149
|
1 |
theory Derivs
|
|
2 |
imports Closure
|
|
3 |
begin
|
|
4 |
|
|
5 |
section {* Experiments with Derivatives -- independent of Myhill-Nerode *}
|
|
6 |
|
|
7 |
subsection {* Left-Quotients *}
|
|
8 |
|
|
9 |
definition
|
|
10 |
Delta :: "lang \<Rightarrow> lang"
|
|
11 |
where
|
|
12 |
"Delta A = (if [] \<in> A then {[]} else {})"
|
|
13 |
|
|
14 |
definition
|
|
15 |
Der :: "char \<Rightarrow> lang \<Rightarrow> lang"
|
|
16 |
where
|
|
17 |
"Der c A \<equiv> {s. [c] @ s \<in> A}"
|
|
18 |
|
|
19 |
definition
|
|
20 |
Ders :: "string \<Rightarrow> lang \<Rightarrow> lang"
|
|
21 |
where
|
|
22 |
"Ders s A \<equiv> {s'. s @ s' \<in> A}"
|
|
23 |
|
|
24 |
definition
|
|
25 |
Ders_set :: "lang \<Rightarrow> lang \<Rightarrow> lang"
|
|
26 |
where
|
|
27 |
"Ders_set A B \<equiv> {s' | s s'. s @ s' \<in> B \<and> s \<in> A}"
|
|
28 |
|
|
29 |
lemma Ders_set_Ders:
|
|
30 |
shows "Ders_set A B = (\<Union>s \<in> A. Ders s B)"
|
|
31 |
unfolding Ders_set_def Ders_def
|
|
32 |
by auto
|
|
33 |
|
|
34 |
lemma Der_null [simp]:
|
|
35 |
shows "Der c {} = {}"
|
|
36 |
unfolding Der_def
|
|
37 |
by auto
|
|
38 |
|
|
39 |
lemma Der_empty [simp]:
|
|
40 |
shows "Der c {[]} = {}"
|
|
41 |
unfolding Der_def
|
|
42 |
by auto
|
|
43 |
|
|
44 |
lemma Der_char [simp]:
|
|
45 |
shows "Der c {[d]} = (if c = d then {[]} else {})"
|
|
46 |
unfolding Der_def
|
|
47 |
by auto
|
|
48 |
|
|
49 |
lemma Der_union [simp]:
|
|
50 |
shows "Der c (A \<union> B) = Der c A \<union> Der c B"
|
|
51 |
unfolding Der_def
|
|
52 |
by auto
|
|
53 |
|
|
54 |
lemma Der_seq [simp]:
|
|
55 |
shows "Der c (A ;; B) = (Der c A) ;; B \<union> (Delta A ;; Der c B)"
|
|
56 |
unfolding Der_def Delta_def
|
|
57 |
unfolding Seq_def
|
|
58 |
by (auto simp add: Cons_eq_append_conv)
|
|
59 |
|
|
60 |
lemma Der_star [simp]:
|
|
61 |
shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
|
|
62 |
apply(subst star_cases)
|
|
63 |
apply(simp only: Delta_def Der_union Der_seq Der_empty)
|
|
64 |
apply(simp add: Der_def Seq_def)
|
|
65 |
apply(auto)
|
|
66 |
apply(drule star_decom)
|
|
67 |
apply(auto simp add: Cons_eq_append_conv)
|
|
68 |
done
|
|
69 |
|
|
70 |
lemma Ders_singleton:
|
|
71 |
shows "Ders [c] A = Der c A"
|
|
72 |
unfolding Der_def Ders_def
|
|
73 |
by simp
|
|
74 |
|
|
75 |
lemma Ders_append:
|
|
76 |
shows "Ders (s1 @ s2) A = Ders s2 (Ders s1 A)"
|
|
77 |
unfolding Ders_def by simp
|
|
78 |
|
|
79 |
lemma MN_Rel_Ders:
|
|
80 |
shows "x \<approx>A y \<longleftrightarrow> Ders x A = Ders y A"
|
|
81 |
unfolding Ders_def str_eq_def str_eq_rel_def
|
|
82 |
by auto
|
|
83 |
|
|
84 |
subsection {* Brozowsky's derivatives of regular expressions *}
|
|
85 |
|
|
86 |
fun
|
|
87 |
nullable :: "rexp \<Rightarrow> bool"
|
|
88 |
where
|
|
89 |
"nullable (NULL) = False"
|
|
90 |
| "nullable (EMPTY) = True"
|
|
91 |
| "nullable (CHAR c) = False"
|
|
92 |
| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
|
|
93 |
| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
|
|
94 |
| "nullable (STAR r) = True"
|
|
95 |
|
|
96 |
fun
|
|
97 |
der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
|
|
98 |
where
|
|
99 |
"der c (NULL) = NULL"
|
|
100 |
| "der c (EMPTY) = NULL"
|
|
101 |
| "der c (CHAR c') = (if c = c' then EMPTY else NULL)"
|
|
102 |
| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
|
|
103 |
| "der c (SEQ r1 r2) = ALT (SEQ (der c r1) r2) (if nullable r1 then der c r2 else NULL)"
|
|
104 |
| "der c (STAR r) = SEQ (der c r) (STAR r)"
|
|
105 |
|
|
106 |
function
|
|
107 |
ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
|
|
108 |
where
|
|
109 |
"ders [] r = r"
|
|
110 |
| "ders (s @ [c]) r = der c (ders s r)"
|
|
111 |
by (auto) (metis rev_cases)
|
|
112 |
|
|
113 |
termination
|
|
114 |
by (relation "measure (length o fst)") (auto)
|
|
115 |
|
|
116 |
lemma Delta_nullable:
|
|
117 |
shows "Delta (L r) = (if nullable r then {[]} else {})"
|
|
118 |
unfolding Delta_def
|
|
119 |
by (induct r) (auto simp add: Seq_def split: if_splits)
|
|
120 |
|
|
121 |
lemma Der_der:
|
|
122 |
fixes r::rexp
|
|
123 |
shows "Der c (L r) = L (der c r)"
|
|
124 |
by (induct r) (simp_all add: Delta_nullable)
|
|
125 |
|
|
126 |
lemma Ders_ders:
|
|
127 |
fixes r::rexp
|
|
128 |
shows "Ders s (L r) = L (ders s r)"
|
|
129 |
apply(induct s rule: rev_induct)
|
|
130 |
apply(simp add: Ders_def)
|
|
131 |
apply(simp only: ders.simps)
|
|
132 |
apply(simp only: Ders_append)
|
|
133 |
apply(simp only: Ders_singleton)
|
|
134 |
apply(simp only: Der_der)
|
|
135 |
done
|
|
136 |
|
|
137 |
|
|
138 |
subsection {* Antimirov's Partial Derivatives *}
|
|
139 |
|
|
140 |
abbreviation
|
|
141 |
"SEQS R r \<equiv> {SEQ r' r | r'. r' \<in> R}"
|
|
142 |
|
|
143 |
fun
|
|
144 |
pder :: "char \<Rightarrow> rexp \<Rightarrow> rexp set"
|
|
145 |
where
|
|
146 |
"pder c NULL = {NULL}"
|
|
147 |
| "pder c EMPTY = {NULL}"
|
|
148 |
| "pder c (CHAR c') = (if c = c' then {EMPTY} else {NULL})"
|
|
149 |
| "pder c (ALT r1 r2) = (pder c r1) \<union> (pder c r2)"
|
|
150 |
| "pder c (SEQ r1 r2) = SEQS (pder c r1) r2 \<union> (if nullable r1 then pder c r2 else {})"
|
|
151 |
| "pder c (STAR r) = SEQS (pder c r) (STAR r)"
|
|
152 |
|
|
153 |
abbreviation
|
|
154 |
"pder_set c R \<equiv> \<Union>r \<in> R. pder c r"
|
|
155 |
|
|
156 |
function
|
|
157 |
pders :: "string \<Rightarrow> rexp \<Rightarrow> rexp set"
|
|
158 |
where
|
|
159 |
"pders [] r = {r}"
|
|
160 |
| "pders (s @ [c]) r = pder_set c (pders s r)"
|
|
161 |
by (auto) (metis rev_cases)
|
|
162 |
|
|
163 |
termination
|
|
164 |
by (relation "measure (length o fst)") (auto)
|
|
165 |
|
|
166 |
abbreviation
|
|
167 |
"pders_set A r \<equiv> \<Union>s \<in> A. pders s r"
|
|
168 |
|
|
169 |
lemma pders_append:
|
|
170 |
"pders (s1 @ s2) r = \<Union> (pders s2) ` (pders s1 r)"
|
|
171 |
apply(induct s2 arbitrary: s1 r rule: rev_induct)
|
|
172 |
apply(simp)
|
|
173 |
apply(subst append_assoc[symmetric])
|
|
174 |
apply(simp only: pders.simps)
|
|
175 |
apply(auto)
|
|
176 |
done
|
|
177 |
|
|
178 |
lemma pders_singleton:
|
|
179 |
"pders [c] r = pder c r"
|
|
180 |
apply(subst append_Nil[symmetric])
|
|
181 |
apply(simp only: pders.simps)
|
|
182 |
apply(simp)
|
|
183 |
done
|
|
184 |
|
|
185 |
lemma pder_set_lang:
|
|
186 |
shows "(\<Union> (L ` pder_set c R)) = (\<Union>r \<in> R. (\<Union>L ` (pder c r)))"
|
|
187 |
unfolding image_def
|
|
188 |
by auto
|
|
189 |
|
|
190 |
lemma
|
|
191 |
shows seq_UNION_left: "B ;; (\<Union>n\<in>C. A n) = (\<Union>n\<in>C. B ;; A n)"
|
|
192 |
and seq_UNION_right: "(\<Union>n\<in>C. A n) ;; B = (\<Union>n\<in>C. A n ;; B)"
|
|
193 |
unfolding Seq_def by auto
|
|
194 |
|
|
195 |
lemma Der_pder:
|
|
196 |
fixes r::rexp
|
|
197 |
shows "Der c (L r) = \<Union> L ` (pder c r)"
|
|
198 |
by (induct r) (auto simp add: Delta_nullable seq_UNION_right)
|
|
199 |
|
|
200 |
lemma Ders_pders:
|
|
201 |
fixes r::rexp
|
|
202 |
shows "Ders s (L r) = \<Union> L ` (pders s r)"
|
|
203 |
proof (induct s rule: rev_induct)
|
|
204 |
case (snoc c s)
|
|
205 |
have ih: "Ders s (L r) = \<Union> L ` (pders s r)" by fact
|
|
206 |
have "Ders (s @ [c]) (L r) = Ders [c] (Ders s (L r))"
|
|
207 |
by (simp add: Ders_append)
|
|
208 |
also have "\<dots> = Der c (\<Union> L ` (pders s r))" using ih
|
|
209 |
by (simp add: Ders_singleton)
|
|
210 |
also have "\<dots> = (\<Union>r\<in>pders s r. Der c (L r))"
|
|
211 |
unfolding Der_def image_def by auto
|
|
212 |
also have "\<dots> = (\<Union>r\<in>pders s r. (\<Union> L ` (pder c r)))"
|
|
213 |
by (simp add: Der_pder)
|
|
214 |
also have "\<dots> = (\<Union>L ` (pder_set c (pders s r)))"
|
|
215 |
by (simp add: pder_set_lang)
|
|
216 |
also have "\<dots> = (\<Union>L ` (pders (s @ [c]) r))"
|
|
217 |
by simp
|
|
218 |
finally show "Ders (s @ [c]) (L r) = \<Union>L ` pders (s @ [c]) r" .
|
|
219 |
qed (simp add: Ders_def)
|
|
220 |
|
|
221 |
lemma Ders_set_pders_set:
|
|
222 |
fixes r::rexp
|
|
223 |
shows "Ders_set A (L r) = (\<Union> L ` (pders_set A r))"
|
|
224 |
by (simp add: Ders_set_Ders Ders_pders)
|
|
225 |
|
|
226 |
lemma pders_NULL [simp]:
|
|
227 |
shows "pders s NULL = {NULL}"
|
|
228 |
by (induct s rule: rev_induct) (simp_all)
|
|
229 |
|
|
230 |
lemma pders_EMPTY [simp]:
|
|
231 |
shows "pders s EMPTY = (if s = [] then {EMPTY} else {NULL})"
|
|
232 |
by (induct s rule: rev_induct) (auto)
|
|
233 |
|
|
234 |
lemma pders_CHAR [simp]:
|
|
235 |
shows "pders s (CHAR c) = (if s = [] then {CHAR c} else (if s = [c] then {EMPTY} else {NULL}))"
|
|
236 |
by (induct s rule: rev_induct) (auto)
|
|
237 |
|
|
238 |
lemma pders_ALT [simp]:
|
|
239 |
shows "pders s (ALT r1 r2) = (if s = [] then {ALT r1 r2} else (pders s r1) \<union> (pders s r2))"
|
|
240 |
by (induct s rule: rev_induct) (auto)
|
|
241 |
|
|
242 |
definition
|
|
243 |
"Suf s \<equiv> {v. v \<noteq> [] \<and> (\<exists>u. u @ v = s)}"
|
|
244 |
|
|
245 |
lemma Suf:
|
|
246 |
shows "Suf (s @ [c]) = (Suf s) ;; {[c]} \<union> {[c]}"
|
|
247 |
unfolding Suf_def Seq_def
|
|
248 |
by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv)
|
|
249 |
|
|
250 |
lemma Suf_Union:
|
|
251 |
shows "(\<Union>v \<in> Suf s ;; {[c]}. P v) = (\<Union>v \<in> Suf s. P (v @ [c]))"
|
|
252 |
by (auto simp add: Seq_def)
|
|
253 |
|
|
254 |
lemma inclusion1:
|
|
255 |
shows "pder_set c (SEQS R r2) \<subseteq> SEQS (pder_set c R) r2 \<union> (pder c r2)"
|
|
256 |
apply(auto simp add: if_splits)
|
|
257 |
apply(blast)
|
|
258 |
done
|
|
259 |
|
|
260 |
lemma pders_SEQ:
|
|
261 |
shows "pders s (SEQ r1 r2) \<subseteq> SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2)"
|
|
262 |
proof (induct s rule: rev_induct)
|
|
263 |
case (snoc c s)
|
|
264 |
have ih: "pders s (SEQ r1 r2) \<subseteq> SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2)"
|
|
265 |
by fact
|
|
266 |
have "pders (s @ [c]) (SEQ r1 r2) = pder_set c (pders s (SEQ r1 r2))" by simp
|
|
267 |
also have "\<dots> \<subseteq> pder_set c (SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2))"
|
|
268 |
using ih by auto
|
|
269 |
also have "\<dots> = pder_set c (SEQS (pders s r1) r2) \<union> pder_set c (\<Union>v \<in> Suf s. pders v r2)"
|
|
270 |
by (simp)
|
|
271 |
also have "\<dots> = pder_set c (SEQS (pders s r1) r2) \<union> (\<Union>v \<in> Suf s. pder_set c (pders v r2))"
|
|
272 |
by (simp)
|
|
273 |
also have "\<dots> \<subseteq> pder_set c (SEQS (pders s r1) r2) \<union> (pder c r2) \<union> (\<Union>v \<in> Suf s. pders (v @ [c]) r2)"
|
|
274 |
by (auto)
|
|
275 |
also have "\<dots> \<subseteq> SEQS (pder_set c (pders s r1)) r2 \<union> (pder c r2) \<union> (\<Union>v \<in> Suf s. pders (v @ [c]) r2)"
|
|
276 |
using inclusion1 by blast
|
|
277 |
also have "\<dots> = SEQS (pders (s @ [c]) r1) r2 \<union> (\<Union>v \<in> Suf (s @ [c]). pders v r2)"
|
|
278 |
apply(subst (2) pders.simps)
|
|
279 |
apply(simp only: Suf)
|
|
280 |
apply(simp add: Suf_Union pders_singleton)
|
|
281 |
apply(auto)
|
|
282 |
done
|
|
283 |
finally show ?case .
|
|
284 |
qed (simp)
|
|
285 |
|
|
286 |
lemma pders_STAR:
|
|
287 |
assumes a: "s \<noteq> []"
|
|
288 |
shows "pders s (STAR r) \<subseteq> (\<Union>v \<in> Suf s. SEQS (pders v r) (STAR r))"
|
|
289 |
using a
|
|
290 |
proof (induct s rule: rev_induct)
|
|
291 |
case (snoc c s)
|
|
292 |
have ih: "s \<noteq> [] \<Longrightarrow> pders s (STAR r) \<subseteq> (\<Union>v\<in>Suf s. SEQS (pders v r) (STAR r))" by fact
|
|
293 |
{ assume asm: "s \<noteq> []"
|
|
294 |
have "pders (s @ [c]) (STAR r) = pder_set c (pders s (STAR r))" by simp
|
|
295 |
also have "\<dots> \<subseteq> (pder_set c (\<Union>v\<in>Suf s. SEQS (pders v r) (STAR r)))"
|
|
296 |
using ih[OF asm] by blast
|
|
297 |
also have "\<dots> = (\<Union>v\<in>Suf s. pder_set c (SEQS (pders v r) (STAR r)))"
|
|
298 |
by simp
|
|
299 |
also have "\<dots> \<subseteq> (\<Union>v\<in>Suf s. (SEQS (pder_set c (pders v r)) (STAR r) \<union> pder c (STAR r)))"
|
|
300 |
using inclusion1 by blast
|
|
301 |
also have "\<dots> = (\<Union>v\<in>Suf s. (SEQS (pder_set c (pders v r)) (STAR r))) \<union> pder c (STAR r)"
|
|
302 |
using asm by (auto simp add: Suf_def)
|
|
303 |
also have "\<dots> = (\<Union>v\<in>Suf s. (SEQS (pders (v @ [c]) r) (STAR r))) \<union> (SEQS (pder c r) (STAR r))"
|
|
304 |
by simp
|
|
305 |
also have "\<dots> = (\<Union>v\<in>Suf (s @ [c]). (SEQS (pders v r) (STAR r)))"
|
|
306 |
apply(simp only: Suf)
|
|
307 |
apply(simp add: Suf_Union pders_singleton)
|
|
308 |
apply(auto)
|
|
309 |
done
|
|
310 |
finally have ?case .
|
|
311 |
}
|
|
312 |
moreover
|
|
313 |
{ assume asm: "s = []"
|
|
314 |
then have ?case
|
|
315 |
apply(simp add: pders_singleton Suf_def)
|
|
316 |
apply(auto)
|
|
317 |
apply(rule_tac x="[c]" in exI)
|
|
318 |
apply(simp add: pders_singleton)
|
|
319 |
done
|
|
320 |
}
|
|
321 |
ultimately show ?case by blast
|
|
322 |
qed (simp)
|
|
323 |
|
|
324 |
abbreviation
|
|
325 |
"UNIV1 \<equiv> UNIV - {[]}"
|
|
326 |
|
|
327 |
lemma pders_set_NULL:
|
|
328 |
shows "pders_set UNIV1 NULL = {NULL}"
|
|
329 |
by auto
|
|
330 |
|
|
331 |
lemma pders_set_EMPTY:
|
|
332 |
shows "pders_set UNIV1 EMPTY = {NULL}"
|
|
333 |
by (auto split: if_splits)
|
|
334 |
|
|
335 |
lemma pders_set_CHAR:
|
|
336 |
shows "pders_set UNIV1 (CHAR c) \<subseteq> {EMPTY, NULL}"
|
|
337 |
by (auto split: if_splits)
|
|
338 |
|
|
339 |
lemma pders_set_ALT:
|
|
340 |
shows "pders_set UNIV1 (ALT r1 r2) = pders_set UNIV1 r1 \<union> pders_set UNIV1 r2"
|
|
341 |
by auto
|
|
342 |
|
|
343 |
lemma pders_set_SEQ_aux:
|
|
344 |
assumes a: "s \<in> UNIV1"
|
|
345 |
shows "pders_set (Suf s) r2 \<subseteq> pders_set UNIV1 r2"
|
|
346 |
using a by (auto simp add: Suf_def)
|
|
347 |
|
|
348 |
lemma pders_set_SEQ:
|
|
349 |
shows "pders_set UNIV1 (SEQ r1 r2) \<subseteq> SEQS (pders_set UNIV1 r1) r2 \<union> pders_set UNIV1 r2"
|
|
350 |
apply(rule UN_least)
|
|
351 |
apply(rule subset_trans)
|
|
352 |
apply(rule pders_SEQ)
|
|
353 |
apply(simp)
|
|
354 |
apply(rule conjI)
|
|
355 |
apply(auto)[1]
|
|
356 |
apply(rule subset_trans)
|
|
357 |
apply(rule pders_set_SEQ_aux)
|
|
358 |
apply(auto)
|
|
359 |
done
|
|
360 |
|
|
361 |
lemma pders_set_STAR:
|
|
362 |
shows "pders_set UNIV1 (STAR r) \<subseteq> SEQS (pders_set UNIV1 r) (STAR r)"
|
|
363 |
apply(rule UN_least)
|
|
364 |
apply(rule subset_trans)
|
|
365 |
apply(rule pders_STAR)
|
|
366 |
apply(simp)
|
|
367 |
apply(simp add: Suf_def)
|
|
368 |
apply(auto)
|
|
369 |
done
|
|
370 |
|
|
371 |
lemma finite_SEQS:
|
|
372 |
assumes a: "finite A"
|
|
373 |
shows "finite (SEQS A r)"
|
|
374 |
using a by (auto)
|
|
375 |
|
|
376 |
lemma finite_pders_set_UNIV1:
|
|
377 |
shows "finite (pders_set UNIV1 r)"
|
|
378 |
apply(induct r)
|
|
379 |
apply(simp)
|
|
380 |
apply(simp only: pders_set_EMPTY)
|
|
381 |
apply(simp)
|
|
382 |
apply(rule finite_subset)
|
|
383 |
apply(rule pders_set_CHAR)
|
|
384 |
apply(simp)
|
|
385 |
apply(rule finite_subset)
|
|
386 |
apply(rule pders_set_SEQ)
|
|
387 |
apply(simp only: finite_SEQS finite_Un)
|
|
388 |
apply(simp)
|
|
389 |
apply(simp only: pders_set_ALT)
|
|
390 |
apply(simp)
|
|
391 |
apply(rule finite_subset)
|
|
392 |
apply(rule pders_set_STAR)
|
|
393 |
apply(simp only: finite_SEQS)
|
|
394 |
done
|
|
395 |
|
|
396 |
lemma pders_set_UNIV_UNIV1:
|
|
397 |
shows "pders_set UNIV r = pders [] r \<union> pders_set UNIV1 r"
|
|
398 |
apply(auto)
|
|
399 |
apply(rule_tac x="[]" in exI)
|
|
400 |
apply(simp)
|
|
401 |
done
|
|
402 |
|
|
403 |
lemma finite_pders_set_UNIV:
|
|
404 |
shows "finite (pders_set UNIV r)"
|
|
405 |
unfolding pders_set_UNIV_UNIV1
|
|
406 |
by (simp add: finite_pders_set_UNIV1)
|
|
407 |
|
|
408 |
lemma finite_pders_set:
|
|
409 |
shows "finite (pders_set A r)"
|
|
410 |
apply(rule rev_finite_subset)
|
|
411 |
apply(rule_tac r="r" in finite_pders_set_UNIV)
|
|
412 |
apply(auto)
|
|
413 |
done
|
|
414 |
|
|
415 |
lemma finite_pders:
|
|
416 |
shows "finite (pders s r)"
|
|
417 |
using finite_pders_set[where A="{s}" and r="r"]
|
|
418 |
by simp
|
|
419 |
|
|
420 |
lemma closure_left_quotient:
|
|
421 |
assumes "regular A"
|
|
422 |
shows "regular (Ders_set B A)"
|
|
423 |
proof -
|
|
424 |
from assms obtain r::rexp where eq: "L r = A" by auto
|
|
425 |
have fin: "finite (pders_set B r)" by (rule finite_pders_set)
|
|
426 |
|
|
427 |
have "Ders_set B (L r) = (\<Union> L ` (pders_set B r))"
|
|
428 |
by (simp add: Ders_set_pders_set)
|
|
429 |
also have "\<dots> = L (\<Uplus>(pders_set B r))" using fin by simp
|
|
430 |
finally have "Ders_set B A = L (\<Uplus>(pders_set B r))" using eq
|
|
431 |
by simp
|
|
432 |
then show "regular (Ders_set B A)" by auto
|
|
433 |
qed
|
|
434 |
|
|
435 |
|
|
436 |
fun
|
|
437 |
width :: "rexp \<Rightarrow> nat"
|
|
438 |
where
|
|
439 |
"width (NULL) = 0"
|
|
440 |
| "width (EMPTY) = 0"
|
|
441 |
| "width (CHAR c) = 1"
|
|
442 |
| "width (ALT r1 r2) = width r1 + width r2"
|
|
443 |
| "width (SEQ r1 r2) = width r1 + width r2"
|
|
444 |
| "width (STAR r) = width r"
|
|
445 |
|
|
446 |
|
|
447 |
|
|
448 |
end |