149
|
1 |
theory Regular
|
|
2 |
imports Main Folds
|
|
3 |
begin
|
|
4 |
|
|
5 |
section {* Preliminary definitions *}
|
|
6 |
|
|
7 |
type_synonym lang = "string set"
|
|
8 |
|
|
9 |
|
|
10 |
text {* Sequential composition of two languages *}
|
|
11 |
|
|
12 |
definition
|
|
13 |
Seq :: "lang \<Rightarrow> lang \<Rightarrow> lang" (infixr ";;" 100)
|
|
14 |
where
|
|
15 |
"A ;; B = {s\<^isub>1 @ s\<^isub>2 | s\<^isub>1 s\<^isub>2. s\<^isub>1 \<in> A \<and> s\<^isub>2 \<in> B}"
|
|
16 |
|
|
17 |
|
|
18 |
text {* Some properties of operator @{text ";;"}. *}
|
|
19 |
|
|
20 |
lemma seq_add_left:
|
|
21 |
assumes a: "A = B"
|
|
22 |
shows "C ;; A = C ;; B"
|
|
23 |
using a by simp
|
|
24 |
|
|
25 |
lemma seq_union_distrib_right:
|
|
26 |
shows "(A \<union> B) ;; C = (A ;; C) \<union> (B ;; C)"
|
|
27 |
unfolding Seq_def by auto
|
|
28 |
|
|
29 |
lemma seq_union_distrib_left:
|
|
30 |
shows "C ;; (A \<union> B) = (C ;; A) \<union> (C ;; B)"
|
|
31 |
unfolding Seq_def by auto
|
|
32 |
|
|
33 |
lemma seq_intro:
|
|
34 |
assumes a: "x \<in> A" "y \<in> B"
|
|
35 |
shows "x @ y \<in> A ;; B "
|
|
36 |
using a by (auto simp: Seq_def)
|
|
37 |
|
|
38 |
lemma seq_assoc:
|
|
39 |
shows "(A ;; B) ;; C = A ;; (B ;; C)"
|
|
40 |
unfolding Seq_def
|
|
41 |
apply(auto)
|
|
42 |
apply(blast)
|
|
43 |
by (metis append_assoc)
|
|
44 |
|
|
45 |
lemma seq_empty [simp]:
|
|
46 |
shows "A ;; {[]} = A"
|
|
47 |
and "{[]} ;; A = A"
|
|
48 |
by (simp_all add: Seq_def)
|
|
49 |
|
|
50 |
lemma seq_null [simp]:
|
|
51 |
shows "A ;; {} = {}"
|
|
52 |
and "{} ;; A = {}"
|
|
53 |
by (simp_all add: Seq_def)
|
|
54 |
|
|
55 |
|
|
56 |
text {* Power and Star of a language *}
|
|
57 |
|
|
58 |
fun
|
|
59 |
pow :: "lang \<Rightarrow> nat \<Rightarrow> lang" (infixl "\<up>" 100)
|
|
60 |
where
|
|
61 |
"A \<up> 0 = {[]}"
|
|
62 |
| "A \<up> (Suc n) = A ;; (A \<up> n)"
|
|
63 |
|
|
64 |
definition
|
|
65 |
Star :: "lang \<Rightarrow> lang" ("_\<star>" [101] 102)
|
|
66 |
where
|
|
67 |
"A\<star> \<equiv> (\<Union>n. A \<up> n)"
|
|
68 |
|
|
69 |
|
|
70 |
lemma star_start[intro]:
|
|
71 |
shows "[] \<in> A\<star>"
|
|
72 |
proof -
|
|
73 |
have "[] \<in> A \<up> 0" by auto
|
|
74 |
then show "[] \<in> A\<star>" unfolding Star_def by blast
|
|
75 |
qed
|
|
76 |
|
|
77 |
lemma star_step [intro]:
|
|
78 |
assumes a: "s1 \<in> A"
|
|
79 |
and b: "s2 \<in> A\<star>"
|
|
80 |
shows "s1 @ s2 \<in> A\<star>"
|
|
81 |
proof -
|
|
82 |
from b obtain n where "s2 \<in> A \<up> n" unfolding Star_def by auto
|
|
83 |
then have "s1 @ s2 \<in> A \<up> (Suc n)" using a by (auto simp add: Seq_def)
|
|
84 |
then show "s1 @ s2 \<in> A\<star>" unfolding Star_def by blast
|
|
85 |
qed
|
|
86 |
|
|
87 |
lemma star_induct[consumes 1, case_names start step]:
|
|
88 |
assumes a: "x \<in> A\<star>"
|
|
89 |
and b: "P []"
|
|
90 |
and c: "\<And>s1 s2. \<lbrakk>s1 \<in> A; s2 \<in> A\<star>; P s2\<rbrakk> \<Longrightarrow> P (s1 @ s2)"
|
|
91 |
shows "P x"
|
|
92 |
proof -
|
|
93 |
from a obtain n where "x \<in> A \<up> n" unfolding Star_def by auto
|
|
94 |
then show "P x"
|
|
95 |
by (induct n arbitrary: x)
|
|
96 |
(auto intro!: b c simp add: Seq_def Star_def)
|
|
97 |
qed
|
|
98 |
|
|
99 |
lemma star_intro1:
|
|
100 |
assumes a: "x \<in> A\<star>"
|
|
101 |
and b: "y \<in> A\<star>"
|
|
102 |
shows "x @ y \<in> A\<star>"
|
|
103 |
using a b
|
|
104 |
by (induct rule: star_induct) (auto)
|
|
105 |
|
|
106 |
lemma star_intro2:
|
|
107 |
assumes a: "y \<in> A"
|
|
108 |
shows "y \<in> A\<star>"
|
|
109 |
proof -
|
|
110 |
from a have "y @ [] \<in> A\<star>" by blast
|
|
111 |
then show "y \<in> A\<star>" by simp
|
|
112 |
qed
|
|
113 |
|
|
114 |
lemma star_intro3:
|
|
115 |
assumes a: "x \<in> A\<star>"
|
|
116 |
and b: "y \<in> A"
|
|
117 |
shows "x @ y \<in> A\<star>"
|
|
118 |
using a b by (blast intro: star_intro1 star_intro2)
|
|
119 |
|
|
120 |
lemma star_cases:
|
|
121 |
shows "A\<star> = {[]} \<union> A ;; A\<star>"
|
|
122 |
proof
|
|
123 |
{ fix x
|
|
124 |
have "x \<in> A\<star> \<Longrightarrow> x \<in> {[]} \<union> A ;; A\<star>"
|
|
125 |
unfolding Seq_def
|
|
126 |
by (induct rule: star_induct) (auto)
|
|
127 |
}
|
|
128 |
then show "A\<star> \<subseteq> {[]} \<union> A ;; A\<star>" by auto
|
|
129 |
next
|
|
130 |
show "{[]} \<union> A ;; A\<star> \<subseteq> A\<star>"
|
|
131 |
unfolding Seq_def by auto
|
|
132 |
qed
|
|
133 |
|
|
134 |
lemma star_decom:
|
|
135 |
assumes a: "x \<in> A\<star>" "x \<noteq> []"
|
|
136 |
shows "\<exists>a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> A \<and> b \<in> A\<star>"
|
|
137 |
using a
|
|
138 |
by (induct rule: star_induct) (blast)+
|
|
139 |
|
|
140 |
lemma
|
|
141 |
shows seq_Union_left: "B ;; (\<Union>n. A \<up> n) = (\<Union>n. B ;; (A \<up> n))"
|
|
142 |
and seq_Union_right: "(\<Union>n. A \<up> n) ;; B = (\<Union>n. (A \<up> n) ;; B)"
|
|
143 |
unfolding Seq_def by auto
|
|
144 |
|
|
145 |
lemma seq_pow_comm:
|
|
146 |
shows "A ;; (A \<up> n) = (A \<up> n) ;; A"
|
|
147 |
by (induct n) (simp_all add: seq_assoc[symmetric])
|
|
148 |
|
|
149 |
lemma seq_star_comm:
|
|
150 |
shows "A ;; A\<star> = A\<star> ;; A"
|
|
151 |
unfolding Star_def seq_Union_left
|
|
152 |
unfolding seq_pow_comm seq_Union_right
|
|
153 |
by simp
|
|
154 |
|
|
155 |
|
|
156 |
text {* Two lemmas about the length of strings in @{text "A \<up> n"} *}
|
|
157 |
|
|
158 |
lemma pow_length:
|
|
159 |
assumes a: "[] \<notin> A"
|
|
160 |
and b: "s \<in> A \<up> Suc n"
|
|
161 |
shows "n < length s"
|
|
162 |
using b
|
|
163 |
proof (induct n arbitrary: s)
|
|
164 |
case 0
|
|
165 |
have "s \<in> A \<up> Suc 0" by fact
|
|
166 |
with a have "s \<noteq> []" by auto
|
|
167 |
then show "0 < length s" by auto
|
|
168 |
next
|
|
169 |
case (Suc n)
|
|
170 |
have ih: "\<And>s. s \<in> A \<up> Suc n \<Longrightarrow> n < length s" by fact
|
|
171 |
have "s \<in> A \<up> Suc (Suc n)" by fact
|
|
172 |
then obtain s1 s2 where eq: "s = s1 @ s2" and *: "s1 \<in> A" and **: "s2 \<in> A \<up> Suc n"
|
|
173 |
by (auto simp add: Seq_def)
|
|
174 |
from ih ** have "n < length s2" by simp
|
|
175 |
moreover have "0 < length s1" using * a by auto
|
|
176 |
ultimately show "Suc n < length s" unfolding eq
|
|
177 |
by (simp only: length_append)
|
|
178 |
qed
|
|
179 |
|
|
180 |
lemma seq_pow_length:
|
|
181 |
assumes a: "[] \<notin> A"
|
|
182 |
and b: "s \<in> B ;; (A \<up> Suc n)"
|
|
183 |
shows "n < length s"
|
|
184 |
proof -
|
|
185 |
from b obtain s1 s2 where eq: "s = s1 @ s2" and *: "s2 \<in> A \<up> Suc n"
|
|
186 |
unfolding Seq_def by auto
|
|
187 |
from * have " n < length s2" by (rule pow_length[OF a])
|
|
188 |
then show "n < length s" using eq by simp
|
|
189 |
qed
|
|
190 |
|
|
191 |
|
|
192 |
section {* A modified version of Arden's lemma *}
|
|
193 |
|
|
194 |
text {* A helper lemma for Arden *}
|
|
195 |
|
|
196 |
lemma arden_helper:
|
|
197 |
assumes eq: "X = X ;; A \<union> B"
|
|
198 |
shows "X = X ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))"
|
|
199 |
proof (induct n)
|
|
200 |
case 0
|
|
201 |
show "X = X ;; (A \<up> Suc 0) \<union> (\<Union>(m::nat)\<in>{0..0}. B ;; (A \<up> m))"
|
|
202 |
using eq by simp
|
|
203 |
next
|
|
204 |
case (Suc n)
|
|
205 |
have ih: "X = X ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" by fact
|
|
206 |
also have "\<dots> = (X ;; A \<union> B) ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" using eq by simp
|
|
207 |
also have "\<dots> = X ;; (A \<up> Suc (Suc n)) \<union> (B ;; (A \<up> Suc n)) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))"
|
|
208 |
by (simp add: seq_union_distrib_right seq_assoc)
|
|
209 |
also have "\<dots> = X ;; (A \<up> Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B ;; (A \<up> m))"
|
|
210 |
by (auto simp add: le_Suc_eq)
|
|
211 |
finally show "X = X ;; (A \<up> Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B ;; (A \<up> m))" .
|
|
212 |
qed
|
|
213 |
|
|
214 |
theorem arden:
|
|
215 |
assumes nemp: "[] \<notin> A"
|
|
216 |
shows "X = X ;; A \<union> B \<longleftrightarrow> X = B ;; A\<star>"
|
|
217 |
proof
|
|
218 |
assume eq: "X = B ;; A\<star>"
|
|
219 |
have "A\<star> = {[]} \<union> A\<star> ;; A"
|
|
220 |
unfolding seq_star_comm[symmetric]
|
|
221 |
by (rule star_cases)
|
|
222 |
then have "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)"
|
|
223 |
by (rule seq_add_left)
|
|
224 |
also have "\<dots> = B \<union> B ;; (A\<star> ;; A)"
|
|
225 |
unfolding seq_union_distrib_left by simp
|
|
226 |
also have "\<dots> = B \<union> (B ;; A\<star>) ;; A"
|
|
227 |
by (simp only: seq_assoc)
|
|
228 |
finally show "X = X ;; A \<union> B"
|
|
229 |
using eq by blast
|
|
230 |
next
|
|
231 |
assume eq: "X = X ;; A \<union> B"
|
|
232 |
{ fix n::nat
|
|
233 |
have "B ;; (A \<up> n) \<subseteq> X" using arden_helper[OF eq, of "n"] by auto }
|
|
234 |
then have "B ;; A\<star> \<subseteq> X"
|
|
235 |
unfolding Seq_def Star_def UNION_def by auto
|
|
236 |
moreover
|
|
237 |
{ fix s::string
|
|
238 |
obtain k where "k = length s" by auto
|
|
239 |
then have not_in: "s \<notin> X ;; (A \<up> Suc k)"
|
|
240 |
using seq_pow_length[OF nemp] by blast
|
|
241 |
assume "s \<in> X"
|
|
242 |
then have "s \<in> X ;; (A \<up> Suc k) \<union> (\<Union>m\<in>{0..k}. B ;; (A \<up> m))"
|
|
243 |
using arden_helper[OF eq, of "k"] by auto
|
|
244 |
then have "s \<in> (\<Union>m\<in>{0..k}. B ;; (A \<up> m))" using not_in by auto
|
|
245 |
moreover
|
|
246 |
have "(\<Union>m\<in>{0..k}. B ;; (A \<up> m)) \<subseteq> (\<Union>n. B ;; (A \<up> n))" by auto
|
|
247 |
ultimately
|
|
248 |
have "s \<in> B ;; A\<star>"
|
|
249 |
unfolding seq_Union_left Star_def by auto }
|
|
250 |
then have "X \<subseteq> B ;; A\<star>" by auto
|
|
251 |
ultimately
|
|
252 |
show "X = B ;; A\<star>" by simp
|
|
253 |
qed
|
|
254 |
|
|
255 |
|
|
256 |
section {* Regular Expressions *}
|
|
257 |
|
|
258 |
datatype rexp =
|
|
259 |
NULL
|
|
260 |
| EMPTY
|
|
261 |
| CHAR char
|
|
262 |
| SEQ rexp rexp
|
|
263 |
| ALT rexp rexp
|
|
264 |
| STAR rexp
|
|
265 |
|
|
266 |
|
|
267 |
text {*
|
|
268 |
The function @{text L} is overloaded, with the idea that @{text "L x"}
|
|
269 |
evaluates to the language represented by the object @{text x}.
|
|
270 |
*}
|
|
271 |
|
|
272 |
consts L:: "'a \<Rightarrow> lang"
|
|
273 |
|
|
274 |
overloading L_rexp \<equiv> "L:: rexp \<Rightarrow> lang"
|
|
275 |
begin
|
|
276 |
fun
|
|
277 |
L_rexp :: "rexp \<Rightarrow> lang"
|
|
278 |
where
|
|
279 |
"L_rexp (NULL) = {}"
|
|
280 |
| "L_rexp (EMPTY) = {[]}"
|
|
281 |
| "L_rexp (CHAR c) = {[c]}"
|
|
282 |
| "L_rexp (SEQ r1 r2) = (L_rexp r1) ;; (L_rexp r2)"
|
|
283 |
| "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)"
|
|
284 |
| "L_rexp (STAR r) = (L_rexp r)\<star>"
|
|
285 |
end
|
|
286 |
|
|
287 |
|
|
288 |
text {* ALT-combination for a set of regular expressions *}
|
|
289 |
|
|
290 |
abbreviation
|
|
291 |
Setalt ("\<Uplus>_" [1000] 999)
|
|
292 |
where
|
|
293 |
"\<Uplus>A \<equiv> folds ALT NULL A"
|
|
294 |
|
|
295 |
text {*
|
|
296 |
For finite sets, @{term Setalt} is preserved under @{term L}.
|
|
297 |
*}
|
|
298 |
|
|
299 |
lemma folds_alt_simp [simp]:
|
|
300 |
fixes rs::"rexp set"
|
|
301 |
assumes a: "finite rs"
|
|
302 |
shows "L (\<Uplus>rs) = \<Union> (L ` rs)"
|
|
303 |
unfolding folds_def
|
|
304 |
apply(rule set_eqI)
|
|
305 |
apply(rule someI2_ex)
|
|
306 |
apply(rule_tac finite_imp_fold_graph[OF a])
|
|
307 |
apply(erule fold_graph.induct)
|
|
308 |
apply(auto)
|
|
309 |
done
|
|
310 |
|
|
311 |
end |