on_left_moving_B.simps, auto) |
|
3480 apply(case_tac [!] ln, simp_all add: exp_ind_def, auto) |
|
3481 done |
|
3482 |
|
3483 lemma [simp]: "\<lbrakk>wadjust_on_left_moving_B m rs (c, []); c \<noteq> []; hd c = Oc\<rbrakk> \<Longrightarrow> |
|
3484 wadjust_on_left_moving_O m rs (tl c, [Oc])" |
|
3485 apply(simp add: wadjust_on_left_moving_B.simps wadjust_on_left_moving_O.simps, auto) |
|
3486 apply(case_tac [!] ln, simp_all add: exp_ind_def) |
|
3487 done |
|
3488 |
|
3489 lemma [simp]: "\<lbrakk>wadjust_on_left_moving m rs (c, []); c \<noteq> []\<rbrakk> \<Longrightarrow> |
|
3490 wadjust_on_left_moving m rs (tl c, [hd c])" |
|
3491 apply(simp add: wadjust_on_left_moving.simps) |
|
3492 apply(case_tac "hd c", simp_all) |
|
3493 done |
|
3494 |
|
3495 lemma [simp]: "wadjust_on_left_moving m rs (c, []) |
|
3496 \<Longrightarrow> (c = [] \<longrightarrow> wadjust_on_left_moving m rs ([], [Bk])) \<and> |
|
3497 (c \<noteq> [] \<longrightarrow> wadjust_on_left_moving m rs (tl c, [hd c]))" |
|
3498 apply(auto) |
|
3499 done |
|
3500 |
|
3501 lemma [simp]: "wadjust_goon_left_moving m rs (c, []) = False" |
|
3502 apply(auto simp: wadjust_goon_left_moving.simps wadjust_goon_left_moving_B.simps |
|
3503 wadjust_goon_left_moving_O.simps) |
|
3504 done |
|
3505 |
|
3506 lemma [simp]: "wadjust_backto_standard_pos m rs (c, []) = False" |
|
3507 apply(auto simp: wadjust_backto_standard_pos.simps |
|
3508 wadjust_backto_standard_pos_B.simps wadjust_backto_standard_pos_O.simps) |
|
3509 done |
|
3510 |
|
3511 lemma [simp]: |
|
3512 "wadjust_start m rs (c, Bk # list) \<Longrightarrow> |
|
3513 (c = [] \<longrightarrow> wadjust_start m rs ([], Oc # list)) \<and> |
|
3514 (c \<noteq> [] \<longrightarrow> wadjust_start m rs (c, Oc # list))" |
|
3515 apply(auto simp: wadjust_start.simps) |
|
3516 done |
|
3517 |
|
3518 lemma [simp]: "wadjust_loop_start m rs (c, Bk # list) = False" |
|
3519 apply(auto simp: wadjust_loop_start.simps) |
|
3520 done |
|
3521 |
|
3522 lemma [simp]: "wadjust_loop_right_move m rs (c, b) \<Longrightarrow> c \<noteq> []" |
|
3523 apply(simp only: wadjust_loop_right_move.simps, auto) |
|
3524 done |
|
3525 |
|
3526 lemma [simp]: "wadjust_loop_right_move m rs (c, Bk # list) |
|
3527 \<Longrightarrow> wadjust_loop_right_move m rs (Bk # c, list)" |
|
3528 apply(simp only: wadjust_loop_right_move.simps) |
|
3529 apply(erule_tac exE)+ |
|
3530 apply(rule_tac x = ml in exI, simp) |
|
3531 apply(rule_tac x = mr in exI, simp) |
|
3532 apply(rule_tac x = "Suc nl" in exI, simp add: exp_ind_def) |
|
3533 apply(case_tac nr, simp, case_tac mr, simp_all add: exp_ind_def) |
|
3534 apply(rule_tac x = nat in exI, auto) |
|
3535 done |
|
3536 |
|
3537 lemma [simp]: "wadjust_loop_check m rs (c, b) \<Longrightarrow> c \<noteq> []" |
|
3538 apply(simp only: wadjust_loop_check.simps, auto) |
|
3539 done |
|
3540 |
|
3541 lemma [simp]: "wadjust_loop_check m rs (c, Bk # list) |
|
3542 \<Longrightarrow> wadjust_erase2 m rs (tl c, hd c # Bk # list)" |
|
3543 apply(auto simp: wadjust_loop_check.simps wadjust_erase2.simps) |
|
3544 apply(case_tac [!] mr, simp_all add: exp_ind_def, auto) |
|
3545 done |
|
3546 |
|
3547 lemma [simp]: "wadjust_loop_erase m rs (c, b) \<Longrightarrow> c \<noteq> []" |
|
3548 apply(simp only: wadjust_loop_erase.simps, auto) |
|
3549 done |
|
3550 |
|
3551 declare wadjust_loop_on_left_moving_O.simps[simp del] |
|
3552 wadjust_loop_on_left_moving_B.simps[simp del] |
|
3553 |
|
3554 lemma [simp]: "\<lbrakk>wadjust_loop_erase m rs (c, Bk # list); hd c = Bk\<rbrakk> |
|
3555 \<Longrightarrow> wadjust_loop_on_left_moving_B m rs (tl c, Bk # Bk # list)" |
|
3556 apply(simp only: wadjust_loop_erase.simps |
|
3557 wadjust_loop_on_left_moving_B.simps) |
|
3558 apply(erule_tac exE)+ |
|
3559 apply(rule_tac x = ml in exI, rule_tac x = mr in exI, |
|
3560 rule_tac x = ln in exI, rule_tac x = 0 in exI, simp) |
|
3561 apply(case_tac ln, simp_all add: exp_ind_def, auto) |
|
3562 apply(simp add: exp_ind exp_ind_def[THEN sym]) |
|
3563 done |
|
3564 |
|
3565 lemma [simp]: "\<lbrakk>wadjust_loop_erase m rs (c, Bk # list); c \<noteq> []; hd c = Oc\<rbrakk> \<Longrightarrow> |
|
3566 wadjust_loop_on_left_moving_O m rs (tl c, Oc # Bk # list)" |
|
3567 apply(simp only: wadjust_loop_erase.simps wadjust_loop_on_left_moving_O.simps, |
|
3568 auto) |
|
3569 apply(case_tac [!] ln, simp_all add: exp_ind_def) |
|
3570 done |
|
3571 |
|
3572 lemma [simp]: "\<lbrakk>wadjust_loop_erase m rs (c, Bk # list); c \<noteq> []\<rbrakk> \<Longrightarrow> |
|
3573 wadjust_loop_on_left_moving m rs (tl c, hd c # Bk # list)" |
|
3574 apply(case_tac "hd c", simp_all add:wadjust_loop_on_left_moving.simps) |
|
3575 done |
|
3576 |
|
3577 lemma [simp]: "wadjust_loop_on_left_moving m rs (c, b) \<Longrightarrow> c \<noteq> []" |
|
3578 apply(simp add: wadjust_loop_on_left_moving.simps |
|
3579 wadjust_loop_on_left_moving_O.simps wadjust_loop_on_left_moving_B.simps, auto) |
|
3580 done |
|
3581 |
|
3582 lemma [simp]: "wadjust_loop_on_left_moving_O m rs (c, Bk # list) = False" |
|
3583 apply(simp add: wadjust_loop_on_left_moving_O.simps) |
|
3584 done |
|
3585 |
|
3586 lemma [simp]: "\<lbrakk>wadjust_loop_on_left_moving_B m rs (c, Bk # list); hd c = Bk\<rbrakk> |
|
3587 \<Longrightarrow> wadjust_loop_on_left_moving_B m rs (tl c, Bk # Bk # list)" |
|
3588 apply(simp only: wadjust_loop_on_left_moving_B.simps) |
|
3589 apply(erule_tac exE)+ |
|
3590 apply(rule_tac x = ml in exI, rule_tac x = mr in exI) |
|
3591 apply(case_tac nl, simp_all add: exp_ind_def, auto) |
|
3592 apply(rule_tac x = "Suc nr" in exI, auto simp: exp_ind_def) |
|
3593 done |
|
3594 |
|
3595 lemma [simp]: "\<lbrakk>wadjust_loop_on_left_moving_B m rs (c, Bk # list); hd c = Oc\<rbrakk> |
|
3596 \<Longrightarrow> wadjust_loop_on_left_moving_O m rs (tl c, Oc # Bk # list)" |
|
3597 apply(simp only: wadjust_loop_on_left_moving_O.simps |
|
3598 wadjust_loop_on_left_moving_B.simps) |
|
3599 apply(erule_tac exE)+ |
|
3600 apply(rule_tac x = ml in exI, rule_tac x = mr in exI) |
|
3601 apply(case_tac nl, simp_all add: exp_ind_def, auto) |
|
3602 done |
|
3603 |
|
3604 lemma [simp]: "wadjust_loop_on_left_moving m rs (c, Bk # list) |
|
3605 \<Longrightarrow> wadjust_loop_on_left_moving m rs (tl c, hd c # Bk # list)" |
|
3606 apply(simp add: wadjust_loop_on_left_moving.simps) |
|
3607 apply(case_tac "hd c", simp_all) |
|
3608 done |
|
3609 |
|
3610 lemma [simp]: "wadjust_loop_right_move2 m rs (c, b) \<Longrightarrow> c \<noteq> []" |
|
3611 apply(simp only: wadjust_loop_right_move2.simps, auto) |
|
3612 done |
|
3613 |
|
3614 lemma [simp]: "wadjust_loop_right_move2 m rs (c, Bk # list) \<Longrightarrow> wadjust_loop_start m rs (c, Oc # list)" |
|
3615 apply(auto simp: wadjust_loop_right_move2.simps wadjust_loop_start.simps) |
|
3616 apply(case_tac ln, simp_all add: exp_ind_def) |
|
3617 apply(rule_tac x = 0 in exI, simp) |
|
3618 apply(rule_tac x = rn in exI, simp) |
|
3619 apply(rule_tac x = "Suc ml" in exI, simp add: exp_ind_def, auto) |
|
3620 apply(rule_tac x = "Suc nat" in exI, simp add: exp_ind) |
|
3621 apply(rule_tac x = rn in exI, auto) |
|
3622 apply(rule_tac x = "Suc ml" in exI, auto simp: exp_ind_def) |
|
3623 done |
|
3624 |
|
3625 lemma [simp]: "wadjust_erase2 m rs (c, Bk # list) \<Longrightarrow> c \<noteq> []" |
|
3626 apply(auto simp:wadjust_erase2.simps ) |
|
3627 done |
|
3628 |
|
3629 lemma [simp]: "wadjust_erase2 m rs (c, Bk # list) \<Longrightarrow> |
|
3630 wadjust_on_left_moving m rs (tl c, hd c # Bk # list)" |
|
3631 apply(auto simp: wadjust_erase2.simps) |
|
3632 apply(case_tac ln, simp_all add: exp_ind_def wadjust_on_left_moving.simps |
|
3633 wadjust_on_left_moving_O.simps wadjust_on_left_moving_B.simps) |
|
3634 apply(auto) |
|
3635 apply(rule_tac x = "(Suc (Suc rn))" in exI, simp add: exp_ind_def) |
|
3636 apply(rule_tac x = "Suc nat" in exI, simp add: exp_ind) |
|
3637 apply(rule_tac x = "(Suc (Suc rn))" in exI, simp add: exp_ind_def) |
|
3638 done |
|
3639 |
|
3640 lemma [simp]: "wadjust_on_left_moving m rs (c,b) \<Longrightarrow> c \<noteq> []" |
|
3641 apply(simp only:wadjust_on_left_moving.simps |
|
3642 wadjust_on_left_moving_O.simps |
|
3643 wadjust_on_left_moving_B.simps |
|
3644 , auto) |
|
3645 done |
|
3646 |
|
3647 lemma [simp]: "wadjust_on_left_moving_O m rs (c, Bk # list) = False" |
|
3648 apply(simp add: wadjust_on_left_moving_O.simps) |
|
3649 done |
|
3650 |
|
3651 lemma [simp]: "\<lbrakk>wadjust_on_left_moving_B m rs (c, Bk # list); hd c = Bk\<rbrakk> |
|
3652 \<Longrightarrow> wadjust_on_left_moving_B m rs (tl c, Bk # Bk # list)" |
|
3653 apply(auto simp: wadjust_on_left_moving_B.simps) |
|
3654 apply(case_tac ln, simp_all add: exp_ind_def, auto) |
|
3655 done |
|
3656 |
|
3657 lemma [simp]: "\<lbrakk>wadjust_on_left_moving_B m rs (c, Bk # list); hd c = Oc\<rbrakk> |
|
3658 \<Longrightarrow> wadjust_on_left_moving_O m rs (tl c, Oc # Bk # list)" |
|
3659 apply(auto simp: wadjust_on_left_moving_O.simps |
|
3660 wadjust_on_left_moving_B.simps) |
|
3661 apply(case_tac ln, simp_all add: exp_ind_def) |
|
3662 done |
|
3663 |
|
3664 lemma [simp]: "wadjust_on_left_moving m rs (c, Bk # list) \<Longrightarrow> |
|
3665 wadjust_on_left_moving m rs (tl c, hd c # Bk # list)" |
|
3666 apply(simp add: wadjust_on_left_moving.simps) |
|
3667 apply(case_tac "hd c", simp_all) |
|
3668 done |
|
3669 |
|
3670 lemma [simp]: "wadjust_goon_left_moving m rs (c, b) \<Longrightarrow> c \<noteq> []" |
|
3671 apply(simp add: wadjust_goon_left_moving.simps |
|
3672 wadjust_goon_left_moving_B.simps |
|
3673 wadjust_goon_left_moving_O.simps exp_ind_def, auto) |
|
3674 done |
|
3675 |
|
3676 lemma [simp]: "wadjust_goon_left_moving_O m rs (c, Bk # list) = False" |
|
3677 apply(simp add: wadjust_goon_left_moving_O.simps, auto) |
|
3678 apply(case_tac mr, simp_all add: exp_ind_def) |
|
3679 done |
|
3680 |
|
3681 lemma [simp]: "\<lbrakk>wadjust_goon_left_moving_B m rs (c, Bk # list); hd c = Bk\<rbrakk> |
|
3682 \<Longrightarrow> wadjust_backto_standard_pos_B m rs (tl c, Bk # Bk # list)" |
|
3683 apply(auto simp: wadjust_goon_left_moving_B.simps |
|
3684 wadjust_backto_standard_pos_B.simps exp_ind_def) |
|
3685 done |
|
3686 |
|
3687 lemma [simp]: "\<lbrakk>wadjust_goon_left_moving_B m rs (c, Bk # list); hd c = Oc\<rbrakk> |
|
3688 \<Longrightarrow> wadjust_backto_standard_pos_O m rs (tl c, Oc # Bk # list)" |
|
3689 apply(auto simp: wadjust_goon_left_moving_B.simps |
|
3690 wadjust_backto_standard_pos_O.simps exp_ind_def) |
|
3691 apply(rule_tac x = m in exI, simp, auto) |
|
3692 done |
|
3693 |
|
3694 lemma [simp]: "wadjust_goon_left_moving m rs (c, Bk # list) \<Longrightarrow> |
|
3695 wadjust_backto_standard_pos m rs (tl c, hd c # Bk # list)" |
|
3696 apply(case_tac "hd c", simp_all add: wadjust_backto_standard_pos.simps |
|
3697 wadjust_goon_left_moving.simps) |
|
3698 done |
|
3699 |
|
3700 lemma [simp]: "wadjust_backto_standard_pos m rs (c, Bk # list) \<Longrightarrow> |
|
3701 (c = [] \<longrightarrow> wadjust_stop m rs ([Bk], list)) \<and> (c \<noteq> [] \<longrightarrow> wadjust_stop m rs (Bk # c, list))" |
|
3702 apply(auto simp: wadjust_backto_standard_pos.simps |
|
3703 wadjust_backto_standard_pos_B.simps |
|
3704 wadjust_backto_standard_pos_O.simps wadjust_stop.simps) |
|
3705 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
3706 done |
|
3707 |
|
3708 lemma [simp]: "wadjust_start m rs (c, Oc # list) |
|
3709 \<Longrightarrow> (c = [] \<longrightarrow> wadjust_loop_start m rs ([Oc], list)) \<and> |
|
3710 (c \<noteq> [] \<longrightarrow> wadjust_loop_start m rs (Oc # c, list))" |
|
3711 apply(auto simp:wadjust_loop_start.simps wadjust_start.simps ) |
|
3712 apply(rule_tac x = ln in exI, rule_tac x = rn in exI, |
|
3713 rule_tac x = "Suc 0" in exI, simp) |
|
3714 done |
|
3715 |
|
3716 lemma [simp]: "wadjust_loop_start m rs (c, b) \<Longrightarrow> c \<noteq> []" |
|
3717 apply(simp add: wadjust_loop_start.simps, auto) |
|
3718 done |
|
3719 |
|
3720 lemma [simp]: "wadjust_loop_start m rs (c, Oc # list) |
|
3721 \<Longrightarrow> wadjust_loop_right_move m rs (Oc # c, list)" |
|
3722 apply(simp add: wadjust_loop_start.simps wadjust_loop_right_move.simps, auto) |
|
3723 apply(rule_tac x = ml in exI, rule_tac x = mr in exI, |
|
3724 rule_tac x = 0 in exI, simp) |
|
3725 apply(rule_tac x = "Suc ln" in exI, simp add: exp_ind, auto) |
|
3726 done |
|
3727 |
|
3728 lemma [simp]: "wadjust_loop_right_move m rs (c, Oc # list) \<Longrightarrow> |
|
3729 wadjust_loop_check m rs (Oc # c, list)" |
|
3730 apply(simp add: wadjust_loop_right_move.simps |
|
3731 wadjust_loop_check.simps, auto) |
|
3732 apply(rule_tac [!] x = ml in exI, simp_all, auto) |
|
3733 apply(case_tac nl, auto simp: exp_ind_def) |
|
3734 apply(rule_tac x = "mr - 1" in exI, case_tac mr, simp_all add: exp_ind_def) |
|
3735 apply(case_tac [!] nr, simp_all add: exp_ind_def, auto) |
|
3736 done |
|
3737 |
|
3738 lemma [simp]: "wadjust_loop_check m rs (c, Oc # list) \<Longrightarrow> |
|
3739 wadjust_loop_erase m rs (tl c, hd c # Oc # list)" |
|
3740 apply(simp only: wadjust_loop_check.simps wadjust_loop_erase.simps) |
|
3741 apply(erule_tac exE)+ |
|
3742 apply(rule_tac x = ml in exI, rule_tac x = mr in exI, auto) |
|
3743 apply(case_tac mr, simp_all add: exp_ind_def) |
|
3744 apply(case_tac rn, simp_all add: exp_ind_def) |
|
3745 done |
|
3746 |
|
3747 lemma [simp]: "wadjust_loop_erase m rs (c, Oc # list) \<Longrightarrow> |
|
3748 wadjust_loop_erase m rs (c, Bk # list)" |
|
3749 apply(auto simp: wadjust_loop_erase.simps) |
|
3750 done |
|
3751 |
|
3752 lemma [simp]: "wadjust_loop_on_left_moving_B m rs (c, Oc # list) = False" |
|
3753 apply(auto simp: wadjust_loop_on_left_moving_B.simps) |
|
3754 apply(case_tac nr, simp_all add: exp_ind_def) |
|
3755 done |
|
3756 |
|
3757 lemma [simp]: "wadjust_loop_on_left_moving m rs (c, Oc # list) |
|
3758 \<Longrightarrow> wadjust_loop_right_move2 m rs (Oc # c, list)" |
|
3759 apply(simp add:wadjust_loop_on_left_moving.simps) |
|
3760 apply(auto simp: wadjust_loop_on_left_moving_O.simps |
|
3761 wadjust_loop_right_move2.simps) |
|
3762 done |
|
3763 |
|
3764 lemma [simp]: "wadjust_loop_right_move2 m rs (c, Oc # list) = False" |
|
3765 apply(auto simp: wadjust_loop_right_move2.simps ) |
|
3766 apply(case_tac ln, simp_all add: exp_ind_def) |
|
3767 done |
|
3768 |
|
3769 lemma [simp]: "wadjust_erase2 m rs (c, Oc # list) |
|
3770 \<Longrightarrow> (c = [] \<longrightarrow> wadjust_erase2 m rs ([], Bk # list)) |
|
3771 \<and> (c \<noteq> [] \<longrightarrow> wadjust_erase2 m rs (c, Bk # list))" |
|
3772 apply(auto simp: wadjust_erase2.simps ) |
|
3773 done |
|
3774 |
|
3775 lemma [simp]: "wadjust_on_left_moving_B m rs (c, Oc # list) = False" |
|
3776 apply(auto simp: wadjust_on_left_moving_B.simps) |
|
3777 done |
|
3778 |
|
3779 lemma [simp]: "\<lbrakk>wadjust_on_left_moving_O m rs (c, Oc # list); hd c = Bk\<rbrakk> \<Longrightarrow> |
|
3780 wadjust_goon_left_moving_B m rs (tl c, Bk # Oc # list)" |
|
3781 apply(auto simp: wadjust_on_left_moving_O.simps |
|
3782 wadjust_goon_left_moving_B.simps exp_ind_def) |
|
3783 done |
|
3784 |
|
3785 lemma [simp]: "\<lbrakk>wadjust_on_left_moving_O m rs (c, Oc # list); hd c = Oc\<rbrakk> |
|
3786 \<Longrightarrow> wadjust_goon_left_moving_O m rs (tl c, Oc # Oc # list)" |
|
3787 apply(auto simp: wadjust_on_left_moving_O.simps |
|
3788 wadjust_goon_left_moving_O.simps exp_ind_def) |
|
3789 apply(rule_tac x = rs in exI, simp) |
|
3790 apply(auto simp: exp_ind_def numeral_2_eq_2) |
|
3791 done |
|
3792 |
|
3793 |
|
3794 lemma [simp]: "wadjust_on_left_moving m rs (c, Oc # list) \<Longrightarrow> |
|
3795 wadjust_goon_left_moving m rs (tl c, hd c # Oc # list)" |
|
3796 apply(simp add: wadjust_on_left_moving.simps |
|
3797 wadjust_goon_left_moving.simps) |
|
3798 apply(case_tac "hd c", simp_all) |
|
3799 done |
|
3800 |
|
3801 lemma [simp]: "wadjust_on_left_moving m rs (c, Oc # list) \<Longrightarrow> |
|
3802 wadjust_goon_left_moving m rs (tl c, hd c # Oc # list)" |
|
3803 apply(simp add: wadjust_on_left_moving.simps |
|
3804 wadjust_goon_left_moving.simps) |
|
3805 apply(case_tac "hd c", simp_all) |
|
3806 done |
|
3807 |
|
3808 lemma [simp]: "wadjust_goon_left_moving_B m rs (c, Oc # list) = False" |
|
3809 apply(auto simp: wadjust_goon_left_moving_B.simps) |
|
3810 done |
|
3811 |
|
3812 lemma [simp]: "\<lbrakk>wadjust_goon_left_moving_O m rs (c, Oc # list); hd c = Bk\<rbrakk> |
|
3813 \<Longrightarrow> wadjust_goon_left_moving_B m rs (tl c, Bk # Oc # list)" |
|
3814 apply(auto simp: wadjust_goon_left_moving_O.simps wadjust_goon_left_moving_B.simps) |
|
3815 apply(case_tac [!] ml, auto simp: exp_ind_def) |
|
3816 done |
|
3817 |
|
3818 lemma [simp]: "\<lbrakk>wadjust_goon_left_moving_O m rs (c, Oc # list); hd c = Oc\<rbrakk> \<Longrightarrow> |
|
3819 wadjust_goon_left_moving_O m rs (tl c, Oc # Oc # list)" |
|
3820 apply(auto simp: wadjust_goon_left_moving_O.simps wadjust_goon_left_moving_B.simps) |
|
3821 apply(rule_tac x = "ml - 1" in exI, simp) |
|
3822 apply(case_tac ml, simp_all add: exp_ind_def) |
|
3823 apply(rule_tac x = "Suc mr" in exI, auto simp: exp_ind_def) |
|
3824 done |
|
3825 |
|
3826 lemma [simp]: "wadjust_goon_left_moving m rs (c, Oc # list) \<Longrightarrow> |
|
3827 wadjust_goon_left_moving m rs (tl c, hd c # Oc # list)" |
|
3828 apply(simp add: wadjust_goon_left_moving.simps) |
|
3829 apply(case_tac "hd c", simp_all) |
|
3830 done |
|
3831 |
|
3832 lemma [simp]: "wadjust_backto_standard_pos_B m rs (c, Oc # list) = False" |
|
3833 apply(simp add: wadjust_backto_standard_pos_B.simps) |
|
3834 done |
|
3835 |
|
3836 lemma [simp]: "wadjust_backto_standard_pos_O m rs (c, Bk # xs) = False" |
|
3837 apply(simp add: wadjust_backto_standard_pos_O.simps, auto) |
|
3838 apply(case_tac mr, simp_all add: exp_ind_def) |
|
3839 done |
|
3840 |
|
3841 |
|
3842 |
|
3843 lemma [simp]: "wadjust_backto_standard_pos_O m rs ([], Oc # list) \<Longrightarrow> |
|
3844 wadjust_backto_standard_pos_B m rs ([], Bk # Oc # list)" |
|
3845 apply(auto simp: wadjust_backto_standard_pos_O.simps |
|
3846 wadjust_backto_standard_pos_B.simps) |
|
3847 apply(rule_tac x = rn in exI, simp) |
|
3848 apply(case_tac ml, simp_all add: exp_ind_def) |
|
3849 done |
|
3850 |
|
3851 |
|
3852 lemma [simp]: |
|
3853 "\<lbrakk>wadjust_backto_standard_pos_O m rs (c, Oc # list); c \<noteq> []; hd c = Bk\<rbrakk> |
|
3854 \<Longrightarrow> wadjust_backto_standard_pos_B m rs (tl c, Bk # Oc # list)" |
|
3855 apply(simp add:wadjust_backto_standard_pos_O.simps |
|
3856 wadjust_backto_standard_pos_B.simps, auto) |
|
3857 apply(case_tac [!] ml, simp_all add: exp_ind_def) |
|
3858 done |
|
3859 |
|
3860 lemma [simp]: "\<lbrakk>wadjust_backto_standard_pos_O m rs (c, Oc # list); c \<noteq> []; hd c = Oc\<rbrakk> |
|
3861 \<Longrightarrow> wadjust_backto_standard_pos_O m rs (tl c, Oc # Oc # list)" |
|
3862 apply(simp add: wadjust_backto_standard_pos_O.simps, auto) |
|
3863 apply(case_tac ml, simp_all add: exp_ind_def, auto) |
|
3864 apply(rule_tac x = nat in exI, auto simp: exp_ind_def) |
|
3865 done |
|
3866 |
|
3867 lemma [simp]: "wadjust_backto_standard_pos m rs (c, Oc # list) |
|
3868 \<Longrightarrow> (c = [] \<longrightarrow> wadjust_backto_standard_pos m rs ([], Bk # Oc # list)) \<and> |
|
3869 (c \<noteq> [] \<longrightarrow> wadjust_backto_standard_pos m rs (tl c, hd c # Oc # list))" |
|
3870 apply(auto simp: wadjust_backto_standard_pos.simps) |
|
3871 apply(case_tac "hd c", simp_all) |
|
3872 done |
|
3873 thm wadjust_loop_right_move.simps |
|
3874 |
|
3875 lemma [simp]: "wadjust_loop_right_move m rs (c, []) = False" |
|
3876 apply(simp only: wadjust_loop_right_move.simps) |
|
3877 apply(rule_tac iffI) |
|
3878 apply(erule_tac exE)+ |
|
3879 apply(case_tac nr, simp_all add: exp_ind_def) |
|
3880 apply(case_tac mr, simp_all add: exp_ind_def) |
|
3881 done |
|
3882 |
|
3883 lemma [simp]: "wadjust_loop_erase m rs (c, []) = False" |
|
3884 apply(simp only: wadjust_loop_erase.simps, auto) |
|
3885 apply(case_tac mr, simp_all add: exp_ind_def) |
|
3886 done |
|
3887 |
|
3888 lemma [simp]: "\<lbrakk>Suc (Suc rs) = a; wadjust_loop_erase m rs (c, Bk # list)\<rbrakk> |
|
3889 \<Longrightarrow> a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev (tl c) @ hd c # Bk # list)))) |
|
3890 < a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Bk # list)))) \<or> |
|
3891 a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev (tl c) @ hd c # Bk # list)))) = |
|
3892 a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Bk # list))))" |
|
3893 apply(simp only: wadjust_loop_erase.simps) |
|
3894 apply(rule_tac disjI2) |
|
3895 apply(case_tac c, simp, simp) |
|
3896 done |
|
3897 |
|
3898 lemma [simp]: |
|
3899 "\<lbrakk>Suc (Suc rs) = a; wadjust_loop_on_left_moving m rs (c, Bk # list)\<rbrakk> |
|
3900 \<Longrightarrow> a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev (tl c) @ hd c # Bk # list)))) |
|
3901 < a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Bk # list)))) \<or> |
|
3902 a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev (tl c) @ hd c # Bk # list)))) = |
|
3903 a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Bk # list))))" |
|
3904 apply(subgoal_tac "c \<noteq> []") |
|
3905 apply(case_tac c, simp_all) |
|
3906 done |
|
3907 |
|
3908 lemma dropWhile_exp1: "dropWhile (\<lambda>a. a = Oc) (Oc\<^bsup>n\<^esup> @ xs) = dropWhile (\<lambda>a. a = Oc) xs" |
|
3909 apply(induct n, simp_all add: exp_ind_def) |
|
3910 done |
|
3911 lemma takeWhile_exp1: "takeWhile (\<lambda>a. a = Oc) (Oc\<^bsup>n\<^esup> @ xs) = Oc\<^bsup>n\<^esup> @ takeWhile (\<lambda>a. a = Oc) xs" |
|
3912 apply(induct n, simp_all add: exp_ind_def) |
|
3913 done |
|
3914 |
|
3915 lemma [simp]: "\<lbrakk>Suc (Suc rs) = a; wadjust_loop_right_move2 m rs (c, Bk # list)\<rbrakk> |
|
3916 \<Longrightarrow> a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Oc # list)))) |
|
3917 < a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Bk # list))))" |
|
3918 apply(simp add: wadjust_loop_right_move2.simps, auto) |
|
3919 apply(simp add: dropWhile_exp1 takeWhile_exp1) |
|
3920 apply(case_tac ln, simp, simp add: exp_ind_def) |
|
3921 done |
|
3922 |
|
3923 lemma [simp]: "wadjust_loop_check m rs ([], b) = False" |
|
3924 apply(simp add: wadjust_loop_check.simps) |
|
3925 done |
|
3926 |
|
3927 lemma [simp]: "\<lbrakk>Suc (Suc rs) = a; wadjust_loop_check m rs (c, Oc # list)\<rbrakk> |
|
3928 \<Longrightarrow> a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev (tl c) @ hd c # Oc # list)))) |
|
3929 < a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Oc # list)))) \<or> |
|
3930 a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev (tl c) @ hd c # Oc # list)))) = |
|
3931 a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Oc # list))))" |
|
3932 apply(case_tac "c", simp_all) |
|
3933 done |
|
3934 |
|
3935 lemma [simp]: |
|
3936 "\<lbrakk>Suc (Suc rs) = a; wadjust_loop_erase m rs (c, Oc # list)\<rbrakk> |
|
3937 \<Longrightarrow> a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Bk # list)))) |
|
3938 < a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Oc # list)))) \<or> |
|
3939 a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Bk # list)))) = |
|
3940 a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Oc # list))))" |
|
3941 apply(simp add: wadjust_loop_erase.simps) |
|
3942 apply(rule_tac disjI2) |
|
3943 apply(auto) |
|
3944 apply(simp add: dropWhile_exp1 takeWhile_exp1) |
|
3945 done |
|
3946 |
|
3947 declare numeral_2_eq_2[simp del] |
|
3948 |
|
3949 lemma wadjust_correctness: |
|
3950 shows "let P = (\<lambda> (len, st, l, r). st = 0) in |
|
3951 let Q = (\<lambda> (len, st, l, r). wadjust_inv st m rs (l, r)) in |
|
3952 let f = (\<lambda> stp. (Suc (Suc rs), steps (Suc 0, Bk # Oc\<^bsup>Suc m\<^esup>, |
|
3953 Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>) t_wcode_adjust stp)) in |
|
3954 \<exists> n .P (f n) \<and> Q (f n)" |
|
3955 proof - |
|
3956 let ?P = "(\<lambda> (len, st, l, r). st = 0)" |
|
3957 let ?Q = "\<lambda> (len, st, l, r). wadjust_inv st m rs (l, r)" |
|
3958 let ?f = "\<lambda> stp. (Suc (Suc rs), steps (Suc 0, Bk # Oc\<^bsup>Suc m\<^esup>, |
|
3959 Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>) t_wcode_adjust stp)" |
|
3960 have "\<exists> n. ?P (?f n) \<and> ?Q (?f n)" |
|
3961 proof(rule_tac halt_lemma2) |
|
3962 show "wf wadjust_le" by auto |
|
3963 next |
|
3964 show "\<forall> n. \<not> ?P (?f n) \<and> ?Q (?f n) \<longrightarrow> |
|
3965 ?Q (?f (Suc n)) \<and> (?f (Suc n), ?f n) \<in> wadjust_le" |
|
3966 proof(rule_tac allI, rule_tac impI, case_tac "?f n", |
|
3967 simp add: tstep_red tstep.simps, rule_tac conjI, erule_tac conjE, |
|
3968 erule_tac conjE) |
|
3969 fix n a b c d |
|
3970 assume "0 < b" "wadjust_inv b m rs (c, d)" "Suc (Suc rs) = a" |
|
3971 thus "case case fetch t_wcode_adjust b (case d of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x) |
|
3972 of (ac, ns) \<Rightarrow> (ns, new_tape ac (c, d)) of (st, x) \<Rightarrow> wadjust_inv st m rs x" |
|
3973 apply(case_tac d, simp, case_tac [2] aa) |
|
3974 apply(simp_all add: wadjust_inv.simps wadjust_le_def new_tape.simps |
|
3975 abacus.lex_triple_def abacus.lex_pair_def lex_square_def |
|
3976 split: if_splits) |
|
3977 done |
|
3978 next |
|
3979 fix n a b c d |
|
3980 assume "0 < b \<and> wadjust_inv b m rs (c, d)" |
|
3981 "Suc (Suc rs) = a \<and> steps (Suc 0, Bk # Oc\<^bsup>Suc m\<^esup>, |
|
3982 Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>) t_wcode_adjust n = (b, c, d)" |
|
3983 thus "((a, case fetch t_wcode_adjust b (case d of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x) |
|
3984 of (ac, ns) \<Rightarrow> (ns, new_tape ac (c, d))), a, b, c, d) \<in> wadjust_le" |
|
3985 proof(erule_tac conjE, erule_tac conjE, erule_tac conjE) |
|
3986 assume "0 < b" "wadjust_inv b m rs (c, d)" "Suc (Suc rs) = a" |
|
3987 thus "?thesis" |
|
3988 apply(case_tac d, case_tac [2] aa) |
|
3989 apply(simp_all add: wadjust_inv.simps wadjust_le_def new_tape.simps |
|
3990 abacus.lex_triple_def abacus.lex_pair_def lex_square_def |
|
3991 split: if_splits) |
|
3992 done |
|
3993 qed |
|
3994 qed |
|
3995 next |
|
3996 show "?Q (?f 0)" |
|
3997 apply(simp add: steps.simps wadjust_inv.simps wadjust_start.simps) |
|
3998 apply(rule_tac x = ln in exI,auto) |
|
3999 done |
|
4000 next |
|
4001 show "\<not> ?P (?f 0)" |
|
4002 apply(simp add: steps.simps) |
|
4003 done |
|
4004 qed |
|
4005 thus "?thesis" |
|
4006 apply(auto) |
|
4007 done |
|
4008 qed |
|
4009 |
|
4010 lemma [intro]: "t_correct t_wcode_adjust" |
|
4011 apply(auto simp: t_wcode_adjust_def t_correct.simps iseven_def) |
|
4012 apply(rule_tac x = 11 in exI, simp) |
|
4013 done |
|
4014 |
|
4015 lemma wcode_lemma_pre': |
|
4016 "args \<noteq> [] \<Longrightarrow> |
|
4017 \<exists> stp rn. steps (Suc 0, [], <m # args>) |
|
4018 ((t_wcode_prepare |+| t_wcode_main) |+| t_wcode_adjust) stp |
|
4019 = (0, [Bk], Oc\<^bsup>Suc m\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
4020 proof - |
|
4021 let ?P1 = "\<lambda> (l, r). l = [] \<and> r = <m # args>" |
|
4022 let ?Q1 = "\<lambda>(l, r). l = Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
4023 (\<exists>ln rn. r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<args>)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
4024 let ?P2 = ?Q1 |
|
4025 let ?Q2 = "\<lambda> (l, r). (wadjust_stop m (bl_bin (<args>) - 1) (l, r))" |
|
4026 let ?P3 = "\<lambda> tp. False" |
|
4027 assume h: "args \<noteq> []" |
|
4028 have "?P1 \<turnstile>-> \<lambda> tp. (\<exists> stp tp'. steps (Suc 0, tp) |
|
4029 ((t_wcode_prepare |+| t_wcode_main) |+| t_wcode_adjust) stp = (0, tp') \<and> ?Q2 tp')" |
|
4030 proof(rule_tac turing_merge.t_merge_halt[of "t_wcode_prepare |+| t_wcode_main" |
|
4031 t_wcode_adjust ?P1 ?P2 ?P3 ?P3 ?Q1 ?Q2], |
|
4032 auto simp: turing_merge_def) |
|
4033 |
|
4034 show "\<exists>stp. case steps (Suc 0, [], <m # args>) (t_wcode_prepare |+| t_wcode_main) stp of |
|
4035 (st, tp') \<Rightarrow> st = 0 \<and> (case tp' of (l, r) \<Rightarrow> l = Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
4036 (\<exists>ln rn. r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<args>)\<^esup> @ Bk\<^bsup>rn\<^esup>))" |
|
4037 using h prepare_mainpart_lemma[of args m] |
|
4038 apply(auto) |
|
4039 apply(rule_tac x = stp in exI, simp) |
|
4040 apply(rule_tac x = ln in exI, auto) |
|
4041 done |
|
4042 next |
|
4043 fix ln rn |
|
4044 show "\<exists>stp. case steps (Suc 0, Bk # Oc\<^bsup>Suc m\<^esup>, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # |
|
4045 Oc\<^bsup>bl_bin (<args>)\<^esup> @ Bk\<^bsup>rn\<^esup>) t_wcode_adjust stp of |
|
4046 (st, tp') \<Rightarrow> st = 0 \<and> wadjust_stop m (bl_bin (<args>) - Suc 0) tp'" |
|
4047 using wadjust_correctness[of m "bl_bin (<args>) - 1" "Suc ln" rn] |
|
4048 apply(subgoal_tac "bl_bin (<args>) > 0", auto simp: wadjust_inv.simps) |
|
4049 apply(rule_tac x = n in exI, simp add: exp_ind) |
|
4050 using h |
|
4051 apply(case_tac args, simp_all, case_tac list, |
|
4052 simp_all add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def |
|
4053 bl_bin.simps) |
|
4054 done |
|
4055 next |
|
4056 show "?Q1 \<turnstile>-> ?P2" |
|
4057 by(simp add: t_imply_def) |
|
4058 qed |
|
4059 thus "\<exists>stp rn. steps (Suc 0, [], <m # args>) ((t_wcode_prepare |+| t_wcode_main) |+| |
|
4060 t_wcode_adjust) stp = (0, [Bk], Oc\<^bsup>Suc m\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
4061 apply(simp add: t_imply_def) |
|
4062 apply(erule_tac exE)+ |
|
4063 apply(subgoal_tac "bl_bin (<args>) > 0", auto simp: wadjust_stop.simps) |
|
4064 using h |
|
4065 apply(case_tac args, simp_all, case_tac list, |
|
4066 simp_all add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def |
|
4067 bl_bin.simps) |
|
4068 done |
|
4069 qed |
|
4070 |
|
4071 text {* |
|
4072 The initialization TM @{text "t_wcode"}. |
|
4073 *} |
|
4074 definition t_wcode :: "tprog" |
|
4075 where |
|
4076 "t_wcode = (t_wcode_prepare |+| t_wcode_main) |+| t_wcode_adjust" |
|
4077 |
|
4078 |
|
4079 text {* |
|
4080 The correctness of @{text "t_wcode"}. |
|
4081 *} |
|
4082 lemma wcode_lemma_1: |
|
4083 "args \<noteq> [] \<Longrightarrow> |
|
4084 \<exists> stp ln rn. steps (Suc 0, [], <m # args>) (t_wcode) stp = |
|
4085 (0, [Bk], Oc\<^bsup>Suc m\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
4086 apply(simp add: wcode_lemma_pre' t_wcode_def) |
|
4087 done |
|
4088 |
|
4089 lemma wcode_lemma: |
|
4090 "args \<noteq> [] \<Longrightarrow> |
|
4091 \<exists> stp ln rn. steps (Suc 0, [], <m # args>) (t_wcode) stp = |
|
4092 (0, [Bk], <[m ,bl_bin (<args>)]> @ Bk\<^bsup>rn\<^esup>)" |
|
4093 using wcode_lemma_1[of args m] |
|
4094 apply(simp add: t_wcode_def tape_of_nl_abv tape_of_nat_list.simps) |
|
4095 done |
|
4096 |
|
4097 section {* The universal TM @{text "UTM"} *} |
|
4098 |
|
4099 text {* |
|
4100 This section gives the explicit construction of {\em Universal Turing Machine}, defined as @{text "UTM"} and proves its |
|
4101 correctness. It is pretty easy by composing the partial results we have got so far. |
|
4102 *} |
|
4103 |
|
4104 |
|
4105 definition UTM :: "tprog" |
|
4106 where |
|
4107 "UTM = (let (aprog, rs_pos, a_md) = rec_ci rec_F in |
|
4108 let abc_F = aprog [+] dummy_abc (Suc (Suc 0)) in |
|
4109 (t_wcode |+| (tm_of abc_F @ tMp (Suc (Suc 0)) (start_of (layout_of abc_F) |
|
4110 (length abc_F) - Suc 0))))" |
|
4111 |
|
4112 definition F_aprog :: "abc_prog" |
|
4113 where |
|
4114 "F_aprog \<equiv> (let (aprog, rs_pos, a_md) = rec_ci rec_F in |
|
4115 aprog [+] dummy_abc (Suc (Suc 0)))" |
|
4116 |
|
4117 definition F_tprog :: "tprog" |
|
4118 where |
|
4119 "F_tprog = tm_of (F_aprog)" |
|
4120 |
|
4121 definition t_utm :: "tprog" |
|
4122 where |
|
4123 "t_utm \<equiv> |
|
4124 (F_tprog) @ tMp (Suc (Suc 0)) (start_of (layout_of (F_aprog)) |
|
4125 (length (F_aprog)) - Suc 0)" |
|
4126 |
|
4127 definition UTM_pre :: "tprog" |
|
4128 where |
|
4129 "UTM_pre = t_wcode |+| t_utm" |
|
4130 |
|
4131 lemma F_abc_halt_eq: |
|
4132 "\<lbrakk>turing_basic.t_correct tp; |
|
4133 length lm = k; |
|
4134 steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm>) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>n\<^esup>); |
|
4135 rs > 0\<rbrakk> |
|
4136 \<Longrightarrow> \<exists> stp m. abc_steps_l (0, [code tp, bl2wc (<lm>)]) (F_aprog) stp = |
|
4137 (length (F_aprog), code tp # bl2wc (<lm>) # (rs - 1) # 0\<^bsup>m\<^esup>)" |
|
4138 apply(drule_tac F_t_halt_eq, simp, simp, simp) |
|
4139 apply(case_tac "rec_ci rec_F") |
|
4140 apply(frule_tac abc_append_dummy_complie, simp, simp, erule_tac exE, |
|
4141 erule_tac exE) |
|
4142 apply(rule_tac x = stp in exI, rule_tac x = m in exI) |
|
4143 apply(simp add: F_aprog_def dummy_abc_def) |
|
4144 done |
|
4145 |
|
4146 lemma F_abc_utm_halt_eq: |
|
4147 "\<lbrakk>rs > 0; |
|
4148 abc_steps_l (0, [code tp, bl2wc (<lm>)]) F_aprog stp = |
|
4149 (length F_aprog, code tp # bl2wc (<lm>) # (rs - 1) # 0\<^bsup>m\<^esup>)\<rbrakk> |
|
4150 \<Longrightarrow> \<exists>stp m n.(steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]>) t_utm stp = |
|
4151 (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>))" |
|
4152 thm abacus_turing_eq_halt |
|
4153 using abacus_turing_eq_halt |
|
4154 [of "layout_of F_aprog" "F_aprog" "F_tprog" "length (F_aprog)" |
|
4155 "[code tp, bl2wc (<lm>)]" stp "code tp # bl2wc (<lm>) # (rs - 1) # 0\<^bsup>m\<^esup>" "Suc (Suc 0)" |
|
4156 "start_of (layout_of (F_aprog)) (length (F_aprog))" "[]" 0] |
|
4157 apply(simp add: F_tprog_def t_utm_def abc_lm_v.simps nth_append) |
|
4158 apply(erule_tac exE)+ |
|
4159 apply(rule_tac x = stpa in exI, rule_tac x = "Suc (Suc ma)" in exI, |
|
4160 rule_tac x = l in exI, simp add: exp_ind) |
|
4161 done |
|
4162 |
|
4163 declare tape_of_nl_abv_cons[simp del] |
|
4164 |
|
4165 lemma t_utm_halt_eq': |
|
4166 "\<lbrakk>turing_basic.t_correct tp; |
|
4167 0 < rs; |
|
4168 steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm::nat list>) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>n\<^esup>)\<rbrakk> |
|
4169 \<Longrightarrow> \<exists>stp m n. steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]>) t_utm stp = |
|
4170 (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4171 apply(drule_tac l = l in F_abc_halt_eq, simp, simp, simp) |
|
4172 apply(erule_tac exE, erule_tac exE) |
|
4173 apply(rule_tac F_abc_utm_halt_eq, simp_all) |
|
4174 done |
|
4175 |
|
4176 lemma [simp]: "tinres xs (xs @ Bk\<^bsup>i\<^esup>)" |
|
4177 apply(auto simp: tinres_def) |
|
4178 done |
|
4179 |
|
4180 lemma [elim]: "\<lbrakk>rs > 0; Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup> = c @ Bk\<^bsup>n\<^esup>\<rbrakk> |
|
4181 \<Longrightarrow> \<exists>n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" |
|
4182 apply(case_tac "na > n") |
|
4183 apply(subgoal_tac "\<exists> d. na = d + n", auto simp: exp_add) |
|
4184 apply(rule_tac x = "na - n" in exI, simp) |
|
4185 apply(subgoal_tac "\<exists> d. n = d + na", auto simp: exp_add) |
|
4186 apply(case_tac rs, simp_all add: exp_ind, case_tac d, |
|
4187 simp_all add: exp_ind) |
|
4188 apply(rule_tac x = "n - na" in exI, simp) |
|
4189 done |
|
4190 |
|
4191 |
|
4192 lemma t_utm_halt_eq'': |
|
4193 "\<lbrakk>turing_basic.t_correct tp; |
|
4194 0 < rs; |
|
4195 steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm::nat list>) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>n\<^esup>)\<rbrakk> |
|
4196 \<Longrightarrow> \<exists>stp m n. steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stp = |
|
4197 (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4198 apply(drule_tac t_utm_halt_eq', simp_all) |
|
4199 apply(erule_tac exE)+ |
|
4200 proof - |
|
4201 fix stpa ma na |
|
4202 assume "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]>) t_utm stpa = (0, Bk\<^bsup>ma\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>)" |
|
4203 and gr: "rs > 0" |
|
4204 thus "\<exists>stp m n. steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4205 apply(rule_tac x = stpa in exI, rule_tac x = ma in exI, simp) |
|
4206 proof(case_tac "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stpa", simp) |
|
4207 fix a b c |
|
4208 assume "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]>) t_utm stpa = (0, Bk\<^bsup>ma\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>)" |
|
4209 "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stpa = (a, b, c)" |
|
4210 thus " a = 0 \<and> b = Bk\<^bsup>ma\<^esup> \<and> (\<exists>n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4211 using tinres_steps2[of "<[code tp, bl2wc (<lm>)]>" "<[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>" |
|
4212 "Suc 0" " [Bk, Bk]" t_utm stpa 0 "Bk\<^bsup>ma\<^esup>" "Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>" a b c] |
|
4213 apply(simp) |
|
4214 using gr |
|
4215 apply(simp only: tinres_def, auto) |
|
4216 apply(rule_tac x = "na + n" in exI, simp add: exp_add) |
|
4217 done |
|
4218 qed |
|
4219 qed |
|
4220 |
|
4221 lemma [simp]: "tinres [Bk, Bk] [Bk]" |
|
4222 apply(auto simp: tinres_def) |
|
4223 done |
|
4224 |
|
4225 lemma [elim]: "Bk\<^bsup>ma\<^esup> = b @ Bk\<^bsup>n\<^esup> \<Longrightarrow> \<exists>m. b = Bk\<^bsup>m\<^esup>" |
|
4226 apply(subgoal_tac "ma = length b + n") |
|
4227 apply(rule_tac x = "ma - n" in exI, simp add: exp_add) |
|
4228 apply(drule_tac length_equal) |
|
4229 apply(simp) |
|
4230 done |
|
4231 |
|
4232 lemma t_utm_halt_eq: |
|
4233 "\<lbrakk>turing_basic.t_correct tp; |
|
4234 0 < rs; |
|
4235 steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm::nat list>) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>n\<^esup>)\<rbrakk> |
|
4236 \<Longrightarrow> \<exists>stp m n. steps (Suc 0, [Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stp = |
|
4237 (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4238 apply(drule_tac i = i in t_utm_halt_eq'', simp_all) |
|
4239 apply(erule_tac exE)+ |
|
4240 proof - |
|
4241 fix stpa ma na |
|
4242 assume "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stpa = (0, Bk\<^bsup>ma\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>)" |
|
4243 and gr: "rs > 0" |
|
4244 thus "\<exists>stp m n. steps (Suc 0, [Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4245 apply(rule_tac x = stpa in exI) |
|
4246 proof(case_tac "steps (Suc 0, [Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stpa", simp) |
|
4247 fix a b c |
|
4248 assume "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stpa = (0, Bk\<^bsup>ma\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>)" |
|
4249 "steps (Suc 0, [Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stpa = (a, b, c)" |
|
4250 thus "a = 0 \<and> (\<exists>m. b = Bk\<^bsup>m\<^esup>) \<and> (\<exists>n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4251 using tinres_steps[of "[Bk, Bk]" "[Bk]" "Suc 0" "<[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>" t_utm stpa 0 |
|
4252 "Bk\<^bsup>ma\<^esup>" "Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>" a b c] |
|
4253 apply(simp) |
|
4254 apply(auto simp: tinres_def) |
|
4255 apply(rule_tac x = "ma + n" in exI, simp add: exp_add) |
|
4256 done |
|
4257 qed |
|
4258 qed |
|
4259 |
|
4260 lemma [intro]: "t_correct t_wcode" |
|
4261 apply(simp add: t_wcode_def) |
|
4262 apply(auto) |
|
4263 done |
|
4264 |
|
4265 lemma [intro]: "t_correct t_utm" |
|
4266 apply(simp add: t_utm_def F_tprog_def) |
|
4267 apply(rule_tac t_compiled_correct, auto) |
|
4268 done |
|
4269 |
|
4270 lemma UTM_halt_lemma_pre: |
|
4271 "\<lbrakk>turing_basic.t_correct tp; |
|
4272 0 < rs; |
|
4273 args \<noteq> []; |
|
4274 steps (Suc 0, Bk\<^bsup>i\<^esup>, <args::nat list>) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>k\<^esup>)\<rbrakk> |
|
4275 \<Longrightarrow> \<exists>stp m n. steps (Suc 0, [], <code tp # args>) UTM_pre stp = |
|
4276 (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4277 proof - |
|
4278 let ?Q2 = "\<lambda> (l, r). (\<exists> ln rn. l = Bk\<^bsup>ln\<^esup> \<and> r = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
4279 term ?Q2 |
|
4280 let ?P1 = "\<lambda> (l, r). l = [] \<and> r = <code tp # args>" |
|
4281 let ?Q1 = "\<lambda> (l, r). (l = [Bk] \<and> |
|
4282 (\<exists> rn. r = Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>))" |
|
4283 let ?P2 = ?Q1 |
|
4284 let ?P3 = "\<lambda> (l, r). False" |
|
4285 assume h: "turing_basic.t_correct tp" "0 < rs" |
|
4286 "args \<noteq> []" "steps (Suc 0, Bk\<^bsup>i\<^esup>, <args::nat list>) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>k\<^esup>)" |
|
4287 have "?P1 \<turnstile>-> \<lambda> tp. (\<exists> stp tp'. steps (Suc 0, tp) |
|
4288 (t_wcode |+| t_utm) stp = (0, tp') \<and> ?Q2 tp')" |
|
4289 proof(rule_tac turing_merge.t_merge_halt [of "t_wcode" "t_utm" |
|
4290 ?P1 ?P2 ?P3 ?P3 ?Q1 ?Q2], auto simp: turing_merge_def) |
|
4291 show "\<exists>stp. case steps (Suc 0, [], <code tp # args>) t_wcode stp of (st, tp') \<Rightarrow> |
|
4292 st = 0 \<and> (case tp' of (l, r) \<Rightarrow> l = [Bk] \<and> |
|
4293 (\<exists>rn. r = Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>))" |
|
4294 using wcode_lemma_1[of args "code tp"] h |
|
4295 apply(simp, auto) |
|
4296 apply(rule_tac x = stpa in exI, auto) |
|
4297 done |
|
4298 next |
|
4299 fix rn |
|
4300 show "\<exists>stp. case steps (Suc 0, [Bk], Oc\<^bsup>Suc (code tp)\<^esup> @ |
|
4301 Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>) t_utm stp of |
|
4302 (st, tp') \<Rightarrow> st = 0 \<and> (case tp' of (l, r) \<Rightarrow> |
|
4303 (\<exists>ln. l = Bk\<^bsup>ln\<^esup>) \<and> (\<exists>rn. r = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>rn\<^esup>))" |
|
4304 using t_utm_halt_eq[of tp rs i args stp m k rn] h |
|
4305 apply(auto) |
|
4306 apply(rule_tac x = stpa in exI, simp add: bin_wc_eq |
|
4307 tape_of_nat_list.simps tape_of_nl_abv) |
|
4308 apply(auto) |
|
4309 done |
|
4310 next |
|
4311 show "?Q1 \<turnstile>-> ?P2" |
|
4312 apply(simp add: t_imply_def) |
|
4313 done |
|
4314 qed |
|
4315 thus "?thesis" |
|
4316 apply(simp add: t_imply_def) |
|
4317 apply(auto simp: UTM_pre_def) |
|
4318 done |
|
4319 qed |
|
4320 |
|
4321 text {* |
|
4322 The correctness of @{text "UTM"}, the halt case. |
|
4323 *} |
|
4324 theorem UTM_halt_lemma: |
|
4325 "\<lbrakk>turing_basic.t_correct tp; |
|
4326 0 < rs; |
|
4327 args \<noteq> []; |
|
4328 steps (Suc 0, Bk\<^bsup>i\<^esup>, <args::nat list>) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>k\<^esup>)\<rbrakk> |
|
4329 \<Longrightarrow> \<exists>stp m n. steps (Suc 0, [], <code tp # args>) UTM stp = |
|
4330 (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4331 using UTM_halt_lemma_pre[of tp rs args i stp m k] |
|
4332 apply(simp add: UTM_pre_def t_utm_def UTM_def F_aprog_def F_tprog_def) |
|
4333 apply(case_tac "rec_ci rec_F", simp) |
|
4334 done |
|
4335 |
|
4336 definition TSTD:: "t_conf \<Rightarrow> bool" |
|
4337 where |
|
4338 "TSTD c = (let (st, l, r) = c in |
|
4339 st = 0 \<and> (\<exists> m. l = Bk\<^bsup>m\<^esup>) \<and> (\<exists> rs n. r = Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>))" |
|
4340 |
|
4341 thm abacus_turing_eq_uhalt |
|
4342 |
|
4343 lemma nstd_case1: "0 < a \<Longrightarrow> NSTD (trpl_code (a, b, c))" |
|
4344 apply(simp add: NSTD.simps trpl_code.simps) |
|
4345 done |
|
4346 |
|
4347 lemma [simp]: "\<forall>m. b \<noteq> Bk\<^bsup>m\<^esup> \<Longrightarrow> 0 < bl2wc b" |
|
4348 apply(rule classical, simp) |
|
4349 apply(induct b, erule_tac x = 0 in allE, simp) |
|
4350 apply(simp add: bl2wc.simps, case_tac a, simp_all |
|
4351 add: bl2nat.simps bl2nat_double) |
|
4352 apply(case_tac "\<exists> m. b = Bk\<^bsup>m\<^esup>", erule exE) |
|
4353 apply(erule_tac x = "Suc m" in allE, simp add: exp_ind_def, simp) |
|
4354 done |
|
4355 lemma nstd_case2: "\<forall>m. b \<noteq> Bk\<^bsup>m\<^esup> \<Longrightarrow> NSTD (trpl_code (a, b, c))" |
|
4356 apply(simp add: NSTD.simps trpl_code.simps) |
|
4357 done |
|
4358 |
|
4359 thm lg.simps |
|
4360 thm lgR.simps |
|
4361 |
|
4362 lemma [elim]: "Suc (2 * x) = 2 * y \<Longrightarrow> RR" |
|
4363 apply(induct x arbitrary: y, simp, simp) |
|
4364 apply(case_tac y, simp, simp) |
|
4365 done |
|
4366 |
|
4367 lemma bl2nat_zero_eq[simp]: "(bl2nat c 0 = 0) = (\<exists>n. c = Bk\<^bsup>n\<^esup>)" |
|
4368 apply(auto) |
|
4369 apply(induct c, simp add: bl2nat.simps) |
|
4370 apply(rule_tac x = 0 in exI, simp) |
|
4371 apply(case_tac a, auto simp: bl2nat.simps bl2nat_double) |
|
4372 done |
|
4373 |
|
4374 lemma bl2wc_exp_ex: |
|
4375 "\<lbrakk>Suc (bl2wc c) = 2 ^ m\<rbrakk> \<Longrightarrow> \<exists> rs n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" |
|
4376 apply(induct c arbitrary: m, simp add: bl2wc.simps bl2nat.simps) |
|
4377 apply(case_tac a, auto) |
|
4378 apply(case_tac m, simp_all add: bl2wc.simps, auto) |
|
4379 apply(rule_tac x = 0 in exI, rule_tac x = "Suc n" in exI, |
|
4380 simp add: exp_ind_def) |
|
4381 apply(simp add: bl2wc.simps bl2nat.simps bl2nat_double) |
|
4382 apply(case_tac m, simp, simp) |
|
4383 proof - |
|
4384 fix c m nat |
|
4385 assume ind: |
|
4386 "\<And>m. Suc (bl2nat c 0) = 2 ^ m \<Longrightarrow> \<exists>rs n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" |
|
4387 and h: |
|
4388 "Suc (Suc (2 * bl2nat c 0)) = 2 * 2 ^ nat" |
|
4389 have "\<exists>rs n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" |
|
4390 apply(rule_tac m = nat in ind) |
|
4391 using h |
|
4392 apply(simp) |
|
4393 done |
|
4394 from this obtain rs n where " c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" by blast |
|
4395 thus "\<exists>rs n. Oc # c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" |
|
4396 apply(rule_tac x = "Suc rs" in exI, simp add: exp_ind_def) |
|
4397 apply(rule_tac x = n in exI, simp) |
|
4398 done |
|
4399 qed |
|
4400 |
|
4401 lemma [elim]: |
|
4402 "\<lbrakk>\<forall>rs n. c \<noteq> Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>; |
|
4403 bl2wc c = 2 ^ lg (Suc (bl2wc c)) 2 - Suc 0\<rbrakk> \<Longrightarrow> bl2wc c = 0" |
|
4404 apply(subgoal_tac "\<exists> m. Suc (bl2wc c) = 2^m", erule_tac exE) |
|
4405 apply(drule_tac bl2wc_exp_ex, simp, erule_tac exE, erule_tac exE) |
|
4406 apply(case_tac rs, simp, simp, erule_tac x = nat in allE, |
|
4407 erule_tac x = n in allE, simp) |
|
4408 using bl2wc_exp_ex[of c "lg (Suc (bl2wc c)) 2"] |
|
4409 apply(case_tac "(2::nat) ^ lg (Suc (bl2wc c)) 2", |
|
4410 simp, simp, erule_tac exE, erule_tac exE, simp) |
|
4411 apply(simp add: bl2wc.simps) |
|
4412 apply(rule_tac x = rs in exI) |
|
4413 apply(case_tac "(2::nat)^rs", simp, simp) |
|
4414 done |
|
4415 |
|
4416 lemma nstd_case3: |
|
4417 "\<forall>rs n. c \<noteq> Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup> \<Longrightarrow> NSTD (trpl_code (a, b, c))" |
|
4418 apply(simp add: NSTD.simps trpl_code.simps) |
|
4419 apply(rule_tac impI) |
|
4420 apply(rule_tac disjI2, rule_tac disjI2, auto) |
|
4421 done |
|
4422 |
|
4423 lemma NSTD_1: "\<not> TSTD (a, b, c) |
|
4424 \<Longrightarrow> rec_exec rec_NSTD [trpl_code (a, b, c)] = Suc 0" |
|
4425 using NSTD_lemma1[of "trpl_code (a, b, c)"] |
|
4426 NSTD_lemma2[of "trpl_code (a, b, c)"] |
|
4427 apply(simp add: TSTD_def) |
|
4428 apply(erule_tac disjE, erule_tac nstd_case1) |
|
4429 apply(erule_tac disjE, erule_tac nstd_case2) |
|
4430 apply(erule_tac nstd_case3) |
|
4431 done |
|
4432 |
|
4433 lemma nonstop_t_uhalt_eq: |
|
4434 "\<lbrakk>turing_basic.t_correct tp; |
|
4435 steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm>) tp stp = (a, b, c); |
|
4436 \<not> TSTD (a, b, c)\<rbrakk> |
|
4437 \<Longrightarrow> rec_exec rec_nonstop [code tp, bl2wc (<lm>), stp] = Suc 0" |
|
4438 apply(simp add: rec_nonstop_def rec_exec.simps) |
|
4439 apply(subgoal_tac |
|
4440 "rec_exec rec_conf [code tp, bl2wc (<lm>), stp] = |
|
4441 trpl_code (a, b, c)", simp) |
|
4442 apply(erule_tac NSTD_1) |
|
4443 using rec_t_eq_steps[of tp l lm stp] |
|
4444 apply(simp) |
|
4445 done |
|
4446 |
|
4447 lemma nonstop_true: |
|
4448 "\<lbrakk>turing_basic.t_correct tp; |
|
4449 \<forall> stp. (\<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm>) tp stp))\<rbrakk> |
|
4450 \<Longrightarrow> \<forall>y. rec_calc_rel rec_nonstop |
|
4451 ([code tp, bl2wc (<lm>), y]) (Suc 0)" |
|
4452 apply(rule_tac allI, erule_tac x = y in allE) |
|
4453 apply(case_tac "steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm>) tp y", simp) |
|
4454 apply(rule_tac nonstop_t_uhalt_eq, simp_all) |
|
4455 done |
|
4456 |
|
4457 (* |
|
4458 lemma [simp]: |
|
4459 "\<forall>j<Suc k. Ex (rec_calc_rel (get_fstn_args (Suc k) (Suc k) ! j) |
|
4460 (code tp # lm))" |
|
4461 apply(auto simp: get_fstn_args_nth) |
|
4462 apply(rule_tac x = "(code tp # lm) ! j" in exI) |
|
4463 apply(rule_tac calc_id, simp_all) |
|
4464 done |
|
4465 *) |
|
4466 declare ci_cn_para_eq[simp] |
|
4467 |
|
4468 lemma F_aprog_uhalt: |
|
4469 "\<lbrakk>turing_basic.t_correct tp; |
|
4470 \<forall> stp. (\<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm>) tp stp)); |
|
4471 rec_ci rec_F = (F_ap, rs_pos, a_md)\<rbrakk> |
|
4472 \<Longrightarrow> \<forall> stp. case abc_steps_l (0, [code tp, bl2wc (<lm>)] @ 0\<^bsup>a_md - rs_pos \<^esup> |
|
4473 @ suflm) (F_ap) stp of (ss, e) \<Rightarrow> ss < length (F_ap)" |
|
4474 apply(case_tac "rec_ci (Cn (Suc (Suc 0)) rec_right [Cn (Suc (Suc 0)) rec_conf |
|
4475 ([id (Suc (Suc 0)) 0, id (Suc (Suc 0)) (Suc 0), rec_halt])])") |
|
4476 apply(simp only: rec_F_def, rule_tac i = 0 and ga = a and gb = b and |
|
4477 gc = c in cn_gi_uhalt, simp, simp, simp, simp, simp, simp, simp) |
|
4478 apply(simp add: ci_cn_para_eq) |
|
4479 apply(case_tac "rec_ci (Cn (Suc (Suc 0)) rec_conf |
|
4480 ([id (Suc (Suc 0)) 0, id (Suc (Suc 0)) (Suc 0), rec_halt]))") |
|
4481 apply(rule_tac rf = "(Cn (Suc (Suc 0)) rec_right [Cn (Suc (Suc 0)) rec_conf |
|
4482 ([id (Suc (Suc 0)) 0, id (Suc (Suc 0)) (Suc 0), rec_halt])])" |
|
4483 and n = "Suc (Suc 0)" and f = rec_right and |
|
4484 gs = "[Cn (Suc (Suc 0)) rec_conf |
|
4485 ([id (Suc (Suc 0)) 0, id (Suc (Suc 0)) (Suc 0), rec_halt])]" |
|
4486 and i = 0 and ga = aa and gb = ba and gc = ca in |
|
4487 cn_gi_uhalt) |
|
4488 apply(simp, simp, simp, simp, simp, simp, simp, |
|
4489 simp add: ci_cn_para_eq) |
|
4490 apply(case_tac "rec_ci rec_halt") |
|
4491 apply(rule_tac rf = "(Cn (Suc (Suc 0)) rec_conf |
|
4492 ([id (Suc (Suc 0)) 0, id (Suc (Suc 0)) (Suc 0), rec_halt]))" |
|
4493 and n = "Suc (Suc 0)" and f = "rec_conf" and |
|
4494 gs = "([id (Suc (Suc 0)) 0, id (Suc (Suc 0)) (Suc 0), rec_halt])" and |
|
4495 i = "Suc (Suc 0)" and gi = "rec_halt" and ga = ab and gb = bb and |
|
4496 gc = cb in cn_gi_uhalt) |
|
4497 apply(simp, simp, simp, simp, simp add: nth_append, simp, |
|
4498 simp add: nth_append, simp add: rec_halt_def) |
|
4499 apply(simp only: rec_halt_def) |
|
4500 apply(case_tac [!] "rec_ci ((rec_nonstop))") |
|
4501 apply(rule_tac allI, rule_tac impI, simp) |
|
4502 apply(case_tac j, simp) |
|
4503 apply(rule_tac x = "code tp" in exI, rule_tac calc_id, simp, simp, simp, simp) |
|
4504 apply(rule_tac x = "bl2wc (<lm>)" in exI, rule_tac calc_id, simp, simp, simp) |
|
4505 apply(rule_tac rf = "Mn (Suc (Suc 0)) (rec_nonstop)" |
|
4506 and f = "(rec_nonstop)" and n = "Suc (Suc 0)" |
|
4507 and aprog' = ac and rs_pos' = bc and a_md' = cc in Mn_unhalt) |
|
4508 apply(simp, simp add: rec_halt_def , simp, simp) |
|
4509 apply(drule_tac nonstop_true, simp_all) |
|
4510 apply(rule_tac allI) |
|
4511 apply(erule_tac x = y in allE)+ |
|
4512 apply(simp) |
|
4513 done |
|
4514 |
|
4515 thm abc_list_crsp_steps |
|
4516 |
|
4517 lemma uabc_uhalt': |
|
4518 "\<lbrakk>turing_basic.t_correct tp; |
|
4519 \<forall> stp. (\<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm>) tp stp)); |
|
4520 rec_ci rec_F = (ap, pos, md)\<rbrakk> |
|
4521 \<Longrightarrow> \<forall> stp. case abc_steps_l (0, [code tp, bl2wc (<lm>)]) ap stp of (ss, e) |
|
4522 \<Rightarrow> ss < length ap" |
|
4523 proof(frule_tac F_ap = ap and rs_pos = pos and a_md = md |
|
4524 and suflm = "[]" in F_aprog_uhalt, auto) |
|
4525 fix stp a b |
|
4526 assume h: |
|
4527 "\<forall>stp. case abc_steps_l (0, code tp # bl2wc (<lm>) # 0\<^bsup>md - pos\<^esup>) ap stp of |
|
4528 (ss, e) \<Rightarrow> ss < length ap" |
|
4529 "abc_steps_l (0, [code tp, bl2wc (<lm>)]) ap stp = (a, b)" |
|
4530 "turing_basic.t_correct tp" |
|
4531 "rec_ci rec_F = (ap, pos, md)" |
|
4532 moreover have "ap \<noteq> []" |
|
4533 using h apply(rule_tac rec_ci_not_null, simp) |
|
4534 done |
|
4535 ultimately show "a < length ap" |
|
4536 proof(erule_tac x = stp in allE, |
|
4537 case_tac "abc_steps_l (0, code tp # bl2wc (<lm>) # 0\<^bsup>md - pos\<^esup>) ap stp", simp) |
|
4538 fix aa ba |
|
4539 assume g: "aa < length ap" |
|
4540 "abc_steps_l (0, code tp # bl2wc (<lm>) # 0\<^bsup>md - pos\<^esup>) ap stp = (aa, ba)" |
|
4541 "ap \<noteq> []" |
|
4542 thus "?thesis" |
|
4543 using abc_list_crsp_steps[of "[code tp, bl2wc (<lm>)]" |
|
4544 "md - pos" ap stp aa ba] h |
|
4545 apply(simp) |
|
4546 done |
|
4547 qed |
|
4548 qed |
|
4549 |
|
4550 lemma uabc_uhalt: |
|
4551 "\<lbrakk>turing_basic.t_correct tp; |
|
4552 \<forall> stp. (\<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm>) tp stp))\<rbrakk> |
|
4553 \<Longrightarrow> \<forall> stp. case abc_steps_l (0, [code tp, bl2wc (<lm>)]) F_aprog |
|
4554 stp of (ss, e) \<Rightarrow> ss < length F_aprog" |
|
4555 apply(case_tac "rec_ci rec_F", simp add: F_aprog_def) |
|
4556 thm uabc_uhalt' |
|
4557 apply(drule_tac ap = a and pos = b and md = c in uabc_uhalt', simp_all) |
|
4558 proof - |
|
4559 fix a b c |
|
4560 assume |
|
4561 "\<forall>stp. case abc_steps_l (0, [code tp, bl2wc (<lm>)]) a stp of (ss, e) |
|
4562 \<Rightarrow> ss < length a" |
|
4563 "rec_ci rec_F = (a, b, c)" |
|
4564 thus |
|
4565 "\<forall>stp. case abc_steps_l (0, [code tp, bl2wc (<lm>)]) |
|
4566 (a [+] dummy_abc (Suc (Suc 0))) stp of (ss, e) \<Rightarrow> |
|
4567 ss < Suc (Suc (Suc (length a)))" |
|
4568 using abc_append_uhalt1[of a "[code tp, bl2wc (<lm>)]" |
|
4569 "a [+] dummy_abc (Suc (Suc 0))" "[]" "dummy_abc (Suc (Suc 0))"] |
|
4570 apply(simp) |
|
4571 done |
|
4572 qed |
|
4573 |
|
4574 thm abacus_turing_eq_uhalt |
|
4575 lemma tutm_uhalt': |
|
4576 "\<lbrakk>turing_basic.t_correct tp; |
|
4577 \<forall> stp. (\<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm>) tp stp))\<rbrakk> |
|
4578 \<Longrightarrow> \<forall> stp. \<not> isS0 (steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]>) t_utm stp)" |
|
4579 using abacus_turing_eq_uhalt[of "layout_of (F_aprog)" |
|
4580 "F_aprog" "F_tprog" "[code tp, bl2wc (<lm>)]" |
|
4581 "start_of (layout_of (F_aprog )) (length (F_aprog))" |
|
4582 "Suc (Suc 0)"] |
|
4583 apply(simp add: F_tprog_def) |
|
4584 apply(subgoal_tac "\<forall>stp. case abc_steps_l (0, [code tp, bl2wc (<lm>)]) |
|
4585 (F_aprog) stp of (as, am) \<Rightarrow> as < length (F_aprog)", simp) |
|
4586 thm abacus_turing_eq_uhalt |
|
4587 apply(simp add: t_utm_def F_tprog_def) |
|
4588 apply(rule_tac uabc_uhalt, simp_all) |
|
4589 done |
|
4590 |
|
4591 lemma tinres_commute: "tinres r r' \<Longrightarrow> tinres r' r" |
|
4592 apply(auto simp: tinres_def) |
|
4593 done |
|
4594 |
|
4595 lemma inres_tape: |
|
4596 "\<lbrakk>steps (st, l, r) tp stp = (a, b, c); steps (st, l', r') tp stp = (a', b', c'); |
|
4597 tinres l l'; tinres r r'\<rbrakk> |
|
4598 \<Longrightarrow> a = a' \<and> tinres b b' \<and> tinres c c'" |
|
4599 proof(case_tac "steps (st, l', r) tp stp") |
|
4600 fix aa ba ca |
|
4601 assume h: "steps (st, l, r) tp stp = (a, b, c)" |
|
4602 "steps (st, l', r') tp stp = (a', b', c')" |
|
4603 "tinres l l'" "tinres r r'" |
|
4604 "steps (st, l', r) tp stp = (aa, ba, ca)" |
|
4605 have "tinres b ba \<and> c = ca \<and> a = aa" |
|
4606 using h |
|
4607 apply(rule_tac tinres_steps, auto) |
|
4608 done |
|
4609 |
|
4610 thm tinres_steps2 |
|
4611 moreover have "b' = ba \<and> tinres c' ca \<and> a' = aa" |
|
4612 using h |
|
4613 apply(rule_tac tinres_steps2, auto intro: tinres_commute) |
|
4614 done |
|
4615 ultimately show "?thesis" |
|
4616 apply(auto intro: tinres_commute) |
|
4617 done |
|
4618 qed |
|
4619 |
|
4620 lemma tape_normalize: "\<forall> stp. \<not> isS0 (steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]>) t_utm stp) |
|
4621 \<Longrightarrow> \<forall> stp. \<not> isS0 (steps (Suc 0, Bk\<^bsup>m\<^esup>, <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>n\<^esup>) t_utm stp)" |
|
4622 apply(rule_tac allI, case_tac "(steps (Suc 0, Bk\<^bsup>m\<^esup>, |
|
4623 <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>n\<^esup>) t_utm stp)", simp add: isS0_def) |
|
4624 apply(erule_tac x = stp in allE) |
|
4625 apply(case_tac "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]>) t_utm stp", simp) |
|
4626 apply(drule_tac inres_tape, auto) |
|
4627 apply(auto simp: tinres_def) |
|
4628 apply(case_tac "m > Suc (Suc 0)") |
|
4629 apply(rule_tac x = "m - Suc (Suc 0)" in exI) |
|
4630 apply(case_tac m, simp_all add: exp_ind_def, case_tac nat, simp_all add: exp_ind_def) |
|
4631 apply(rule_tac x = "2 - m" in exI, simp add: exp_ind_def[THEN sym] exp_add[THEN sym]) |
|
4632 apply(simp only: numeral_2_eq_2, simp add: exp_ind_def) |
|
4633 done |
|
4634 |
|
4635 lemma tutm_uhalt: |
|
4636 "\<lbrakk>turing_basic.t_correct tp; |
|
4637 \<forall> stp. (\<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <args>) tp stp))\<rbrakk> |
|
4638 \<Longrightarrow> \<forall> stp. \<not> isS0 (steps (Suc 0, Bk\<^bsup>m\<^esup>, <[code tp, bl2wc (<args>)]> @ Bk\<^bsup>n\<^esup>) t_utm stp)" |
|
4639 apply(rule_tac tape_normalize) |
|
4640 apply(rule_tac tutm_uhalt', simp_all) |
|
4641 done |
|
4642 |
|
4643 lemma UTM_uhalt_lemma_pre: |
|
4644 "\<lbrakk>turing_basic.t_correct tp; |
|
4645 \<forall> stp. (\<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <args>) tp stp)); |
|
4646 args \<noteq> []\<rbrakk> |
|
4647 \<Longrightarrow> \<forall> stp. \<not> isS0 (steps (Suc 0, [], <code tp # args>) UTM_pre stp)" |
|
4648 proof - |
|
4649 let ?P1 = "\<lambda> (l, r). l = [] \<and> r = <code tp # args>" |
|
4650 let ?Q1 = "\<lambda> (l, r). (l = [Bk] \<and> |
|
4651 (\<exists> rn. r = Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>))" |
|
4652 let ?P4 = ?Q1 |
|
4653 let ?P3 = "\<lambda> (l, r). False" |
|
4654 assume h: "turing_basic.t_correct tp" "\<forall>stp. \<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <args>) tp stp)" |
|
4655 "args \<noteq> []" |
|
4656 have "?P1 \<turnstile>-> \<lambda> tp. \<not> (\<exists> stp. isS0 (steps (Suc 0, tp) (t_wcode |+| t_utm) stp))" |
|
4657 proof(rule_tac turing_merge.t_merge_uhalt [of "t_wcode" "t_utm" |
|
4658 ?P1 ?P3 ?P3 ?P4 ?Q1 ?P3], auto simp: turing_merge_def) |
|
4659 show "\<exists>stp. case steps (Suc 0, [], <code tp # args>) t_wcode stp of (st, tp') \<Rightarrow> |
|
4660 st = 0 \<and> (case tp' of (l, r) \<Rightarrow> l = [Bk] \<and> |
|
4661 (\<exists>rn. r = Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>))" |
|
4662 using wcode_lemma_1[of args "code tp"] h |
|
4663 apply(simp, auto) |
|
4664 apply(rule_tac x = stp in exI, auto) |
|
4665 done |
|
4666 next |
|
4667 fix rn stp |
|
4668 show " isS0 (steps (Suc 0, [Bk], Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>) t_utm stp) |
|
4669 \<Longrightarrow> False" |
|
4670 using tutm_uhalt[of tp l args "Suc 0" rn] h |
|
4671 apply(simp) |
|
4672 apply(erule_tac x = stp in allE) |
|
4673 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps bin_wc_eq) |
|
4674 done |
|
4675 next |
|
4676 fix rn stp |
|
4677 show "isS0 (steps (Suc 0, [Bk], Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>) t_utm stp) \<Longrightarrow> |
|
4678 isS0 (steps (Suc 0, [Bk], Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>) t_utm stp)" |
|
4679 by simp |
|
4680 next |
|
4681 show "?Q1 \<turnstile>-> ?P4" |
|
4682 apply(simp add: t_imply_def) |
|
4683 done |
|
4684 qed |
|
4685 thus "?thesis" |
|
4686 apply(simp add: t_imply_def UTM_pre_def) |
|
4687 done |
|
4688 qed |
|
4689 |
|
4690 text {* |
|
4691 The correctness of @{text "UTM"}, the unhalt case. |
|
4692 *} |
|
4693 |
|
4694 theorem UTM_uhalt_lemma: |
|
4695 "\<lbrakk>turing_basic.t_correct tp; |
|
4696 \<forall> stp. (\<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <args>) tp stp)); |
|
4697 args \<noteq> []\<rbrakk> |
|
4698 \<Longrightarrow> \<forall> stp. \<not> isS0 (steps (Suc 0, [], <code tp # args>) UTM stp)" |
|
4699 using UTM_uhalt_lemma_pre[of tp l args] |
|
4700 apply(simp add: UTM_pre_def t_utm_def UTM_def F_aprog_def F_tprog_def) |
|
4701 apply(case_tac "rec_ci rec_F", simp) |
|
4702 done |
|
4703 |
|
4704 end |