author | urbanc |
Tue, 19 Apr 2011 02:25:21 +0000 | |
changeset 155 | d8d1e1f53d6e |
parent 149 | e122cb146ecc |
child 162 | e93760534354 |
permissions | -rw-r--r-- |
42 | 1 |
theory Myhill_1 |
149 | 2 |
imports Main Folds |
3 |
"~~/src/HOL/Library/While_Combinator" |
|
42 | 4 |
begin |
5 |
||
6 |
section {* Preliminary definitions *} |
|
7 |
||
43 | 8 |
types lang = "string set" |
9 |
||
86 | 10 |
|
70 | 11 |
text {* Sequential composition of two languages *} |
43 | 12 |
|
60 | 13 |
definition |
14 |
Seq :: "lang \<Rightarrow> lang \<Rightarrow> lang" (infixr ";;" 100) |
|
42 | 15 |
where |
54 | 16 |
"A ;; B = {s\<^isub>1 @ s\<^isub>2 | s\<^isub>1 s\<^isub>2. s\<^isub>1 \<in> A \<and> s\<^isub>2 \<in> B}" |
42 | 17 |
|
70 | 18 |
|
56
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
19 |
text {* Some properties of operator @{text ";;"}. *} |
50 | 20 |
|
56
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
21 |
lemma seq_add_left: |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
22 |
assumes a: "A = B" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
23 |
shows "C ;; A = C ;; B" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
24 |
using a by simp |
42 | 25 |
|
50 | 26 |
lemma seq_union_distrib_right: |
27 |
shows "(A \<union> B) ;; C = (A ;; C) \<union> (B ;; C)" |
|
28 |
unfolding Seq_def by auto |
|
29 |
||
30 |
lemma seq_union_distrib_left: |
|
31 |
shows "C ;; (A \<union> B) = (C ;; A) \<union> (C ;; B)" |
|
32 |
unfolding Seq_def by auto |
|
42 | 33 |
|
34 |
lemma seq_intro: |
|
70 | 35 |
assumes a: "x \<in> A" "y \<in> B" |
36 |
shows "x @ y \<in> A ;; B " |
|
37 |
using a by (auto simp: Seq_def) |
|
42 | 38 |
|
39 |
lemma seq_assoc: |
|
50 | 40 |
shows "(A ;; B) ;; C = A ;; (B ;; C)" |
41 |
unfolding Seq_def |
|
42 |
apply(auto) |
|
43 |
apply(blast) |
|
42 | 44 |
by (metis append_assoc) |
45 |
||
50 | 46 |
lemma seq_empty [simp]: |
47 |
shows "A ;; {[]} = A" |
|
48 |
and "{[]} ;; A = A" |
|
49 |
by (simp_all add: Seq_def) |
|
50 |
||
70 | 51 |
|
52 |
text {* Power and Star of a language *} |
|
53 |
||
56
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
54 |
fun |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
55 |
pow :: "lang \<Rightarrow> nat \<Rightarrow> lang" (infixl "\<up>" 100) |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
56 |
where |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
57 |
"A \<up> 0 = {[]}" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
58 |
| "A \<up> (Suc n) = A ;; (A \<up> n)" |
50 | 59 |
|
56
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
60 |
definition |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
61 |
Star :: "lang \<Rightarrow> lang" ("_\<star>" [101] 102) |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
62 |
where |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
63 |
"A\<star> \<equiv> (\<Union>n. A \<up> n)" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
64 |
|
70 | 65 |
|
56
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
66 |
lemma star_start[intro]: |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
67 |
shows "[] \<in> A\<star>" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
68 |
proof - |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
69 |
have "[] \<in> A \<up> 0" by auto |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
70 |
then show "[] \<in> A\<star>" unfolding Star_def by blast |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
71 |
qed |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
72 |
|
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
73 |
lemma star_step [intro]: |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
74 |
assumes a: "s1 \<in> A" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
75 |
and b: "s2 \<in> A\<star>" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
76 |
shows "s1 @ s2 \<in> A\<star>" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
77 |
proof - |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
78 |
from b obtain n where "s2 \<in> A \<up> n" unfolding Star_def by auto |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
79 |
then have "s1 @ s2 \<in> A \<up> (Suc n)" using a by (auto simp add: Seq_def) |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
80 |
then show "s1 @ s2 \<in> A\<star>" unfolding Star_def by blast |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
81 |
qed |
42 | 82 |
|
56
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
83 |
lemma star_induct[consumes 1, case_names start step]: |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
84 |
assumes a: "x \<in> A\<star>" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
85 |
and b: "P []" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
86 |
and c: "\<And>s1 s2. \<lbrakk>s1 \<in> A; s2 \<in> A\<star>; P s2\<rbrakk> \<Longrightarrow> P (s1 @ s2)" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
87 |
shows "P x" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
88 |
proof - |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
89 |
from a obtain n where "x \<in> A \<up> n" unfolding Star_def by auto |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
90 |
then show "P x" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
91 |
by (induct n arbitrary: x) |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
92 |
(auto intro!: b c simp add: Seq_def Star_def) |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
93 |
qed |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
94 |
|
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
95 |
lemma star_intro1: |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
96 |
assumes a: "x \<in> A\<star>" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
97 |
and b: "y \<in> A\<star>" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
98 |
shows "x @ y \<in> A\<star>" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
99 |
using a b |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
100 |
by (induct rule: star_induct) (auto) |
42 | 101 |
|
56
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
102 |
lemma star_intro2: |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
103 |
assumes a: "y \<in> A" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
104 |
shows "y \<in> A\<star>" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
105 |
proof - |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
106 |
from a have "y @ [] \<in> A\<star>" by blast |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
107 |
then show "y \<in> A\<star>" by simp |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
108 |
qed |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
109 |
|
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
110 |
lemma star_intro3: |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
111 |
assumes a: "x \<in> A\<star>" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
112 |
and b: "y \<in> A" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
113 |
shows "x @ y \<in> A\<star>" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
114 |
using a b by (blast intro: star_intro1 star_intro2) |
42 | 115 |
|
71 | 116 |
lemma star_cases: |
117 |
shows "A\<star> = {[]} \<union> A ;; A\<star>" |
|
118 |
proof |
|
119 |
{ fix x |
|
120 |
have "x \<in> A\<star> \<Longrightarrow> x \<in> {[]} \<union> A ;; A\<star>" |
|
121 |
unfolding Seq_def |
|
122 |
by (induct rule: star_induct) (auto) |
|
123 |
} |
|
124 |
then show "A\<star> \<subseteq> {[]} \<union> A ;; A\<star>" by auto |
|
125 |
next |
|
126 |
show "{[]} \<union> A ;; A\<star> \<subseteq> A\<star>" |
|
127 |
unfolding Seq_def by auto |
|
128 |
qed |
|
129 |
||
42 | 130 |
lemma star_decom: |
71 | 131 |
assumes a: "x \<in> A\<star>" "x \<noteq> []" |
132 |
shows "\<exists>a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> A \<and> b \<in> A\<star>" |
|
133 |
using a |
|
86 | 134 |
by (induct rule: star_induct) (blast)+ |
42 | 135 |
|
50 | 136 |
lemma |
137 |
shows seq_Union_left: "B ;; (\<Union>n. A \<up> n) = (\<Union>n. B ;; (A \<up> n))" |
|
138 |
and seq_Union_right: "(\<Union>n. A \<up> n) ;; B = (\<Union>n. (A \<up> n) ;; B)" |
|
139 |
unfolding Seq_def by auto |
|
140 |
||
141 |
lemma seq_pow_comm: |
|
142 |
shows "A ;; (A \<up> n) = (A \<up> n) ;; A" |
|
143 |
by (induct n) (simp_all add: seq_assoc[symmetric]) |
|
144 |
||
145 |
lemma seq_star_comm: |
|
146 |
shows "A ;; A\<star> = A\<star> ;; A" |
|
86 | 147 |
unfolding Star_def seq_Union_left |
148 |
unfolding seq_pow_comm seq_Union_right |
|
50 | 149 |
by simp |
150 |
||
86 | 151 |
|
50 | 152 |
text {* Two lemmas about the length of strings in @{text "A \<up> n"} *} |
153 |
||
154 |
lemma pow_length: |
|
155 |
assumes a: "[] \<notin> A" |
|
156 |
and b: "s \<in> A \<up> Suc n" |
|
157 |
shows "n < length s" |
|
158 |
using b |
|
159 |
proof (induct n arbitrary: s) |
|
160 |
case 0 |
|
161 |
have "s \<in> A \<up> Suc 0" by fact |
|
162 |
with a have "s \<noteq> []" by auto |
|
163 |
then show "0 < length s" by auto |
|
164 |
next |
|
165 |
case (Suc n) |
|
166 |
have ih: "\<And>s. s \<in> A \<up> Suc n \<Longrightarrow> n < length s" by fact |
|
167 |
have "s \<in> A \<up> Suc (Suc n)" by fact |
|
168 |
then obtain s1 s2 where eq: "s = s1 @ s2" and *: "s1 \<in> A" and **: "s2 \<in> A \<up> Suc n" |
|
169 |
by (auto simp add: Seq_def) |
|
170 |
from ih ** have "n < length s2" by simp |
|
171 |
moreover have "0 < length s1" using * a by auto |
|
172 |
ultimately show "Suc n < length s" unfolding eq |
|
173 |
by (simp only: length_append) |
|
174 |
qed |
|
175 |
||
176 |
lemma seq_pow_length: |
|
177 |
assumes a: "[] \<notin> A" |
|
178 |
and b: "s \<in> B ;; (A \<up> Suc n)" |
|
179 |
shows "n < length s" |
|
180 |
proof - |
|
181 |
from b obtain s1 s2 where eq: "s = s1 @ s2" and *: "s2 \<in> A \<up> Suc n" |
|
182 |
unfolding Seq_def by auto |
|
183 |
from * have " n < length s2" by (rule pow_length[OF a]) |
|
184 |
then show "n < length s" using eq by simp |
|
185 |
qed |
|
186 |
||
187 |
||
86 | 188 |
section {* A modified version of Arden's lemma *} |
50 | 189 |
|
70 | 190 |
text {* A helper lemma for Arden *} |
50 | 191 |
|
86 | 192 |
lemma arden_helper: |
50 | 193 |
assumes eq: "X = X ;; A \<union> B" |
194 |
shows "X = X ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" |
|
195 |
proof (induct n) |
|
196 |
case 0 |
|
197 |
show "X = X ;; (A \<up> Suc 0) \<union> (\<Union>(m::nat)\<in>{0..0}. B ;; (A \<up> m))" |
|
198 |
using eq by simp |
|
199 |
next |
|
200 |
case (Suc n) |
|
201 |
have ih: "X = X ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" by fact |
|
202 |
also have "\<dots> = (X ;; A \<union> B) ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" using eq by simp |
|
203 |
also have "\<dots> = X ;; (A \<up> Suc (Suc n)) \<union> (B ;; (A \<up> Suc n)) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" |
|
204 |
by (simp add: seq_union_distrib_right seq_assoc) |
|
205 |
also have "\<dots> = X ;; (A \<up> Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B ;; (A \<up> m))" |
|
206 |
by (auto simp add: le_Suc_eq) |
|
207 |
finally show "X = X ;; (A \<up> Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B ;; (A \<up> m))" . |
|
208 |
qed |
|
209 |
||
86 | 210 |
theorem arden: |
50 | 211 |
assumes nemp: "[] \<notin> A" |
212 |
shows "X = X ;; A \<union> B \<longleftrightarrow> X = B ;; A\<star>" |
|
213 |
proof |
|
214 |
assume eq: "X = B ;; A\<star>" |
|
215 |
have "A\<star> = {[]} \<union> A\<star> ;; A" |
|
216 |
unfolding seq_star_comm[symmetric] |
|
71 | 217 |
by (rule star_cases) |
56
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
218 |
then have "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)" |
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
219 |
by (rule seq_add_left) |
50 | 220 |
also have "\<dots> = B \<union> B ;; (A\<star> ;; A)" |
221 |
unfolding seq_union_distrib_left by simp |
|
222 |
also have "\<dots> = B \<union> (B ;; A\<star>) ;; A" |
|
223 |
by (simp only: seq_assoc) |
|
224 |
finally show "X = X ;; A \<union> B" |
|
225 |
using eq by blast |
|
226 |
next |
|
227 |
assume eq: "X = X ;; A \<union> B" |
|
228 |
{ fix n::nat |
|
86 | 229 |
have "B ;; (A \<up> n) \<subseteq> X" using arden_helper[OF eq, of "n"] by auto } |
56
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
230 |
then have "B ;; A\<star> \<subseteq> X" |
86 | 231 |
unfolding Seq_def Star_def UNION_def by auto |
50 | 232 |
moreover |
233 |
{ fix s::string |
|
234 |
obtain k where "k = length s" by auto |
|
235 |
then have not_in: "s \<notin> X ;; (A \<up> Suc k)" |
|
236 |
using seq_pow_length[OF nemp] by blast |
|
237 |
assume "s \<in> X" |
|
238 |
then have "s \<in> X ;; (A \<up> Suc k) \<union> (\<Union>m\<in>{0..k}. B ;; (A \<up> m))" |
|
86 | 239 |
using arden_helper[OF eq, of "k"] by auto |
50 | 240 |
then have "s \<in> (\<Union>m\<in>{0..k}. B ;; (A \<up> m))" using not_in by auto |
241 |
moreover |
|
242 |
have "(\<Union>m\<in>{0..k}. B ;; (A \<up> m)) \<subseteq> (\<Union>n. B ;; (A \<up> n))" by auto |
|
243 |
ultimately |
|
56
b3898315e687
removed the inductive definition of Star and replaced it by a definition in terms of pow
urbanc
parents:
54
diff
changeset
|
244 |
have "s \<in> B ;; A\<star>" |
86 | 245 |
unfolding seq_Union_left Star_def by auto } |
50 | 246 |
then have "X \<subseteq> B ;; A\<star>" by auto |
247 |
ultimately |
|
248 |
show "X = B ;; A\<star>" by simp |
|
249 |
qed |
|
250 |
||
42 | 251 |
|
70 | 252 |
section {* Regular Expressions *} |
48 | 253 |
|
254 |
datatype rexp = |
|
255 |
NULL |
|
256 |
| EMPTY |
|
257 |
| CHAR char |
|
258 |
| SEQ rexp rexp |
|
259 |
| ALT rexp rexp |
|
260 |
| STAR rexp |
|
261 |
||
262 |
||
263 |
text {* |
|
86 | 264 |
The function @{text L} is overloaded, with the idea that @{text "L x"} |
265 |
evaluates to the language represented by the object @{text x}. |
|
48 | 266 |
*} |
267 |
||
70 | 268 |
consts L:: "'a \<Rightarrow> lang" |
48 | 269 |
|
70 | 270 |
overloading L_rexp \<equiv> "L:: rexp \<Rightarrow> lang" |
48 | 271 |
begin |
272 |
fun |
|
88 | 273 |
L_rexp :: "rexp \<Rightarrow> lang" |
48 | 274 |
where |
275 |
"L_rexp (NULL) = {}" |
|
276 |
| "L_rexp (EMPTY) = {[]}" |
|
277 |
| "L_rexp (CHAR c) = {[c]}" |
|
278 |
| "L_rexp (SEQ r1 r2) = (L_rexp r1) ;; (L_rexp r2)" |
|
279 |
| "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)" |
|
280 |
| "L_rexp (STAR r) = (L_rexp r)\<star>" |
|
281 |
end |
|
282 |
||
88 | 283 |
|
86 | 284 |
text {* ALT-combination of a set or regulare expressions *} |
50 | 285 |
|
76 | 286 |
abbreviation |
287 |
Setalt ("\<Uplus>_" [1000] 999) |
|
288 |
where |
|
94 | 289 |
"\<Uplus>A \<equiv> folds ALT NULL A" |
76 | 290 |
|
50 | 291 |
text {* |
86 | 292 |
For finite sets, @{term Setalt} is preserved under @{term L}. |
79 | 293 |
*} |
70 | 294 |
|
50 | 295 |
lemma folds_alt_simp [simp]: |
88 | 296 |
fixes rs::"rexp set" |
70 | 297 |
assumes a: "finite rs" |
76 | 298 |
shows "L (\<Uplus>rs) = \<Union> (L ` rs)" |
94 | 299 |
unfolding folds_def |
75 | 300 |
apply(rule set_eqI) |
70 | 301 |
apply(rule someI2_ex) |
302 |
apply(rule_tac finite_imp_fold_graph[OF a]) |
|
303 |
apply(erule fold_graph.induct) |
|
304 |
apply(auto) |
|
305 |
done |
|
50 | 306 |
|
70 | 307 |
|
86 | 308 |
section {* Direction @{text "finite partition \<Rightarrow> regular language"} *} |
309 |
||
310 |
||
70 | 311 |
text {* Just a technical lemma for collections and pairs *} |
312 |
||
75 | 313 |
lemma Pair_Collect[simp]: |
48 | 314 |
shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y" |
315 |
by simp |
|
316 |
||
86 | 317 |
text {* Myhill-Nerode relation *} |
318 |
||
48 | 319 |
definition |
71 | 320 |
str_eq_rel :: "lang \<Rightarrow> (string \<times> string) set" ("\<approx>_" [100] 100) |
48 | 321 |
where |
70 | 322 |
"\<approx>A \<equiv> {(x, y). (\<forall>z. x @ z \<in> A \<longleftrightarrow> y @ z \<in> A)}" |
48 | 323 |
|
324 |
text {* |
|
86 | 325 |
Among the equivalence clases of @{text "\<approx>A"}, the set @{text "finals A"} |
326 |
singles out those which contains the strings from @{text A}. |
|
48 | 327 |
*} |
328 |
||
329 |
definition |
|
71 | 330 |
finals :: "lang \<Rightarrow> lang set" |
331 |
where |
|
108 | 332 |
"finals A \<equiv> {\<approx>A `` {s} | s . s \<in> A}" |
48 | 333 |
|
70 | 334 |
|
48 | 335 |
lemma lang_is_union_of_finals: |
70 | 336 |
shows "A = \<Union> finals A" |
337 |
unfolding finals_def |
|
338 |
unfolding Image_def |
|
339 |
unfolding str_eq_rel_def |
|
340 |
apply(auto) |
|
341 |
apply(drule_tac x = "[]" in spec) |
|
342 |
apply(auto) |
|
343 |
done |
|
344 |
||
79 | 345 |
lemma finals_in_partitions: |
346 |
shows "finals A \<subseteq> (UNIV // \<approx>A)" |
|
94 | 347 |
unfolding finals_def quotient_def |
76 | 348 |
by auto |
349 |
||
86 | 350 |
section {* Equational systems *} |
42 | 351 |
|
89 | 352 |
text {* The two kinds of terms in the rhs of equations. *} |
353 |
||
42 | 354 |
datatype rhs_item = |
86 | 355 |
Lam "rexp" (* Lambda-marker *) |
70 | 356 |
| Trn "lang" "rexp" (* Transition *) |
357 |
||
42 | 358 |
|
86 | 359 |
overloading L_rhs_item \<equiv> "L:: rhs_item \<Rightarrow> lang" |
42 | 360 |
begin |
86 | 361 |
fun L_rhs_item:: "rhs_item \<Rightarrow> lang" |
42 | 362 |
where |
86 | 363 |
"L_rhs_item (Lam r) = L r" |
364 |
| "L_rhs_item (Trn X r) = X ;; L r" |
|
42 | 365 |
end |
366 |
||
70 | 367 |
overloading L_rhs \<equiv> "L:: rhs_item set \<Rightarrow> lang" |
42 | 368 |
begin |
70 | 369 |
fun L_rhs:: "rhs_item set \<Rightarrow> lang" |
370 |
where |
|
371 |
"L_rhs rhs = \<Union> (L ` rhs)" |
|
42 | 372 |
end |
373 |
||
96 | 374 |
lemma L_rhs_union_distrib: |
375 |
fixes A B::"rhs_item set" |
|
376 |
shows "L A \<union> L B = L (A \<union> B)" |
|
377 |
by simp |
|
378 |
||
379 |
||
380 |
||
86 | 381 |
text {* Transitions between equivalence classes *} |
71 | 382 |
|
383 |
definition |
|
92 | 384 |
transition :: "lang \<Rightarrow> char \<Rightarrow> lang \<Rightarrow> bool" ("_ \<Turnstile>_\<Rightarrow>_" [100,100,100] 100) |
71 | 385 |
where |
92 | 386 |
"Y \<Turnstile>c\<Rightarrow> X \<equiv> Y ;; {[c]} \<subseteq> X" |
42 | 387 |
|
86 | 388 |
text {* Initial equational system *} |
389 |
||
42 | 390 |
definition |
96 | 391 |
"Init_rhs CS X \<equiv> |
42 | 392 |
if ([] \<in> X) then |
92 | 393 |
{Lam EMPTY} \<union> {Trn Y (CHAR c) | Y c. Y \<in> CS \<and> Y \<Turnstile>c\<Rightarrow> X} |
42 | 394 |
else |
92 | 395 |
{Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y \<Turnstile>c\<Rightarrow> X}" |
42 | 396 |
|
86 | 397 |
definition |
96 | 398 |
"Init CS \<equiv> {(X, Init_rhs CS X) | X. X \<in> CS}" |
75 | 399 |
|
400 |
||
401 |
||
86 | 402 |
section {* Arden Operation on equations *} |
42 | 403 |
|
404 |
text {* |
|
86 | 405 |
The function @{text "attach_rexp r item"} SEQ-composes @{text r} to the |
406 |
right of every rhs-item. |
|
75 | 407 |
*} |
42 | 408 |
|
70 | 409 |
fun |
92 | 410 |
append_rexp :: "rexp \<Rightarrow> rhs_item \<Rightarrow> rhs_item" |
42 | 411 |
where |
92 | 412 |
"append_rexp r (Lam rexp) = Lam (SEQ rexp r)" |
413 |
| "append_rexp r (Trn X rexp) = Trn X (SEQ rexp r)" |
|
42 | 414 |
|
415 |
||
416 |
definition |
|
92 | 417 |
"append_rhs_rexp rhs rexp \<equiv> (append_rexp rexp) ` rhs" |
42 | 418 |
|
86 | 419 |
definition |
94 | 420 |
"Arden X rhs \<equiv> |
421 |
append_rhs_rexp (rhs - {Trn X r | r. Trn X r \<in> rhs}) (STAR (\<Uplus> {r. Trn X r \<in> rhs}))" |
|
86 | 422 |
|
423 |
||
424 |
section {* Substitution Operation on equations *} |
|
425 |
||
426 |
text {* |
|
95 | 427 |
Suppose and equation @{text "X = xrhs"}, @{text "Subst"} substitutes |
86 | 428 |
all occurences of @{text "X"} in @{text "rhs"} by @{text "xrhs"}. |
71 | 429 |
*} |
430 |
||
42 | 431 |
definition |
94 | 432 |
"Subst rhs X xrhs \<equiv> |
433 |
(rhs - {Trn X r | r. Trn X r \<in> rhs}) \<union> (append_rhs_rexp xrhs (\<Uplus> {r. Trn X r \<in> rhs}))" |
|
42 | 434 |
|
435 |
text {* |
|
86 | 436 |
@{text "eqs_subst ES X xrhs"} substitutes @{text xrhs} into every |
437 |
equation of the equational system @{text ES}. |
|
438 |
*} |
|
42 | 439 |
|
97 | 440 |
types esystem = "(lang \<times> rhs_item set) set" |
441 |
||
42 | 442 |
definition |
97 | 443 |
Subst_all :: "esystem \<Rightarrow> lang \<Rightarrow> rhs_item set \<Rightarrow> esystem" |
444 |
where |
|
94 | 445 |
"Subst_all ES X xrhs \<equiv> {(Y, Subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}" |
86 | 446 |
|
42 | 447 |
text {* |
91 | 448 |
The following term @{text "remove ES Y yrhs"} removes the equation |
449 |
@{text "Y = yrhs"} from equational system @{text "ES"} by replacing |
|
450 |
all occurences of @{text "Y"} by its definition (using @{text "eqs_subst"}). |
|
451 |
The @{text "Y"}-definition is made non-recursive using Arden's transformation |
|
452 |
@{text "arden_variate Y yrhs"}. |
|
453 |
*} |
|
454 |
||
455 |
definition |
|
96 | 456 |
"Remove ES X xrhs \<equiv> |
457 |
Subst_all (ES - {(X, xrhs)}) X (Arden X xrhs)" |
|
458 |
||
459 |
||
460 |
section {* While-combinator *} |
|
91 | 461 |
|
462 |
text {* |
|
96 | 463 |
The following term @{text "Iter X ES"} represents one iteration in the while loop. |
91 | 464 |
It arbitrarily chooses a @{text "Y"} different from @{text "X"} to remove. |
71 | 465 |
*} |
42 | 466 |
|
91 | 467 |
definition |
96 | 468 |
"Iter X ES \<equiv> (let (Y, yrhs) = SOME (Y, yrhs). (Y, yrhs) \<in> ES \<and> X \<noteq> Y |
95 | 469 |
in Remove ES Y yrhs)" |
42 | 470 |
|
97 | 471 |
lemma IterI2: |
472 |
assumes "(Y, yrhs) \<in> ES" |
|
473 |
and "X \<noteq> Y" |
|
474 |
and "\<And>Y yrhs. \<lbrakk>(Y, yrhs) \<in> ES; X \<noteq> Y\<rbrakk> \<Longrightarrow> Q (Remove ES Y yrhs)" |
|
475 |
shows "Q (Iter X ES)" |
|
476 |
unfolding Iter_def using assms |
|
477 |
by (rule_tac a="(Y, yrhs)" in someI2) (auto) |
|
478 |
||
479 |
||
42 | 480 |
text {* |
96 | 481 |
The following term @{text "Reduce X ES"} repeatedly removes characteriztion equations |
91 | 482 |
for unknowns other than @{text "X"} until one is left. |
42 | 483 |
*} |
484 |
||
97 | 485 |
abbreviation |
101 | 486 |
"Cond ES \<equiv> card ES \<noteq> 1" |
97 | 487 |
|
91 | 488 |
definition |
101 | 489 |
"Solve X ES \<equiv> while Cond (Iter X) ES" |
97 | 490 |
|
91 | 491 |
text {* |
97 | 492 |
Since the @{text "while"} combinator from HOL library is used to implement @{text "Solve X ES"}, |
91 | 493 |
the induction principle @{thm [source] while_rule} is used to proved the desired properties |
97 | 494 |
of @{text "Solve X ES"}. For this purpose, an invariant predicate @{text "invariant"} is defined |
91 | 495 |
in terms of a series of auxilliary predicates: |
496 |
*} |
|
86 | 497 |
|
498 |
section {* Invariants *} |
|
499 |
||
97 | 500 |
text {* Every variable is defined at most once in @{text ES}. *} |
75 | 501 |
|
42 | 502 |
definition |
503 |
"distinct_equas ES \<equiv> |
|
86 | 504 |
\<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'" |
70 | 505 |
|
97 | 506 |
|
42 | 507 |
text {* |
86 | 508 |
Every equation in @{text ES} (represented by @{text "(X, rhs)"}) |
97 | 509 |
is valid, i.e. @{text "X = L rhs"}. |
86 | 510 |
*} |
511 |
||
42 | 512 |
definition |
104 | 513 |
"sound_eqs ES \<equiv> \<forall>(X, rhs) \<in> ES. X = L rhs" |
42 | 514 |
|
515 |
text {* |
|
110 | 516 |
@{text "ardenable rhs"} requires regular expressions occuring in |
86 | 517 |
transitional items of @{text "rhs"} do not contain empty string. This is |
518 |
necessary for the application of Arden's transformation to @{text "rhs"}. |
|
519 |
*} |
|
70 | 520 |
|
42 | 521 |
definition |
110 | 522 |
"ardenable rhs \<equiv> (\<forall> Y r. Trn Y r \<in> rhs \<longrightarrow> [] \<notin> L r)" |
42 | 523 |
|
524 |
text {* |
|
110 | 525 |
The following @{text "ardenable_all ES"} requires that Arden's transformation |
86 | 526 |
is applicable to every equation of equational system @{text "ES"}. |
527 |
*} |
|
70 | 528 |
|
42 | 529 |
definition |
110 | 530 |
"ardenable_all ES \<equiv> \<forall>(X, rhs) \<in> ES. ardenable rhs" |
42 | 531 |
|
103 | 532 |
|
86 | 533 |
text {* |
534 |
@{text "finite_rhs ES"} requires every equation in @{text "rhs"} |
|
535 |
be finite. |
|
536 |
*} |
|
42 | 537 |
definition |
103 | 538 |
"finite_rhs ES \<equiv> \<forall>(X, rhs) \<in> ES. finite rhs" |
539 |
||
540 |
lemma finite_rhs_def2: |
|
541 |
"finite_rhs ES = (\<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> finite rhs)" |
|
542 |
unfolding finite_rhs_def by auto |
|
42 | 543 |
|
544 |
text {* |
|
86 | 545 |
@{text "classes_of rhs"} returns all variables (or equivalent classes) |
42 | 546 |
occuring in @{text "rhs"}. |
547 |
*} |
|
86 | 548 |
|
42 | 549 |
definition |
104 | 550 |
"rhss rhs \<equiv> {X | X r. Trn X r \<in> rhs}" |
42 | 551 |
|
552 |
text {* |
|
86 | 553 |
@{text "lefts_of ES"} returns all variables defined by an |
554 |
equational system @{text "ES"}. |
|
555 |
*} |
|
42 | 556 |
definition |
103 | 557 |
"lhss ES \<equiv> {Y | Y yrhs. (Y, yrhs) \<in> ES}" |
42 | 558 |
|
559 |
text {* |
|
104 | 560 |
The following @{text "valid_eqs ES"} requires that every variable occuring |
86 | 561 |
on the right hand side of equations is already defined by some equation in @{text "ES"}. |
562 |
*} |
|
42 | 563 |
definition |
104 | 564 |
"valid_eqs ES \<equiv> \<forall>(X, rhs) \<in> ES. rhss rhs \<subseteq> lhss ES" |
42 | 565 |
|
566 |
||
567 |
text {* |
|
86 | 568 |
The invariant @{text "invariant(ES)"} is a conjunction of all the previously defined constaints. |
42 | 569 |
*} |
570 |
definition |
|
103 | 571 |
"invariant ES \<equiv> finite ES |
572 |
\<and> finite_rhs ES |
|
104 | 573 |
\<and> sound_eqs ES |
103 | 574 |
\<and> distinct_equas ES |
110 | 575 |
\<and> ardenable_all ES |
104 | 576 |
\<and> valid_eqs ES" |
42 | 577 |
|
96 | 578 |
|
579 |
lemma invariantI: |
|
110 | 580 |
assumes "sound_eqs ES" "finite ES" "distinct_equas ES" "ardenable_all ES" |
104 | 581 |
"finite_rhs ES" "valid_eqs ES" |
96 | 582 |
shows "invariant ES" |
583 |
using assms by (simp add: invariant_def) |
|
584 |
||
42 | 585 |
subsection {* The proof of this direction *} |
586 |
||
587 |
subsubsection {* Basic properties *} |
|
588 |
||
589 |
text {* |
|
590 |
The following are some basic properties of the above definitions. |
|
591 |
*} |
|
592 |
||
593 |
||
79 | 594 |
lemma finite_Trn: |
595 |
assumes fin: "finite rhs" |
|
596 |
shows "finite {r. Trn Y r \<in> rhs}" |
|
597 |
proof - |
|
598 |
have "finite {Trn Y r | Y r. Trn Y r \<in> rhs}" |
|
599 |
by (rule rev_finite_subset[OF fin]) (auto) |
|
81 | 600 |
then have "finite ((\<lambda>(Y, r). Trn Y r) ` {(Y, r) | Y r. Trn Y r \<in> rhs})" |
601 |
by (simp add: image_Collect) |
|
602 |
then have "finite {(Y, r) | Y r. Trn Y r \<in> rhs}" |
|
603 |
by (erule_tac finite_imageD) (simp add: inj_on_def) |
|
79 | 604 |
then show "finite {r. Trn Y r \<in> rhs}" |
81 | 605 |
by (erule_tac f="snd" in finite_surj) (auto simp add: image_def) |
79 | 606 |
qed |
607 |
||
608 |
lemma finite_Lam: |
|
96 | 609 |
assumes fin: "finite rhs" |
79 | 610 |
shows "finite {r. Lam r \<in> rhs}" |
611 |
proof - |
|
612 |
have "finite {Lam r | r. Lam r \<in> rhs}" |
|
613 |
by (rule rev_finite_subset[OF fin]) (auto) |
|
614 |
then show "finite {r. Lam r \<in> rhs}" |
|
81 | 615 |
apply(simp add: image_Collect[symmetric]) |
616 |
apply(erule finite_imageD) |
|
617 |
apply(auto simp add: inj_on_def) |
|
79 | 618 |
done |
42 | 619 |
qed |
620 |
||
621 |
lemma rexp_of_empty: |
|
96 | 622 |
assumes finite: "finite rhs" |
110 | 623 |
and nonempty: "ardenable rhs" |
79 | 624 |
shows "[] \<notin> L (\<Uplus> {r. Trn X r \<in> rhs})" |
110 | 625 |
using finite nonempty ardenable_def |
79 | 626 |
using finite_Trn[OF finite] |
97 | 627 |
by auto |
42 | 628 |
|
629 |
lemma lang_of_rexp_of: |
|
630 |
assumes finite:"finite rhs" |
|
79 | 631 |
shows "L ({Trn X r| r. Trn X r \<in> rhs}) = X ;; (L (\<Uplus>{r. Trn X r \<in> rhs}))" |
42 | 632 |
proof - |
79 | 633 |
have "finite {r. Trn X r \<in> rhs}" |
634 |
by (rule finite_Trn[OF finite]) |
|
635 |
then show ?thesis |
|
636 |
apply(auto simp add: Seq_def) |
|
96 | 637 |
apply(rule_tac x = "s\<^isub>1" in exI, rule_tac x = "s\<^isub>2" in exI) |
638 |
apply(auto) |
|
79 | 639 |
apply(rule_tac x= "Trn X xa" in exI) |
96 | 640 |
apply(auto simp add: Seq_def) |
79 | 641 |
done |
42 | 642 |
qed |
643 |
||
96 | 644 |
lemma lang_of_append: |
645 |
"L (append_rexp r rhs_item) = L rhs_item ;; L r" |
|
646 |
by (induct rule: append_rexp.induct) |
|
647 |
(auto simp add: seq_assoc) |
|
42 | 648 |
|
649 |
lemma lang_of_append_rhs: |
|
650 |
"L (append_rhs_rexp rhs r) = L rhs ;; L r" |
|
96 | 651 |
unfolding append_rhs_rexp_def |
652 |
by (auto simp add: Seq_def lang_of_append) |
|
42 | 653 |
|
104 | 654 |
lemma rhss_union_distrib: |
655 |
shows "rhss (A \<union> B) = rhss A \<union> rhss B" |
|
656 |
by (auto simp add: rhss_def) |
|
42 | 657 |
|
103 | 658 |
lemma lhss_union_distrib: |
659 |
shows "lhss (A \<union> B) = lhss A \<union> lhss B" |
|
660 |
by (auto simp add: lhss_def) |
|
42 | 661 |
|
662 |
||
663 |
subsubsection {* Intialization *} |
|
664 |
||
665 |
text {* |
|
86 | 666 |
The following several lemmas until @{text "init_ES_satisfy_invariant"} shows that |
667 |
the initial equational system satisfies invariant @{text "invariant"}. |
|
71 | 668 |
*} |
42 | 669 |
|
670 |
lemma defined_by_str: |
|
100 | 671 |
assumes "s \<in> X" "X \<in> UNIV // \<approx>A" |
672 |
shows "X = \<approx>A `` {s}" |
|
673 |
using assms |
|
674 |
unfolding quotient_def Image_def str_eq_rel_def |
|
675 |
by auto |
|
42 | 676 |
|
677 |
lemma every_eqclass_has_transition: |
|
678 |
assumes has_str: "s @ [c] \<in> X" |
|
100 | 679 |
and in_CS: "X \<in> UNIV // \<approx>A" |
680 |
obtains Y where "Y \<in> UNIV // \<approx>A" and "Y ;; {[c]} \<subseteq> X" and "s \<in> Y" |
|
42 | 681 |
proof - |
100 | 682 |
def Y \<equiv> "\<approx>A `` {s}" |
683 |
have "Y \<in> UNIV // \<approx>A" |
|
42 | 684 |
unfolding Y_def quotient_def by auto |
685 |
moreover |
|
100 | 686 |
have "X = \<approx>A `` {s @ [c]}" |
42 | 687 |
using has_str in_CS defined_by_str by blast |
688 |
then have "Y ;; {[c]} \<subseteq> X" |
|
689 |
unfolding Y_def Image_def Seq_def |
|
690 |
unfolding str_eq_rel_def |
|
691 |
by clarsimp |
|
692 |
moreover |
|
693 |
have "s \<in> Y" unfolding Y_def |
|
694 |
unfolding Image_def str_eq_rel_def by simp |
|
100 | 695 |
ultimately show thesis using that by blast |
42 | 696 |
qed |
697 |
||
698 |
lemma l_eq_r_in_eqs: |
|
100 | 699 |
assumes X_in_eqs: "(X, rhs) \<in> Init (UNIV // \<approx>A)" |
700 |
shows "X = L rhs" |
|
42 | 701 |
proof |
100 | 702 |
show "X \<subseteq> L rhs" |
42 | 703 |
proof |
704 |
fix x |
|
705 |
assume "(1)": "x \<in> X" |
|
100 | 706 |
show "x \<in> L rhs" |
42 | 707 |
proof (cases "x = []") |
708 |
assume empty: "x = []" |
|
709 |
thus ?thesis using X_in_eqs "(1)" |
|
96 | 710 |
by (auto simp: Init_def Init_rhs_def) |
42 | 711 |
next |
712 |
assume not_empty: "x \<noteq> []" |
|
713 |
then obtain clist c where decom: "x = clist @ [c]" |
|
714 |
by (case_tac x rule:rev_cases, auto) |
|
100 | 715 |
have "X \<in> UNIV // \<approx>A" using X_in_eqs by (auto simp:Init_def) |
42 | 716 |
then obtain Y |
100 | 717 |
where "Y \<in> UNIV // \<approx>A" |
42 | 718 |
and "Y ;; {[c]} \<subseteq> X" |
719 |
and "clist \<in> Y" |
|
720 |
using decom "(1)" every_eqclass_has_transition by blast |
|
721 |
hence |
|
100 | 722 |
"x \<in> L {Trn Y (CHAR c)| Y c. Y \<in> UNIV // \<approx>A \<and> Y \<Turnstile>c\<Rightarrow> X}" |
71 | 723 |
unfolding transition_def |
724 |
using "(1)" decom |
|
42 | 725 |
by (simp, rule_tac x = "Trn Y (CHAR c)" in exI, simp add:Seq_def) |
71 | 726 |
thus ?thesis using X_in_eqs "(1)" |
96 | 727 |
by (simp add: Init_def Init_rhs_def) |
42 | 728 |
qed |
729 |
qed |
|
730 |
next |
|
100 | 731 |
show "L rhs \<subseteq> X" using X_in_eqs |
96 | 732 |
by (auto simp:Init_def Init_rhs_def transition_def) |
42 | 733 |
qed |
734 |
||
100 | 735 |
lemma test: |
736 |
assumes X_in_eqs: "(X, rhs) \<in> Init (UNIV // \<approx>A)" |
|
737 |
shows "X = \<Union> (L ` rhs)" |
|
738 |
using assms |
|
739 |
by (drule_tac l_eq_r_in_eqs) (simp) |
|
740 |
||
741 |
||
96 | 742 |
lemma finite_Init_rhs: |
42 | 743 |
assumes finite: "finite CS" |
96 | 744 |
shows "finite (Init_rhs CS X)" |
42 | 745 |
proof- |
105 | 746 |
def S \<equiv> "{(Y, c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" |
747 |
def h \<equiv> "\<lambda> (Y, c). Trn Y (CHAR c)" |
|
748 |
have "finite (CS \<times> (UNIV::char set))" using finite by auto |
|
749 |
then have "finite S" using S_def |
|
750 |
by (rule_tac B = "CS \<times> UNIV" in finite_subset) (auto) |
|
751 |
moreover have "{Trn Y (CHAR c) |Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X} = h ` S" |
|
752 |
unfolding S_def h_def image_def by auto |
|
753 |
ultimately |
|
754 |
have "finite {Trn Y (CHAR c) |Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" by auto |
|
755 |
then show "finite (Init_rhs CS X)" unfolding Init_rhs_def transition_def by simp |
|
42 | 756 |
qed |
757 |
||
96 | 758 |
lemma Init_ES_satisfies_invariant: |
759 |
assumes finite_CS: "finite (UNIV // \<approx>A)" |
|
760 |
shows "invariant (Init (UNIV // \<approx>A))" |
|
761 |
proof (rule invariantI) |
|
104 | 762 |
show "sound_eqs (Init (UNIV // \<approx>A))" |
763 |
unfolding sound_eqs_def |
|
97 | 764 |
using l_eq_r_in_eqs by auto |
96 | 765 |
show "finite (Init (UNIV // \<approx>A))" using finite_CS |
766 |
unfolding Init_def by simp |
|
767 |
show "distinct_equas (Init (UNIV // \<approx>A))" |
|
768 |
unfolding distinct_equas_def Init_def by simp |
|
110 | 769 |
show "ardenable_all (Init (UNIV // \<approx>A))" |
770 |
unfolding ardenable_all_def Init_def Init_rhs_def ardenable_def |
|
103 | 771 |
by auto |
96 | 772 |
show "finite_rhs (Init (UNIV // \<approx>A))" |
773 |
using finite_Init_rhs[OF finite_CS] |
|
774 |
unfolding finite_rhs_def Init_def by auto |
|
104 | 775 |
show "valid_eqs (Init (UNIV // \<approx>A))" |
776 |
unfolding valid_eqs_def Init_def Init_rhs_def rhss_def lhss_def |
|
96 | 777 |
by auto |
42 | 778 |
qed |
779 |
||
91 | 780 |
subsubsection {* Interation step *} |
42 | 781 |
|
782 |
text {* |
|
91 | 783 |
From this point until @{text "iteration_step"}, |
96 | 784 |
the correctness of the iteration step @{text "Iter X ES"} is proved. |
71 | 785 |
*} |
786 |
||
94 | 787 |
lemma Arden_keeps_eq: |
42 | 788 |
assumes l_eq_r: "X = L rhs" |
110 | 789 |
and not_empty: "ardenable rhs" |
42 | 790 |
and finite: "finite rhs" |
94 | 791 |
shows "X = L (Arden X rhs)" |
42 | 792 |
proof - |
79 | 793 |
def A \<equiv> "L (\<Uplus>{r. Trn X r \<in> rhs})" |
94 | 794 |
def b \<equiv> "rhs - {Trn X r | r. Trn X r \<in> rhs}" |
42 | 795 |
def B \<equiv> "L b" |
796 |
have "X = B ;; A\<star>" |
|
109 | 797 |
proof - |
94 | 798 |
have "L rhs = L({Trn X r | r. Trn X r \<in> rhs} \<union> b)" by (auto simp: b_def) |
79 | 799 |
also have "\<dots> = X ;; A \<union> B" |
800 |
unfolding L_rhs_union_distrib[symmetric] |
|
801 |
by (simp only: lang_of_rexp_of finite B_def A_def) |
|
802 |
finally show ?thesis |
|
86 | 803 |
apply(rule_tac arden[THEN iffD1]) |
110 | 804 |
apply(simp (no_asm) add: A_def) |
805 |
using finite_Trn[OF finite] not_empty |
|
806 |
apply(simp add: ardenable_def) |
|
807 |
using l_eq_r |
|
79 | 808 |
apply(simp) |
809 |
done |
|
42 | 810 |
qed |
94 | 811 |
moreover have "L (Arden X rhs) = B ;; A\<star>" |
812 |
by (simp only:Arden_def L_rhs_union_distrib lang_of_append_rhs |
|
50 | 813 |
B_def A_def b_def L_rexp.simps seq_union_distrib_left) |
42 | 814 |
ultimately show ?thesis by simp |
815 |
qed |
|
816 |
||
817 |
lemma append_keeps_finite: |
|
818 |
"finite rhs \<Longrightarrow> finite (append_rhs_rexp rhs r)" |
|
819 |
by (auto simp:append_rhs_rexp_def) |
|
820 |
||
94 | 821 |
lemma Arden_keeps_finite: |
822 |
"finite rhs \<Longrightarrow> finite (Arden X rhs)" |
|
823 |
by (auto simp:Arden_def append_keeps_finite) |
|
42 | 824 |
|
825 |
lemma append_keeps_nonempty: |
|
110 | 826 |
"ardenable rhs \<Longrightarrow> ardenable (append_rhs_rexp rhs r)" |
827 |
apply (auto simp:ardenable_def append_rhs_rexp_def) |
|
42 | 828 |
by (case_tac x, auto simp:Seq_def) |
829 |
||
830 |
lemma nonempty_set_sub: |
|
110 | 831 |
"ardenable rhs \<Longrightarrow> ardenable (rhs - A)" |
832 |
by (auto simp:ardenable_def) |
|
42 | 833 |
|
834 |
lemma nonempty_set_union: |
|
110 | 835 |
"\<lbrakk>ardenable rhs; ardenable rhs'\<rbrakk> \<Longrightarrow> ardenable (rhs \<union> rhs')" |
836 |
by (auto simp:ardenable_def) |
|
42 | 837 |
|
94 | 838 |
lemma Arden_keeps_nonempty: |
110 | 839 |
"ardenable rhs \<Longrightarrow> ardenable (Arden X rhs)" |
94 | 840 |
by (simp only:Arden_def append_keeps_nonempty nonempty_set_sub) |
42 | 841 |
|
842 |
||
94 | 843 |
lemma Subst_keeps_nonempty: |
110 | 844 |
"\<lbrakk>ardenable rhs; ardenable xrhs\<rbrakk> \<Longrightarrow> ardenable (Subst rhs X xrhs)" |
94 | 845 |
by (simp only:Subst_def append_keeps_nonempty nonempty_set_union nonempty_set_sub) |
42 | 846 |
|
94 | 847 |
lemma Subst_keeps_eq: |
42 | 848 |
assumes substor: "X = L xrhs" |
849 |
and finite: "finite rhs" |
|
94 | 850 |
shows "L (Subst rhs X xrhs) = L rhs" (is "?Left = ?Right") |
42 | 851 |
proof- |
94 | 852 |
def A \<equiv> "L (rhs - {Trn X r | r. Trn X r \<in> rhs})" |
79 | 853 |
have "?Left = A \<union> L (append_rhs_rexp xrhs (\<Uplus>{r. Trn X r \<in> rhs}))" |
94 | 854 |
unfolding Subst_def |
79 | 855 |
unfolding L_rhs_union_distrib[symmetric] |
856 |
by (simp add: A_def) |
|
857 |
moreover have "?Right = A \<union> L ({Trn X r | r. Trn X r \<in> rhs})" |
|
42 | 858 |
proof- |
94 | 859 |
have "rhs = (rhs - {Trn X r | r. Trn X r \<in> rhs}) \<union> ({Trn X r | r. Trn X r \<in> rhs})" by auto |
79 | 860 |
thus ?thesis |
861 |
unfolding A_def |
|
862 |
unfolding L_rhs_union_distrib |
|
863 |
by simp |
|
42 | 864 |
qed |
79 | 865 |
moreover have "L (append_rhs_rexp xrhs (\<Uplus>{r. Trn X r \<in> rhs})) = L ({Trn X r | r. Trn X r \<in> rhs})" |
42 | 866 |
using finite substor by (simp only:lang_of_append_rhs lang_of_rexp_of) |
867 |
ultimately show ?thesis by simp |
|
868 |
qed |
|
869 |
||
94 | 870 |
lemma Subst_keeps_finite_rhs: |
871 |
"\<lbrakk>finite rhs; finite yrhs\<rbrakk> \<Longrightarrow> finite (Subst rhs Y yrhs)" |
|
872 |
by (auto simp:Subst_def append_keeps_finite) |
|
42 | 873 |
|
94 | 874 |
lemma Subst_all_keeps_finite: |
110 | 875 |
assumes finite: "finite ES" |
94 | 876 |
shows "finite (Subst_all ES Y yrhs)" |
42 | 877 |
proof - |
110 | 878 |
def eqns \<equiv> "{(X::lang, rhs) |X rhs. (X, rhs) \<in> ES}" |
879 |
def h \<equiv> "\<lambda>(X::lang, rhs). (X, Subst rhs Y yrhs)" |
|
880 |
have "finite (h ` eqns)" using finite h_def eqns_def by auto |
|
881 |
moreover |
|
882 |
have "Subst_all ES Y yrhs = h ` eqns" unfolding h_def eqns_def Subst_all_def by auto |
|
883 |
ultimately |
|
884 |
show "finite (Subst_all ES Y yrhs)" by simp |
|
42 | 885 |
qed |
886 |
||
94 | 887 |
lemma Subst_all_keeps_finite_rhs: |
888 |
"\<lbrakk>finite_rhs ES; finite yrhs\<rbrakk> \<Longrightarrow> finite_rhs (Subst_all ES Y yrhs)" |
|
889 |
by (auto intro:Subst_keeps_finite_rhs simp add:Subst_all_def finite_rhs_def) |
|
42 | 890 |
|
891 |
lemma append_rhs_keeps_cls: |
|
104 | 892 |
"rhss (append_rhs_rexp rhs r) = rhss rhs" |
893 |
apply (auto simp:rhss_def append_rhs_rexp_def) |
|
42 | 894 |
apply (case_tac xa, auto simp:image_def) |
895 |
by (rule_tac x = "SEQ ra r" in exI, rule_tac x = "Trn x ra" in bexI, simp+) |
|
896 |
||
94 | 897 |
lemma Arden_removes_cl: |
104 | 898 |
"rhss (Arden Y yrhs) = rhss yrhs - {Y}" |
94 | 899 |
apply (simp add:Arden_def append_rhs_keeps_cls) |
104 | 900 |
by (auto simp:rhss_def) |
42 | 901 |
|
103 | 902 |
lemma lhss_keeps_cls: |
903 |
"lhss (Subst_all ES Y yrhs) = lhss ES" |
|
904 |
by (auto simp:lhss_def Subst_all_def) |
|
42 | 905 |
|
94 | 906 |
lemma Subst_updates_cls: |
104 | 907 |
"X \<notin> rhss xrhs \<Longrightarrow> |
908 |
rhss (Subst rhs X xrhs) = rhss rhs \<union> rhss xrhs - {X}" |
|
909 |
apply (simp only:Subst_def append_rhs_keeps_cls rhss_union_distrib) |
|
910 |
by (auto simp:rhss_def) |
|
42 | 911 |
|
104 | 912 |
lemma Subst_all_keeps_valid_eqs: |
110 | 913 |
assumes sc: "valid_eqs (ES \<union> {(Y, yrhs)})" (is "valid_eqs ?A") |
914 |
shows "valid_eqs (Subst_all ES Y (Arden Y yrhs))" (is "valid_eqs ?B") |
|
915 |
proof - |
|
42 | 916 |
{ fix X xrhs' |
917 |
assume "(X, xrhs') \<in> ?B" |
|
918 |
then obtain xrhs |
|
94 | 919 |
where xrhs_xrhs': "xrhs' = Subst xrhs Y (Arden Y yrhs)" |
920 |
and X_in: "(X, xrhs) \<in> ES" by (simp add:Subst_all_def, blast) |
|
104 | 921 |
have "rhss xrhs' \<subseteq> lhss ?B" |
42 | 922 |
proof- |
103 | 923 |
have "lhss ?B = lhss ES" by (auto simp add:lhss_def Subst_all_def) |
104 | 924 |
moreover have "rhss xrhs' \<subseteq> lhss ES" |
42 | 925 |
proof- |
110 | 926 |
have "rhss xrhs' \<subseteq> rhss xrhs \<union> rhss (Arden Y yrhs) - {Y}" |
42 | 927 |
proof- |
104 | 928 |
have "Y \<notin> rhss (Arden Y yrhs)" |
94 | 929 |
using Arden_removes_cl by simp |
930 |
thus ?thesis using xrhs_xrhs' by (auto simp:Subst_updates_cls) |
|
42 | 931 |
qed |
104 | 932 |
moreover have "rhss xrhs \<subseteq> lhss ES \<union> {Y}" using X_in sc |
933 |
apply (simp only:valid_eqs_def lhss_union_distrib) |
|
103 | 934 |
by (drule_tac x = "(X, xrhs)" in bspec, auto simp:lhss_def) |
104 | 935 |
moreover have "rhss (Arden Y yrhs) \<subseteq> lhss ES \<union> {Y}" |
42 | 936 |
using sc |
104 | 937 |
by (auto simp add:Arden_removes_cl valid_eqs_def lhss_def) |
42 | 938 |
ultimately show ?thesis by auto |
939 |
qed |
|
940 |
ultimately show ?thesis by simp |
|
941 |
qed |
|
104 | 942 |
} thus ?thesis by (auto simp only:Subst_all_def valid_eqs_def) |
42 | 943 |
qed |
944 |
||
96 | 945 |
lemma Subst_all_satisfies_invariant: |
86 | 946 |
assumes invariant_ES: "invariant (ES \<union> {(Y, yrhs)})" |
94 | 947 |
shows "invariant (Subst_all ES Y (Arden Y yrhs))" |
96 | 948 |
proof (rule invariantI) |
949 |
have Y_eq_yrhs: "Y = L yrhs" |
|
104 | 950 |
using invariant_ES by (simp only:invariant_def sound_eqs_def, blast) |
96 | 951 |
have finite_yrhs: "finite yrhs" |
86 | 952 |
using invariant_ES by (auto simp:invariant_def finite_rhs_def) |
110 | 953 |
have nonempty_yrhs: "ardenable yrhs" |
954 |
using invariant_ES by (auto simp:invariant_def ardenable_all_def) |
|
104 | 955 |
show "sound_eqs (Subst_all ES Y (Arden Y yrhs))" |
110 | 956 |
proof - |
96 | 957 |
have "Y = L (Arden Y yrhs)" |
103 | 958 |
using Y_eq_yrhs invariant_ES finite_yrhs |
959 |
using finite_Trn[OF finite_yrhs] |
|
960 |
apply(rule_tac Arden_keeps_eq) |
|
961 |
apply(simp_all) |
|
110 | 962 |
unfolding invariant_def ardenable_all_def ardenable_def |
103 | 963 |
apply(auto) |
964 |
done |
|
965 |
thus ?thesis using invariant_ES |
|
110 | 966 |
unfolding invariant_def finite_rhs_def2 sound_eqs_def Subst_all_def |
103 | 967 |
by (auto simp add: Subst_keeps_eq simp del: L_rhs.simps) |
96 | 968 |
qed |
969 |
show "finite (Subst_all ES Y (Arden Y yrhs))" |
|
970 |
using invariant_ES by (simp add:invariant_def Subst_all_keeps_finite) |
|
971 |
show "distinct_equas (Subst_all ES Y (Arden Y yrhs))" |
|
110 | 972 |
using invariant_ES |
973 |
unfolding distinct_equas_def Subst_all_def invariant_def by auto |
|
974 |
show "ardenable_all (Subst_all ES Y (Arden Y yrhs))" |
|
96 | 975 |
proof - |
976 |
{ fix X rhs |
|
977 |
assume "(X, rhs) \<in> ES" |
|
110 | 978 |
hence "ardenable rhs" using prems invariant_ES |
979 |
by (auto simp add:invariant_def ardenable_all_def) |
|
96 | 980 |
with nonempty_yrhs |
110 | 981 |
have "ardenable (Subst rhs Y (Arden Y yrhs))" |
96 | 982 |
by (simp add:nonempty_yrhs |
983 |
Subst_keeps_nonempty Arden_keeps_nonempty) |
|
110 | 984 |
} thus ?thesis by (auto simp add:ardenable_all_def Subst_all_def) |
96 | 985 |
qed |
986 |
show "finite_rhs (Subst_all ES Y (Arden Y yrhs))" |
|
42 | 987 |
proof- |
86 | 988 |
have "finite_rhs ES" using invariant_ES |
989 |
by (simp add:invariant_def finite_rhs_def) |
|
94 | 990 |
moreover have "finite (Arden Y yrhs)" |
42 | 991 |
proof - |
86 | 992 |
have "finite yrhs" using invariant_ES |
993 |
by (auto simp:invariant_def finite_rhs_def) |
|
94 | 994 |
thus ?thesis using Arden_keeps_finite by simp |
42 | 995 |
qed |
996 |
ultimately show ?thesis |
|
94 | 997 |
by (simp add:Subst_all_keeps_finite_rhs) |
42 | 998 |
qed |
104 | 999 |
show "valid_eqs (Subst_all ES Y (Arden Y yrhs))" |
1000 |
using invariant_ES Subst_all_keeps_valid_eqs by (simp add:invariant_def) |
|
42 | 1001 |
qed |
1002 |
||
97 | 1003 |
lemma Remove_in_card_measure: |
1004 |
assumes finite: "finite ES" |
|
1005 |
and in_ES: "(X, rhs) \<in> ES" |
|
1006 |
shows "(Remove ES X rhs, ES) \<in> measure card" |
|
1007 |
proof - |
|
1008 |
def f \<equiv> "\<lambda> x. ((fst x)::lang, Subst (snd x) X (Arden X rhs))" |
|
1009 |
def ES' \<equiv> "ES - {(X, rhs)}" |
|
1010 |
have "Subst_all ES' X (Arden X rhs) = f ` ES'" |
|
1011 |
apply (auto simp: Subst_all_def f_def image_def) |
|
1012 |
by (rule_tac x = "(Y, yrhs)" in bexI, simp+) |
|
1013 |
then have "card (Subst_all ES' X (Arden X rhs)) \<le> card ES'" |
|
1014 |
unfolding ES'_def using finite by (auto intro: card_image_le) |
|
1015 |
also have "\<dots> < card ES" unfolding ES'_def |
|
1016 |
using in_ES finite by (rule_tac card_Diff1_less) |
|
1017 |
finally show "(Remove ES X rhs, ES) \<in> measure card" |
|
1018 |
unfolding Remove_def ES'_def by simp |
|
42 | 1019 |
qed |
97 | 1020 |
|
42 | 1021 |
|
94 | 1022 |
lemma Subst_all_cls_remains: |
1023 |
"(X, xrhs) \<in> ES \<Longrightarrow> \<exists> xrhs'. (X, xrhs') \<in> (Subst_all ES Y yrhs)" |
|
97 | 1024 |
by (auto simp: Subst_all_def) |
42 | 1025 |
|
1026 |
lemma card_noteq_1_has_more: |
|
103 | 1027 |
assumes card:"Cond ES" |
1028 |
and e_in: "(X, xrhs) \<in> ES" |
|
1029 |
and finite: "finite ES" |
|
1030 |
shows "\<exists>(Y, yrhs) \<in> ES. (X, xrhs) \<noteq> (Y, yrhs)" |
|
42 | 1031 |
proof- |
103 | 1032 |
have "card ES > 1" using card e_in finite |
1033 |
by (cases "card ES") (auto) |
|
1034 |
then have "card (ES - {(X, xrhs)}) > 0" |
|
1035 |
using finite e_in by auto |
|
1036 |
then have "(ES - {(X, xrhs)}) \<noteq> {}" using finite by (rule_tac notI, simp) |
|
1037 |
then show "\<exists>(Y, yrhs) \<in> ES. (X, xrhs) \<noteq> (Y, yrhs)" |
|
1038 |
by auto |
|
42 | 1039 |
qed |
1040 |
||
97 | 1041 |
lemma iteration_step_measure: |
91 | 1042 |
assumes Inv_ES: "invariant ES" |
42 | 1043 |
and X_in_ES: "(X, xrhs) \<in> ES" |
105 | 1044 |
and Cnd: "Cond ES " |
97 | 1045 |
shows "(Iter X ES, ES) \<in> measure card" |
1046 |
proof - |
|
105 | 1047 |
have fin: "finite ES" using Inv_ES unfolding invariant_def by simp |
97 | 1048 |
then obtain Y yrhs |
1049 |
where Y_in_ES: "(Y, yrhs) \<in> ES" and not_eq: "(X, xrhs) \<noteq> (Y, yrhs)" |
|
105 | 1050 |
using Cnd X_in_ES by (drule_tac card_noteq_1_has_more) (auto) |
97 | 1051 |
then have "(Y, yrhs) \<in> ES " "X \<noteq> Y" |
103 | 1052 |
using X_in_ES Inv_ES unfolding invariant_def distinct_equas_def |
1053 |
by auto |
|
97 | 1054 |
then show "(Iter X ES, ES) \<in> measure card" |
1055 |
apply(rule IterI2) |
|
1056 |
apply(rule Remove_in_card_measure) |
|
105 | 1057 |
apply(simp_all add: fin) |
97 | 1058 |
done |
1059 |
qed |
|
1060 |
||
1061 |
lemma iteration_step_invariant: |
|
1062 |
assumes Inv_ES: "invariant ES" |
|
1063 |
and X_in_ES: "(X, xrhs) \<in> ES" |
|
105 | 1064 |
and Cnd: "Cond ES" |
97 | 1065 |
shows "invariant (Iter X ES)" |
42 | 1066 |
proof - |
91 | 1067 |
have finite_ES: "finite ES" using Inv_ES by (simp add: invariant_def) |
42 | 1068 |
then obtain Y yrhs |
1069 |
where Y_in_ES: "(Y, yrhs) \<in> ES" and not_eq: "(X, xrhs) \<noteq> (Y, yrhs)" |
|
105 | 1070 |
using Cnd X_in_ES by (drule_tac card_noteq_1_has_more) (auto) |
103 | 1071 |
then have "(Y, yrhs) \<in> ES" "X \<noteq> Y" |
1072 |
using X_in_ES Inv_ES unfolding invariant_def distinct_equas_def |
|
1073 |
by auto |
|
97 | 1074 |
then show "invariant (Iter X ES)" |
1075 |
proof(rule IterI2) |
|
1076 |
fix Y yrhs |
|
1077 |
assume h: "(Y, yrhs) \<in> ES" "X \<noteq> Y" |
|
1078 |
then have "ES - {(Y, yrhs)} \<union> {(Y, yrhs)} = ES" by auto |
|
1079 |
then show "invariant (Remove ES Y yrhs)" unfolding Remove_def |
|
110 | 1080 |
using Inv_ES |
1081 |
thm Subst_all_satisfies_invariant |
|
1082 |
by (rule_tac Subst_all_satisfies_invariant) (simp) |
|
42 | 1083 |
qed |
1084 |
qed |
|
1085 |
||
97 | 1086 |
lemma iteration_step_ex: |
1087 |
assumes Inv_ES: "invariant ES" |
|
1088 |
and X_in_ES: "(X, xrhs) \<in> ES" |
|
105 | 1089 |
and Cnd: "Cond ES" |
97 | 1090 |
shows "\<exists>xrhs'. (X, xrhs') \<in> (Iter X ES)" |
1091 |
proof - |
|
1092 |
have finite_ES: "finite ES" using Inv_ES by (simp add: invariant_def) |
|
1093 |
then obtain Y yrhs |
|
1094 |
where Y_in_ES: "(Y, yrhs) \<in> ES" and not_eq: "(X, xrhs) \<noteq> (Y, yrhs)" |
|
105 | 1095 |
using Cnd X_in_ES by (drule_tac card_noteq_1_has_more) (auto) |
97 | 1096 |
then have "(Y, yrhs) \<in> ES " "X \<noteq> Y" |
103 | 1097 |
using X_in_ES Inv_ES unfolding invariant_def distinct_equas_def |
1098 |
by auto |
|
97 | 1099 |
then show "\<exists>xrhs'. (X, xrhs') \<in> (Iter X ES)" |
1100 |
apply(rule IterI2) |
|
1101 |
unfolding Remove_def |
|
1102 |
apply(rule Subst_all_cls_remains) |
|
1103 |
using X_in_ES |
|
1104 |
apply(auto) |
|
1105 |
done |
|
1106 |
qed |
|
1107 |
||
91 | 1108 |
|
1109 |
subsubsection {* Conclusion of the proof *} |
|
42 | 1110 |
|
103 | 1111 |
lemma Solve: |
1112 |
assumes fin: "finite (UNIV // \<approx>A)" |
|
1113 |
and X_in: "X \<in> (UNIV // \<approx>A)" |
|
104 | 1114 |
shows "\<exists>rhs. Solve X (Init (UNIV // \<approx>A)) = {(X, rhs)} \<and> invariant {(X, rhs)}" |
91 | 1115 |
proof - |
104 | 1116 |
def Inv \<equiv> "\<lambda>ES. invariant ES \<and> (\<exists>rhs. (X, rhs) \<in> ES)" |
103 | 1117 |
have "Inv (Init (UNIV // \<approx>A))" unfolding Inv_def |
1118 |
using fin X_in by (simp add: Init_ES_satisfies_invariant, simp add: Init_def) |
|
1119 |
moreover |
|
1120 |
{ fix ES |
|
1121 |
assume inv: "Inv ES" and crd: "Cond ES" |
|
1122 |
then have "Inv (Iter X ES)" |
|
1123 |
unfolding Inv_def |
|
1124 |
by (auto simp add: iteration_step_invariant iteration_step_ex) } |
|
1125 |
moreover |
|
1126 |
{ fix ES |
|
110 | 1127 |
assume inv: "Inv ES" and not_crd: "\<not>Cond ES" |
1128 |
from inv obtain rhs where "(X, rhs) \<in> ES" unfolding Inv_def by auto |
|
1129 |
moreover |
|
1130 |
from not_crd have "card ES = 1" by simp |
|
1131 |
ultimately |
|
1132 |
have "ES = {(X, rhs)}" by (auto simp add: card_Suc_eq) |
|
1133 |
then have "\<exists>rhs'. ES = {(X, rhs')} \<and> invariant {(X, rhs')}" using inv |
|
1134 |
unfolding Inv_def by auto } |
|
103 | 1135 |
moreover |
1136 |
have "wf (measure card)" by simp |
|
1137 |
moreover |
|
1138 |
{ fix ES |
|
1139 |
assume inv: "Inv ES" and crd: "Cond ES" |
|
1140 |
then have "(Iter X ES, ES) \<in> measure card" |
|
1141 |
unfolding Inv_def |
|
97 | 1142 |
apply(clarify) |
103 | 1143 |
apply(rule_tac iteration_step_measure) |
97 | 1144 |
apply(auto) |
103 | 1145 |
done } |
1146 |
ultimately |
|
104 | 1147 |
show "\<exists>rhs. Solve X (Init (UNIV // \<approx>A)) = {(X, rhs)} \<and> invariant {(X, rhs)}" |
103 | 1148 |
unfolding Solve_def by (rule while_rule) |
42 | 1149 |
qed |
91 | 1150 |
|
106 | 1151 |
lemma every_eqcl_has_reg: |
1152 |
assumes finite_CS: "finite (UNIV // \<approx>A)" |
|
1153 |
and X_in_CS: "X \<in> (UNIV // \<approx>A)" |
|
1154 |
shows "\<exists>r::rexp. X = L r" |
|
1155 |
proof - |
|
1156 |
from finite_CS X_in_CS |
|
1157 |
obtain xrhs where Inv_ES: "invariant {(X, xrhs)}" |
|
1158 |
using Solve by metis |
|
1159 |
||
94 | 1160 |
def A \<equiv> "Arden X xrhs" |
105 | 1161 |
have "rhss xrhs \<subseteq> {X}" using Inv_ES |
1162 |
unfolding valid_eqs_def invariant_def rhss_def lhss_def |
|
1163 |
by auto |
|
1164 |
then have "rhss A = {}" unfolding A_def |
|
1165 |
by (simp add: Arden_removes_cl) |
|
1166 |
then have eq: "{Lam r | r. Lam r \<in> A} = A" unfolding rhss_def |
|
1167 |
by (auto, case_tac x, auto) |
|
1168 |
||
96 | 1169 |
have "finite A" using Inv_ES unfolding A_def invariant_def finite_rhs_def |
1170 |
using Arden_keeps_finite by auto |
|
105 | 1171 |
then have fin: "finite {r. Lam r \<in> A}" by (rule finite_Lam) |
1172 |
||
1173 |
have "X = L xrhs" using Inv_ES unfolding invariant_def sound_eqs_def |
|
1174 |
by simp |
|
1175 |
then have "X = L A" using Inv_ES |
|
110 | 1176 |
unfolding A_def invariant_def ardenable_all_def finite_rhs_def |
105 | 1177 |
by (rule_tac Arden_keeps_eq) (simp_all add: finite_Trn) |
1178 |
then have "X = L {Lam r | r. Lam r \<in> A}" using eq by simp |
|
1179 |
then have "X = L (\<Uplus>{r. Lam r \<in> A})" using fin by auto |
|
106 | 1180 |
then show "\<exists>r::rexp. X = L r" by blast |
42 | 1181 |
qed |
1182 |
||
96 | 1183 |
lemma bchoice_finite_set: |
1184 |
assumes a: "\<forall>x \<in> S. \<exists>y. x = f y" |
|
1185 |
and b: "finite S" |
|
1186 |
shows "\<exists>ys. (\<Union> S) = \<Union>(f ` ys) \<and> finite ys" |
|
1187 |
using bchoice[OF a] b |
|
1188 |
apply(erule_tac exE) |
|
1189 |
apply(rule_tac x="fa ` S" in exI) |
|
1190 |
apply(auto) |
|
1191 |
done |
|
1192 |
||
1193 |
theorem Myhill_Nerode1: |
|
70 | 1194 |
assumes finite_CS: "finite (UNIV // \<approx>A)" |
1195 |
shows "\<exists>r::rexp. A = L r" |
|
42 | 1196 |
proof - |
105 | 1197 |
have fin: "finite (finals A)" |
96 | 1198 |
using finals_in_partitions finite_CS by (rule finite_subset) |
1199 |
have "\<forall>X \<in> (UNIV // \<approx>A). \<exists>r::rexp. X = L r" |
|
42 | 1200 |
using finite_CS every_eqcl_has_reg by blast |
96 | 1201 |
then have a: "\<forall>X \<in> finals A. \<exists>r::rexp. X = L r" |
1202 |
using finals_in_partitions by auto |
|
1203 |
then obtain rs::"rexp set" where "\<Union> (finals A) = \<Union>(L ` rs)" "finite rs" |
|
105 | 1204 |
using fin by (auto dest: bchoice_finite_set) |
96 | 1205 |
then have "A = L (\<Uplus>rs)" |
1206 |
unfolding lang_is_union_of_finals[symmetric] by simp |
|
1207 |
then show "\<exists>r::rexp. A = L r" by blast |
|
42 | 1208 |
qed |
1209 |
||
96 | 1210 |
|
42 | 1211 |
end |