author | urbanc |
Fri, 18 Feb 2011 15:06:06 +0000 | |
changeset 115 | c5f138b5fc88 |
parent 94 | 5b12cd0a3b3c |
child 116 | 342983676c8f |
permissions | -rw-r--r-- |
24 | 1 |
\documentclass{llncs} |
2 |
\usepackage{isabelle} |
|
3 |
\usepackage{isabellesym} |
|
4 |
\usepackage{amsmath} |
|
5 |
\usepackage{amssymb} |
|
6 |
\usepackage{tikz} |
|
7 |
\usepackage{pgf} |
|
8 |
\usepackage{pdfsetup} |
|
9 |
\usepackage{ot1patch} |
|
10 |
\usepackage{times} |
|
11 |
\usepackage{proof} |
|
90 | 12 |
%%\usepackage{mathabx} |
52
4a517c6ac07d
tuning of the syntax; needs the stmaryrd latex package
urbanc
parents:
24
diff
changeset
|
13 |
\usepackage{stmaryrd} |
24 | 14 |
|
15 |
\urlstyle{rm} |
|
16 |
\isabellestyle{it} |
|
17 |
\renewcommand{\isastyleminor}{\it}% |
|
18 |
\renewcommand{\isastyle}{\normalsize\it}% |
|
19 |
||
20 |
||
21 |
\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,} |
|
22 |
\renewcommand{\isasymequiv}{$\dn$} |
|
23 |
\renewcommand{\isasymemptyset}{$\varnothing$} |
|
24 |
\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}} |
|
25 |
||
83 | 26 |
\newcommand{\isasymcalL}{\ensuremath{\cal{L}}} |
90 | 27 |
\newcommand{\isasymbigplus}{\ensuremath{\bigplus}} |
28 |
||
94 | 29 |
\newcommand{\bigplus}{\mbox{\Large\bf$+$}} |
24 | 30 |
\begin{document} |
31 |
||
54 | 32 |
\title{A Formalisation of the Myhill-Nerode Theorem\\ based on Regular |
33 |
Expressions (Proof Pearl)} |
|
24 | 34 |
\author{Chunhan Wu\inst{1} \and Xingjuan Zhang\inst{1} \and Christian Urban\inst{2}} |
92 | 35 |
\institute{PLA University of Science and Technology, China \and TU Munich, Germany} |
24 | 36 |
\maketitle |
37 |
||
38 |
\begin{abstract} |
|
88 | 39 |
There are numerous textbooks on regular languages. Nearly all of them |
40 |
introduce the subject by describing finite automata and only mentioning on the |
|
115 | 41 |
side a connection with regular expressions. Unfortunately, automata are difficult |
42 |
to formalise in HOL-based theorem provers. The reason is that |
|
88 | 43 |
they need to be represented as graphs, matrices or functions, none of which |
44 |
are inductive datatypes. Also convenient operations for disjoint unions of |
|
45 |
graphs and functions are not easily formalisiable in HOL. In contrast, regular |
|
46 |
expressions can be defined conveniently as datatype and a corresponding |
|
47 |
reasoning infrastructure comes for free. We show in this paper that a central |
|
48 |
result from formal language theory---the Myhill-Nerode theorem---can be |
|
49 |
recreated using only regular expressions. |
|
50 |
||
24 | 51 |
\end{abstract} |
52 |
||
75 | 53 |
|
24 | 54 |
\input{session} |
55 |
||
56 |
\bibliographystyle{plain} |
|
57 |
\bibliography{root} |
|
58 |
||
59 |
\end{document} |
|
60 |
||
61 |
%%% Local Variables: |
|
62 |
%%% mode: latex |
|
63 |
%%% TeX-master: t |
|
64 |
%%% End: |