262
|
1 |
\documentclass[runningheads]{llncs}
|
|
2 |
\usepackage{isabelle}
|
|
3 |
\usepackage{isabellesym}
|
|
4 |
\usepackage{amsmath}
|
|
5 |
\usepackage{amssymb}
|
|
6 |
\usepackage{tikz}
|
|
7 |
\usepackage{pgf}
|
|
8 |
\usetikzlibrary{arrows,automata,decorations,fit,calc}
|
|
9 |
\usetikzlibrary{shapes,shapes.arrows,snakes,positioning}
|
|
10 |
\usepgflibrary{shapes.misc} % LATEX and plain TEX and pure pgf
|
|
11 |
\usetikzlibrary{matrix}
|
|
12 |
\usepackage{pdfsetup}
|
|
13 |
\usepackage{ot1patch}
|
|
14 |
\usepackage{times}
|
|
15 |
%%\usepackage{proof}
|
|
16 |
%%\usepackage{mathabx}
|
|
17 |
\usepackage{stmaryrd}
|
|
18 |
|
268
|
19 |
\titlerunning{Proving the Priority Inheritance Protocol Correct}
|
262
|
20 |
|
|
21 |
|
|
22 |
\urlstyle{rm}
|
|
23 |
\isabellestyle{it}
|
|
24 |
\renewcommand{\isastyleminor}{\it}%
|
|
25 |
\renewcommand{\isastyle}{\normalsize\it}%
|
|
26 |
|
|
27 |
|
|
28 |
\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,}
|
|
29 |
\renewcommand{\isasymequiv}{$\dn$}
|
|
30 |
\renewcommand{\isasymemptyset}{$\varnothing$}
|
|
31 |
\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}}
|
|
32 |
|
|
33 |
\newcommand{\isasymcalL}{\ensuremath{\cal{L}}}
|
|
34 |
\newcommand{\isasymbigplus}{\ensuremath{\bigplus}}
|
|
35 |
|
|
36 |
\newcommand{\bigplus}{\mbox{\Large\bf$+$}}
|
|
37 |
\begin{document}
|
|
38 |
|
|
39 |
\title{A Formalisation of the Myhill-Nerode Theorem\\ based on Regular
|
|
40 |
Expressions (Proof Pearl)}
|
|
41 |
\author{Chunhan Wu\inst{1} \and Xingyuan Zhang\inst{1} \and Christian Urban\inst{2}}
|
|
42 |
\institute{PLA University of Science and Technology, China \and TU Munich, Germany}
|
|
43 |
\maketitle
|
|
44 |
|
|
45 |
%\mbox{}\\[-10mm]
|
|
46 |
\begin{abstract}
|
|
47 |
There are numerous textbooks on regular languages. Nearly all of them
|
|
48 |
introduce the subject by describing finite automata and only mentioning on the
|
|
49 |
side a connection with regular expressions. Unfortunately, automata are difficult
|
|
50 |
to formalise in HOL-based theorem provers. The reason is that
|
|
51 |
they need to be represented as graphs, matrices or functions, none of which
|
|
52 |
are inductive datatypes. Also convenient operations for disjoint unions of
|
|
53 |
graphs and functions are not easily formalisiable in HOL. In contrast, regular
|
|
54 |
expressions can be defined conveniently as a datatype and a corresponding
|
|
55 |
reasoning infrastructure comes for free. We show in this paper that a central
|
|
56 |
result from formal language theory---the Myhill-Nerode theorem---can be
|
|
57 |
recreated using only regular expressions.
|
|
58 |
|
|
59 |
\end{abstract}
|
|
60 |
|
|
61 |
|
|
62 |
\input{session}
|
|
63 |
|
|
64 |
%%\mbox{}\\[-10mm]
|
|
65 |
\bibliographystyle{plain}
|
|
66 |
\bibliography{root}
|
|
67 |
|
|
68 |
\end{document}
|
|
69 |
|
|
70 |
%%% Local Variables:
|
|
71 |
%%% mode: latex
|
|
72 |
%%% TeX-master: t
|
|
73 |
%%% End:
|