author | Christian Urban <christian dot urban at kcl dot ac dot uk> |
Thu, 12 Sep 2013 17:20:48 +0100 (2013-09-12) | |
changeset 386 | 92ca56c1a199 |
parent 368 | 2d6beddb6fa6 |
permissions | -rw-r--r-- |
233 | 1 |
theory Closures2 |
221 | 2 |
imports |
3 |
Closures |
|
368 | 4 |
(*Higman*) |
5 |
WQO_Finite_Lists |
|
220 | 6 |
begin |
7 |
||
223 | 8 |
section {* Closure under @{text SUBSEQ} and @{text SUPSEQ} *} |
9 |
||
10 |
(* compatibility with Higman theory by Stefan *) |
|
222
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
11 |
notation |
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
12 |
emb ("_ \<preceq> _") |
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
13 |
|
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
14 |
declare emb0 [intro] |
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
15 |
declare emb1 [intro] |
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
16 |
declare emb2 [intro] |
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
17 |
|
368 | 18 |
(* |
222
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
19 |
lemma letter_UNIV: |
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
20 |
shows "UNIV = {A, B::letter}" |
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
21 |
apply(auto) |
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
22 |
apply(case_tac x) |
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
23 |
apply(auto) |
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
24 |
done |
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
25 |
|
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
26 |
instance letter :: finite |
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
27 |
apply(default) |
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
28 |
apply(simp add: letter_UNIV) |
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
29 |
done |
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
30 |
|
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
31 |
hide_const A |
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
32 |
hide_const B |
233 | 33 |
hide_const R |
368 | 34 |
*) |
222
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
35 |
(* |
221 | 36 |
inductive |
37 |
emb :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" ("_ \<preceq> _") |
|
220 | 38 |
where |
221 | 39 |
emb0 [intro]: "emb [] y" |
40 |
| emb1 [intro]: "emb x y \<Longrightarrow> emb x (c # y)" |
|
41 |
| emb2 [intro]: "emb x y \<Longrightarrow> emb (c # x) (c # y)" |
|
222
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
42 |
*) |
220 | 43 |
|
221 | 44 |
lemma emb_refl [intro]: |
220 | 45 |
shows "x \<preceq> x" |
222
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
46 |
by (induct x) (auto) |
220 | 47 |
|
221 | 48 |
lemma emb_right [intro]: |
220 | 49 |
assumes a: "x \<preceq> y" |
50 |
shows "x \<preceq> y @ y'" |
|
222
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
51 |
using a |
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
52 |
by (induct arbitrary: y') (auto) |
220 | 53 |
|
221 | 54 |
lemma emb_left [intro]: |
220 | 55 |
assumes a: "x \<preceq> y" |
56 |
shows "x \<preceq> y' @ y" |
|
221 | 57 |
using a by (induct y') (auto) |
220 | 58 |
|
221 | 59 |
lemma emb_appendI [intro]: |
220 | 60 |
assumes a: "x \<preceq> x'" |
61 |
and b: "y \<preceq> y'" |
|
62 |
shows "x @ y \<preceq> x' @ y'" |
|
221 | 63 |
using a b by (induct) (auto) |
64 |
||
65 |
lemma emb_cons_leftD: |
|
66 |
assumes "a # x \<preceq> y" |
|
67 |
shows "\<exists>y1 y2. y = y1 @ [a] @ y2 \<and> x \<preceq> y2" |
|
68 |
using assms |
|
69 |
apply(induct x\<equiv>"a # x" y\<equiv>"y" arbitrary: a x y) |
|
70 |
apply(auto) |
|
71 |
apply(metis append_Cons) |
|
72 |
done |
|
73 |
||
74 |
lemma emb_append_leftD: |
|
75 |
assumes "x1 @ x2 \<preceq> y" |
|
76 |
shows "\<exists>y1 y2. y = y1 @ y2 \<and> x1 \<preceq> y1 \<and> x2 \<preceq> y2" |
|
77 |
using assms |
|
78 |
apply(induct x1 arbitrary: x2 y) |
|
79 |
apply(auto) |
|
80 |
apply(drule emb_cons_leftD) |
|
81 |
apply(auto) |
|
82 |
apply(drule_tac x="x2" in meta_spec) |
|
83 |
apply(drule_tac x="y2" in meta_spec) |
|
84 |
apply(auto) |
|
85 |
apply(rule_tac x="y1 @ (a # y1a)" in exI) |
|
86 |
apply(rule_tac x="y2a" in exI) |
|
87 |
apply(auto) |
|
220 | 88 |
done |
89 |
||
221 | 90 |
lemma emb_trans: |
91 |
assumes a: "x1 \<preceq> x2" |
|
92 |
and b: "x2 \<preceq> x3" |
|
93 |
shows "x1 \<preceq> x3" |
|
94 |
using a b |
|
95 |
apply(induct arbitrary: x3) |
|
96 |
apply(metis emb0) |
|
97 |
apply(metis emb_cons_leftD emb_left) |
|
98 |
apply(drule_tac emb_cons_leftD) |
|
99 |
apply(auto) |
|
220 | 100 |
done |
101 |
||
221 | 102 |
lemma emb_strict_length: |
103 |
assumes a: "x \<preceq> y" "x \<noteq> y" |
|
104 |
shows "length x < length y" |
|
105 |
using a |
|
106 |
by (induct) (auto simp add: less_Suc_eq) |
|
107 |
||
108 |
lemma emb_antisym: |
|
109 |
assumes a: "x \<preceq> y" "y \<preceq> x" |
|
110 |
shows "x = y" |
|
111 |
using a emb_strict_length |
|
112 |
by (metis not_less_iff_gr_or_eq) |
|
113 |
||
114 |
lemma emb_wf: |
|
115 |
shows "wf {(x, y). x \<preceq> y \<and> x \<noteq> y}" |
|
116 |
proof - |
|
117 |
have "wf (measure length)" by simp |
|
118 |
moreover |
|
119 |
have "{(x, y). x \<preceq> y \<and> x \<noteq> y} \<subseteq> measure length" |
|
120 |
unfolding measure_def by (auto simp add: emb_strict_length) |
|
121 |
ultimately |
|
122 |
show "wf {(x, y). x \<preceq> y \<and> x \<noteq> y}" by (rule wf_subset) |
|
123 |
qed |
|
124 |
||
348
bea94f1e6771
made changes for another journal submission of the MH-paper
urbanc
parents:
233
diff
changeset
|
125 |
|
221 | 126 |
subsection {* Sub- and Supsequences *} |
220 | 127 |
|
128 |
definition |
|
129 |
"SUBSEQ A \<equiv> {x. \<exists>y \<in> A. x \<preceq> y}" |
|
130 |
||
131 |
definition |
|
221 | 132 |
"SUPSEQ A \<equiv> {x. \<exists>y \<in> A. y \<preceq> x}" |
220 | 133 |
|
221 | 134 |
lemma SUPSEQ_simps [simp]: |
135 |
shows "SUPSEQ {} = {}" |
|
136 |
and "SUPSEQ {[]} = UNIV" |
|
137 |
unfolding SUPSEQ_def by auto |
|
220 | 138 |
|
221 | 139 |
lemma SUPSEQ_atom [simp]: |
223 | 140 |
shows "SUPSEQ {[c]} = UNIV \<cdot> {[c]} \<cdot> UNIV" |
221 | 141 |
unfolding SUPSEQ_def conc_def |
142 |
by (auto) (metis append_Cons emb_cons_leftD) |
|
220 | 143 |
|
221 | 144 |
lemma SUPSEQ_union [simp]: |
145 |
shows "SUPSEQ (A \<union> B) = SUPSEQ A \<union> SUPSEQ B" |
|
146 |
unfolding SUPSEQ_def by auto |
|
220 | 147 |
|
221 | 148 |
lemma SUPSEQ_conc [simp]: |
149 |
shows "SUPSEQ (A \<cdot> B) = SUPSEQ A \<cdot> SUPSEQ B" |
|
150 |
unfolding SUPSEQ_def conc_def |
|
151 |
by (auto) (metis emb_append_leftD) |
|
220 | 152 |
|
221 | 153 |
lemma SUPSEQ_star [simp]: |
154 |
shows "SUPSEQ (A\<star>) = UNIV" |
|
220 | 155 |
apply(subst star_unfold_left) |
221 | 156 |
apply(simp only: SUPSEQ_union) |
220 | 157 |
apply(simp) |
158 |
done |
|
159 |
||
160 |
definition |
|
161 |
Allreg :: "'a::finite rexp" |
|
162 |
where |
|
163 |
"Allreg \<equiv> \<Uplus>(Atom ` UNIV)" |
|
164 |
||
165 |
lemma Allreg_lang [simp]: |
|
221 | 166 |
shows "lang Allreg = (\<Union>a. {[a]})" |
167 |
unfolding Allreg_def by auto |
|
220 | 168 |
|
169 |
lemma [simp]: |
|
221 | 170 |
shows "(\<Union>a. {[a]})\<star> = UNIV" |
220 | 171 |
apply(auto) |
172 |
apply(induct_tac x rule: list.induct) |
|
173 |
apply(auto) |
|
174 |
apply(subgoal_tac "[a] @ list \<in> (\<Union>a. {[a]})\<star>") |
|
175 |
apply(simp) |
|
176 |
apply(rule append_in_starI) |
|
177 |
apply(auto) |
|
178 |
done |
|
179 |
||
180 |
lemma Star_Allreg_lang [simp]: |
|
221 | 181 |
shows "lang (Star Allreg) = UNIV" |
182 |
by simp |
|
220 | 183 |
|
221 | 184 |
fun |
185 |
UP :: "'a::finite rexp \<Rightarrow> 'a rexp" |
|
186 |
where |
|
187 |
"UP (Zero) = Zero" |
|
188 |
| "UP (One) = Star Allreg" |
|
189 |
| "UP (Atom c) = Times (Star Allreg) (Times (Atom c) (Star Allreg))" |
|
190 |
| "UP (Plus r1 r2) = Plus (UP r1) (UP r2)" |
|
191 |
| "UP (Times r1 r2) = Times (UP r1) (UP r2)" |
|
192 |
| "UP (Star r) = Star Allreg" |
|
220 | 193 |
|
221 | 194 |
lemma lang_UP: |
368 | 195 |
fixes r::"'a::finite rexp" |
221 | 196 |
shows "lang (UP r) = SUPSEQ (lang r)" |
197 |
by (induct r) (simp_all) |
|
198 |
||
199 |
lemma regular_SUPSEQ: |
|
368 | 200 |
fixes A::"('a::finite) lang" |
220 | 201 |
assumes "regular A" |
202 |
shows "regular (SUPSEQ A)" |
|
203 |
proof - |
|
368 | 204 |
from assms obtain r::"'a::finite rexp" where "lang r = A" by auto |
221 | 205 |
then have "lang (UP r) = SUPSEQ A" by (simp add: lang_UP) |
206 |
then show "regular (SUPSEQ A)" by auto |
|
220 | 207 |
qed |
221 | 208 |
|
209 |
lemma SUPSEQ_subset: |
|
210 |
shows "A \<subseteq> SUPSEQ A" |
|
211 |
unfolding SUPSEQ_def by auto |
|
212 |
||
223 | 213 |
lemma SUBSEQ_complement: |
214 |
shows "- (SUBSEQ A) = SUPSEQ (- (SUBSEQ A))" |
|
215 |
proof - |
|
216 |
have "- (SUBSEQ A) \<subseteq> SUPSEQ (- (SUBSEQ A))" |
|
217 |
by (rule SUPSEQ_subset) |
|
218 |
moreover |
|
219 |
have "SUPSEQ (- (SUBSEQ A)) \<subseteq> - (SUBSEQ A)" |
|
220 |
proof (rule ccontr) |
|
221 |
assume "\<not> (SUPSEQ (- (SUBSEQ A)) \<subseteq> - (SUBSEQ A))" |
|
222 |
then obtain x where |
|
223 |
a: "x \<in> SUPSEQ (- (SUBSEQ A))" and |
|
224 |
b: "x \<notin> - (SUBSEQ A)" by auto |
|
225 |
||
226 |
from a obtain y where c: "y \<in> - (SUBSEQ A)" and d: "y \<preceq> x" |
|
227 |
by (auto simp add: SUPSEQ_def) |
|
221 | 228 |
|
223 | 229 |
from b have "x \<in> SUBSEQ A" by simp |
230 |
then obtain x' where f: "x' \<in> A" and e: "x \<preceq> x'" |
|
231 |
by (auto simp add: SUBSEQ_def) |
|
232 |
||
233 |
from d e have "y \<preceq> x'" by (rule emb_trans) |
|
234 |
then have "y \<in> SUBSEQ A" using f |
|
235 |
by (auto simp add: SUBSEQ_def) |
|
236 |
with c show "False" by simp |
|
237 |
qed |
|
238 |
ultimately show "- (SUBSEQ A) = SUPSEQ (- (SUBSEQ A))" by simp |
|
239 |
qed |
|
240 |
||
368 | 241 |
(* |
223 | 242 |
lemma Higman_antichains: |
243 |
assumes a: "\<forall>x \<in> A. \<forall>y \<in> A. x \<noteq> y \<longrightarrow> \<not>(x \<preceq> y) \<and> \<not>(y \<preceq> x)" |
|
244 |
shows "finite A" |
|
245 |
proof (rule ccontr) |
|
246 |
assume "infinite A" |
|
247 |
then obtain f::"nat \<Rightarrow> letter list" where b: "inj f" and c: "range f \<subseteq> A" |
|
248 |
by (auto simp add: infinite_iff_countable_subset) |
|
249 |
from higman_idx obtain i j where d: "i < j" and e: "f i \<preceq> f j" by blast |
|
250 |
have "f i \<noteq> f j" using b d by (auto simp add: inj_on_def) |
|
251 |
moreover |
|
231 | 252 |
have "f i \<in> A" using c by auto |
223 | 253 |
moreover |
231 | 254 |
have "f j \<in> A" using c by auto |
223 | 255 |
ultimately have "\<not>(f i \<preceq> f j)" using a by simp |
256 |
with e show "False" by simp |
|
257 |
qed |
|
368 | 258 |
*) |
221 | 259 |
|
260 |
definition |
|
368 | 261 |
minimal :: "'a::finite list \<Rightarrow> 'a lang \<Rightarrow> bool" |
222
191769fc68c3
included Higman's lemma from the Isabelle repository
urbanc
parents:
221
diff
changeset
|
262 |
where |
233 | 263 |
"minimal x A \<equiv> (\<forall>y \<in> A. y \<preceq> x \<longrightarrow> x \<preceq> y)" |
220 | 264 |
|
221 | 265 |
lemma main_lemma: |
368 | 266 |
fixes A::"('a::finite) list set" |
233 | 267 |
shows "\<exists>M. finite M \<and> SUPSEQ A = SUPSEQ M" |
221 | 268 |
proof - |
223 | 269 |
def M \<equiv> "{x \<in> A. minimal x A}" |
221 | 270 |
have "finite M" |
223 | 271 |
unfolding M_def minimal_def |
272 |
by (rule Higman_antichains) (auto simp add: emb_antisym) |
|
221 | 273 |
moreover |
274 |
have "SUPSEQ A \<subseteq> SUPSEQ M" |
|
223 | 275 |
proof |
276 |
fix x |
|
277 |
assume "x \<in> SUPSEQ A" |
|
278 |
then obtain y where "y \<in> A" and "y \<preceq> x" by (auto simp add: SUPSEQ_def) |
|
279 |
then have a: "y \<in> {y' \<in> A. y' \<preceq> x}" by simp |
|
280 |
obtain z where b: "z \<in> A" "z \<preceq> x" and c: "\<forall>y. y \<preceq> z \<and> y \<noteq> z \<longrightarrow> y \<notin> {y' \<in> A. y' \<preceq> x}" |
|
281 |
using wfE_min[OF emb_wf a] by auto |
|
282 |
then have "z \<in> M" |
|
283 |
unfolding M_def minimal_def |
|
284 |
by (auto intro: emb_trans) |
|
233 | 285 |
with b(2) show "x \<in> SUPSEQ M" |
223 | 286 |
by (auto simp add: SUPSEQ_def) |
287 |
qed |
|
221 | 288 |
moreover |
289 |
have "SUPSEQ M \<subseteq> SUPSEQ A" |
|
290 |
by (auto simp add: SUPSEQ_def M_def) |
|
291 |
ultimately |
|
233 | 292 |
show "\<exists>M. finite M \<and> SUPSEQ A = SUPSEQ M" by blast |
221 | 293 |
qed |
294 |
||
295 |
lemma closure_SUPSEQ: |
|
368 | 296 |
fixes A::"'a::finite lang" |
221 | 297 |
shows "regular (SUPSEQ A)" |
298 |
proof - |
|
299 |
obtain M where a: "finite M" and b: "SUPSEQ A = SUPSEQ M" |
|
300 |
using main_lemma by blast |
|
301 |
have "regular M" using a by (rule finite_regular) |
|
302 |
then have "regular (SUPSEQ M)" by (rule regular_SUPSEQ) |
|
303 |
then show "regular (SUPSEQ A)" using b by simp |
|
304 |
qed |
|
305 |
||
306 |
lemma closure_SUBSEQ: |
|
368 | 307 |
fixes A::"'a::finite lang" |
221 | 308 |
shows "regular (SUBSEQ A)" |
309 |
proof - |
|
310 |
have "regular (SUPSEQ (- SUBSEQ A))" by (rule closure_SUPSEQ) |
|
223 | 311 |
then have "regular (- SUBSEQ A)" by (subst SUBSEQ_complement) (simp) |
221 | 312 |
then have "regular (- (- (SUBSEQ A)))" by (rule closure_complement) |
313 |
then show "regular (SUBSEQ A)" by simp |
|
314 |
qed |
|
315 |
||
220 | 316 |
end |