209
|
1 |
(* Title: HOL/Proofs/Extraction/Higman.thy
|
|
2 |
Author: Stefan Berghofer, TU Muenchen
|
|
3 |
Author: Monika Seisenberger, LMU Muenchen
|
|
4 |
*)
|
|
5 |
|
|
6 |
header {* Higman's lemma *}
|
|
7 |
|
|
8 |
theory Higman2
|
|
9 |
imports Closures
|
|
10 |
begin
|
|
11 |
|
|
12 |
text {*
|
|
13 |
Formalization by Stefan Berghofer and Monika Seisenberger,
|
|
14 |
based on Coquand and Fridlender \cite{Coquand93}.
|
|
15 |
*}
|
|
16 |
|
|
17 |
datatype letter = A | B
|
|
18 |
|
|
19 |
inductive emb :: "letter list \<Rightarrow> letter list \<Rightarrow> bool"
|
|
20 |
where
|
|
21 |
emb0 [Pure.intro]: "emb [] bs"
|
|
22 |
| emb1 [Pure.intro]: "emb as bs \<Longrightarrow> emb as (b # bs)"
|
|
23 |
| emb2 [Pure.intro]: "emb as bs \<Longrightarrow> emb (a # as) (a # bs)"
|
|
24 |
|
|
25 |
inductive L :: "letter list \<Rightarrow> letter list list \<Rightarrow> bool"
|
|
26 |
for v :: "letter list"
|
|
27 |
where
|
|
28 |
L0 [Pure.intro]: "emb w v \<Longrightarrow> L v (w # ws)"
|
|
29 |
| L1 [Pure.intro]: "L v ws \<Longrightarrow> L v (w # ws)"
|
|
30 |
|
|
31 |
inductive good :: "letter list list \<Rightarrow> bool"
|
|
32 |
where
|
|
33 |
good0 [Pure.intro]: "L w ws \<Longrightarrow> good (w # ws)"
|
|
34 |
| good1 [Pure.intro]: "good ws \<Longrightarrow> good (w # ws)"
|
|
35 |
|
|
36 |
inductive R :: "letter \<Rightarrow> letter list list \<Rightarrow> letter list list \<Rightarrow> bool"
|
|
37 |
for a :: letter
|
|
38 |
where
|
|
39 |
R0 [Pure.intro]: "R a [] []"
|
|
40 |
| R1 [Pure.intro]: "R a vs ws \<Longrightarrow> R a (w # vs) ((a # w) # ws)"
|
|
41 |
|
|
42 |
inductive T :: "letter \<Rightarrow> letter list list \<Rightarrow> letter list list \<Rightarrow> bool"
|
|
43 |
for a :: letter
|
|
44 |
where
|
|
45 |
T0 [Pure.intro]: "a \<noteq> b \<Longrightarrow> R b ws zs \<Longrightarrow> T a (w # zs) ((a # w) # zs)"
|
|
46 |
| T1 [Pure.intro]: "T a ws zs \<Longrightarrow> T a (w # ws) ((a # w) # zs)"
|
|
47 |
| T2 [Pure.intro]: "a \<noteq> b \<Longrightarrow> T a ws zs \<Longrightarrow> T a ws ((b # w) # zs)"
|
|
48 |
|
|
49 |
inductive bar :: "letter list list \<Rightarrow> bool"
|
|
50 |
where
|
|
51 |
bar1 [Pure.intro]: "good ws \<Longrightarrow> bar ws"
|
|
52 |
| bar2 [Pure.intro]: "(\<And>w. bar (w # ws)) \<Longrightarrow> bar ws"
|
|
53 |
|
|
54 |
theorem prop1: "bar ([] # ws)" by iprover
|
|
55 |
|
|
56 |
theorem lemma1: "L as ws \<Longrightarrow> L (a # as) ws"
|
|
57 |
by (erule L.induct, iprover+)
|
|
58 |
|
|
59 |
lemma lemma2': "R a vs ws \<Longrightarrow> L as vs \<Longrightarrow> L (a # as) ws"
|
|
60 |
apply (induct set: R)
|
|
61 |
apply (erule L.cases)
|
|
62 |
apply simp+
|
|
63 |
apply (erule L.cases)
|
|
64 |
apply simp_all
|
|
65 |
apply (rule L0)
|
|
66 |
apply (erule emb2)
|
|
67 |
apply (erule L1)
|
|
68 |
done
|
|
69 |
|
|
70 |
lemma lemma2: "R a vs ws \<Longrightarrow> good vs \<Longrightarrow> good ws"
|
|
71 |
apply (induct set: R)
|
|
72 |
apply iprover
|
|
73 |
apply (erule good.cases)
|
|
74 |
apply simp_all
|
|
75 |
apply (rule good0)
|
|
76 |
apply (erule lemma2')
|
|
77 |
apply assumption
|
|
78 |
apply (erule good1)
|
|
79 |
done
|
|
80 |
|
|
81 |
lemma lemma3': "T a vs ws \<Longrightarrow> L as vs \<Longrightarrow> L (a # as) ws"
|
|
82 |
apply (induct set: T)
|
|
83 |
apply (erule L.cases)
|
|
84 |
apply simp_all
|
|
85 |
apply (rule L0)
|
|
86 |
apply (erule emb2)
|
|
87 |
apply (rule L1)
|
|
88 |
apply (erule lemma1)
|
|
89 |
apply (erule L.cases)
|
|
90 |
apply simp_all
|
|
91 |
apply iprover+
|
|
92 |
done
|
|
93 |
|
|
94 |
lemma lemma3: "T a ws zs \<Longrightarrow> good ws \<Longrightarrow> good zs"
|
|
95 |
apply (induct set: T)
|
|
96 |
apply (erule good.cases)
|
|
97 |
apply simp_all
|
|
98 |
apply (rule good0)
|
|
99 |
apply (erule lemma1)
|
|
100 |
apply (erule good1)
|
|
101 |
apply (erule good.cases)
|
|
102 |
apply simp_all
|
|
103 |
apply (rule good0)
|
|
104 |
apply (erule lemma3')
|
|
105 |
apply iprover+
|
|
106 |
done
|
|
107 |
|
|
108 |
lemma lemma4: "R a ws zs \<Longrightarrow> ws \<noteq> [] \<Longrightarrow> T a ws zs"
|
|
109 |
apply (induct set: R)
|
|
110 |
apply iprover
|
|
111 |
apply (case_tac vs)
|
|
112 |
apply (erule R.cases)
|
|
113 |
apply simp
|
|
114 |
apply (case_tac a)
|
|
115 |
apply (rule_tac b=B in T0)
|
|
116 |
apply simp
|
|
117 |
apply (rule R0)
|
|
118 |
apply (rule_tac b=A in T0)
|
|
119 |
apply simp
|
|
120 |
apply (rule R0)
|
|
121 |
apply simp
|
|
122 |
apply (rule T1)
|
|
123 |
apply simp
|
|
124 |
done
|
|
125 |
|
|
126 |
lemma letter_neq: "(a::letter) \<noteq> b \<Longrightarrow> c \<noteq> a \<Longrightarrow> c = b"
|
|
127 |
apply (case_tac a)
|
|
128 |
apply (case_tac b)
|
|
129 |
apply (case_tac c, simp, simp)
|
|
130 |
apply (case_tac c, simp, simp)
|
|
131 |
apply (case_tac b)
|
|
132 |
apply (case_tac c, simp, simp)
|
|
133 |
apply (case_tac c, simp, simp)
|
|
134 |
done
|
|
135 |
|
|
136 |
lemma letter_eq_dec: "(a::letter) = b \<or> a \<noteq> b"
|
|
137 |
apply (case_tac a)
|
|
138 |
apply (case_tac b)
|
|
139 |
apply simp
|
|
140 |
apply simp
|
|
141 |
apply (case_tac b)
|
|
142 |
apply simp
|
|
143 |
apply simp
|
|
144 |
done
|
|
145 |
|
|
146 |
theorem prop2:
|
|
147 |
assumes ab: "a \<noteq> b" and bar: "bar xs"
|
|
148 |
shows "\<And>ys zs. bar ys \<Longrightarrow> T a xs zs \<Longrightarrow> T b ys zs \<Longrightarrow> bar zs" using bar
|
|
149 |
proof induct
|
|
150 |
fix xs zs assume "T a xs zs" and "good xs"
|
|
151 |
hence "good zs" by (rule lemma3)
|
|
152 |
then show "bar zs" by (rule bar1)
|
|
153 |
next
|
|
154 |
fix xs ys
|
|
155 |
assume I: "\<And>w ys zs. bar ys \<Longrightarrow> T a (w # xs) zs \<Longrightarrow> T b ys zs \<Longrightarrow> bar zs"
|
|
156 |
assume "bar ys"
|
|
157 |
thus "\<And>zs. T a xs zs \<Longrightarrow> T b ys zs \<Longrightarrow> bar zs"
|
|
158 |
proof induct
|
|
159 |
fix ys zs assume "T b ys zs" and "good ys"
|
|
160 |
then have "good zs" by (rule lemma3)
|
|
161 |
then show "bar zs" by (rule bar1)
|
|
162 |
next
|
|
163 |
fix ys zs assume I': "\<And>w zs. T a xs zs \<Longrightarrow> T b (w # ys) zs \<Longrightarrow> bar zs"
|
|
164 |
and ys: "\<And>w. bar (w # ys)" and Ta: "T a xs zs" and Tb: "T b ys zs"
|
|
165 |
show "bar zs"
|
|
166 |
proof (rule bar2)
|
|
167 |
fix w
|
|
168 |
show "bar (w # zs)"
|
|
169 |
proof (cases w)
|
|
170 |
case Nil
|
|
171 |
thus ?thesis by simp (rule prop1)
|
|
172 |
next
|
|
173 |
case (Cons c cs)
|
|
174 |
from letter_eq_dec show ?thesis
|
|
175 |
proof
|
|
176 |
assume ca: "c = a"
|
|
177 |
from ab have "bar ((a # cs) # zs)" by (iprover intro: I ys Ta Tb)
|
|
178 |
thus ?thesis by (simp add: Cons ca)
|
|
179 |
next
|
|
180 |
assume "c \<noteq> a"
|
|
181 |
with ab have cb: "c = b" by (rule letter_neq)
|
|
182 |
from ab have "bar ((b # cs) # zs)" by (iprover intro: I' Ta Tb)
|
|
183 |
thus ?thesis by (simp add: Cons cb)
|
|
184 |
qed
|
|
185 |
qed
|
|
186 |
qed
|
|
187 |
qed
|
|
188 |
qed
|
|
189 |
|
|
190 |
theorem prop3:
|
|
191 |
assumes bar: "bar xs"
|
|
192 |
shows "\<And>zs. xs \<noteq> [] \<Longrightarrow> R a xs zs \<Longrightarrow> bar zs" using bar
|
|
193 |
proof induct
|
|
194 |
fix xs zs
|
|
195 |
assume "R a xs zs" and "good xs"
|
|
196 |
then have "good zs" by (rule lemma2)
|
|
197 |
then show "bar zs" by (rule bar1)
|
|
198 |
next
|
|
199 |
fix xs zs
|
|
200 |
assume I: "\<And>w zs. w # xs \<noteq> [] \<Longrightarrow> R a (w # xs) zs \<Longrightarrow> bar zs"
|
|
201 |
and xsb: "\<And>w. bar (w # xs)" and xsn: "xs \<noteq> []" and R: "R a xs zs"
|
|
202 |
show "bar zs"
|
|
203 |
proof (rule bar2)
|
|
204 |
fix w
|
|
205 |
show "bar (w # zs)"
|
|
206 |
proof (induct w)
|
|
207 |
case Nil
|
|
208 |
show ?case by (rule prop1)
|
|
209 |
next
|
|
210 |
case (Cons c cs)
|
|
211 |
from letter_eq_dec show ?case
|
|
212 |
proof
|
|
213 |
assume "c = a"
|
|
214 |
thus ?thesis by (iprover intro: I [simplified] R)
|
|
215 |
next
|
|
216 |
from R xsn have T: "T a xs zs" by (rule lemma4)
|
|
217 |
assume "c \<noteq> a"
|
|
218 |
thus ?thesis by (iprover intro: prop2 Cons xsb xsn R T)
|
|
219 |
qed
|
|
220 |
qed
|
|
221 |
qed
|
|
222 |
qed
|
|
223 |
|
|
224 |
theorem higman: "bar []"
|
|
225 |
proof (rule bar2)
|
|
226 |
fix w
|
|
227 |
show "bar [w]"
|
|
228 |
proof (induct w)
|
|
229 |
show "bar [[]]" by (rule prop1)
|
|
230 |
next
|
|
231 |
fix c cs assume "bar [cs]"
|
|
232 |
thus "bar [c # cs]" by (rule prop3) (simp, iprover)
|
|
233 |
qed
|
|
234 |
qed
|
|
235 |
|
|
236 |
inductive substring ("_ \<preceq> _")
|
|
237 |
where
|
|
238 |
"[] \<preceq> y"
|
|
239 |
| "x \<preceq> y \<Longrightarrow> c # x \<preceq> y"
|
|
240 |
| "x \<preceq> y \<Longrightarrow> c # x \<preceq> c # y"
|
|
241 |
|
|
242 |
lemma substring_refl:
|
|
243 |
"x \<preceq> x"
|
|
244 |
apply(induct x)
|
|
245 |
apply(auto intro: substring.intros)
|
|
246 |
done
|
|
247 |
|
|
248 |
definition
|
|
249 |
"SUBSEQ C \<equiv> {x. \<exists>y \<in> C. x \<preceq> y}"
|
|
250 |
|
|
251 |
lemma
|
|
252 |
"SUBSEQ (SUBSEQ C) = SUBSEQ C"
|
|
253 |
unfolding SUBSEQ_def
|
|
254 |
apply(auto)
|
|
255 |
apply(erule substring.induct)
|
|
256 |
apply(rule_tac x="xb" in bexI)
|
|
257 |
apply(rule substring.intros)
|
|
258 |
apply(simp)
|
|
259 |
apply(erule bexE)
|
|
260 |
apply(rule_tac x="ya" in bexI)
|
|
261 |
apply(rule substring.intros)
|
|
262 |
apply(auto)[2]
|
|
263 |
apply(erule bexE)
|
|
264 |
apply(rule_tac x="ya" in bexI)
|
|
265 |
apply(rule substring.intros)
|
|
266 |
apply(auto)[2]
|
|
267 |
apply(rule_tac x="x" in exI)
|
|
268 |
apply(rule conjI)
|
|
269 |
apply(rule_tac x="y" in bexI)
|
|
270 |
apply(auto)[2]
|
|
271 |
apply(rule substring_refl)
|
|
272 |
done
|
|
273 |
|
|
274 |
lemma
|
|
275 |
"x \<in> SUBSEQ C \<and> y \<preceq> x \<Longrightarrow> y \<in> SUBSEQ C"
|
|
276 |
unfolding SUBSEQ_def
|
|
277 |
apply(auto)
|
|
278 |
|
|
279 |
|
|
280 |
definition
|
|
281 |
"CLOSED C \<equiv> C = SUBSEQ C"
|
|
282 |
|
|
283 |
|
|
284 |
|
|
285 |
|
|
286 |
|
|
287 |
|
|
288 |
primrec
|
|
289 |
is_prefix :: "'a list \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> bool"
|
|
290 |
where
|
|
291 |
"is_prefix [] f = True"
|
|
292 |
| "is_prefix (x # xs) f = (x = f (length xs) \<and> is_prefix xs f)"
|
|
293 |
|
|
294 |
theorem L_idx:
|
|
295 |
assumes L: "L w ws"
|
|
296 |
shows "is_prefix ws f \<Longrightarrow> \<exists>i. emb (f i) w \<and> i < length ws" using L
|
|
297 |
proof induct
|
|
298 |
case (L0 v ws)
|
|
299 |
hence "emb (f (length ws)) w" by simp
|
|
300 |
moreover have "length ws < length (v # ws)" by simp
|
|
301 |
ultimately show ?case by iprover
|
|
302 |
next
|
|
303 |
case (L1 ws v)
|
|
304 |
then obtain i where emb: "emb (f i) w" and "i < length ws"
|
|
305 |
by simp iprover
|
|
306 |
hence "i < length (v # ws)" by simp
|
|
307 |
with emb show ?case by iprover
|
|
308 |
qed
|
|
309 |
|
|
310 |
theorem good_idx:
|
|
311 |
assumes good: "good ws"
|
|
312 |
shows "is_prefix ws f \<Longrightarrow> \<exists>i j. emb (f i) (f j) \<and> i < j" using good
|
|
313 |
proof induct
|
|
314 |
case (good0 w ws)
|
|
315 |
hence "w = f (length ws)" and "is_prefix ws f" by simp_all
|
|
316 |
with good0 show ?case by (iprover dest: L_idx)
|
|
317 |
next
|
|
318 |
case (good1 ws w)
|
|
319 |
thus ?case by simp
|
|
320 |
qed
|
|
321 |
|
|
322 |
theorem bar_idx:
|
|
323 |
assumes bar: "bar ws"
|
|
324 |
shows "is_prefix ws f \<Longrightarrow> \<exists>i j. emb (f i) (f j) \<and> i < j" using bar
|
|
325 |
proof induct
|
|
326 |
case (bar1 ws)
|
|
327 |
thus ?case by (rule good_idx)
|
|
328 |
next
|
|
329 |
case (bar2 ws)
|
|
330 |
hence "is_prefix (f (length ws) # ws) f" by simp
|
|
331 |
thus ?case by (rule bar2)
|
|
332 |
qed
|
|
333 |
|
|
334 |
text {*
|
|
335 |
Strong version: yields indices of words that can be embedded into each other.
|
|
336 |
*}
|
|
337 |
|
|
338 |
theorem higman_idx: "\<exists>(i::nat) j. emb (f i) (f j) \<and> i < j"
|
|
339 |
proof (rule bar_idx)
|
|
340 |
show "bar []" by (rule higman)
|
|
341 |
show "is_prefix [] f" by simp
|
|
342 |
qed
|
|
343 |
|
|
344 |
text {*
|
|
345 |
Weak version: only yield sequence containing words
|
|
346 |
that can be embedded into each other.
|
|
347 |
*}
|
|
348 |
|
|
349 |
theorem good_prefix_lemma:
|
|
350 |
assumes bar: "bar ws"
|
|
351 |
shows "is_prefix ws f \<Longrightarrow> \<exists>vs. is_prefix vs f \<and> good vs" using bar
|
|
352 |
proof induct
|
|
353 |
case bar1
|
|
354 |
thus ?case by iprover
|
|
355 |
next
|
|
356 |
case (bar2 ws)
|
|
357 |
from bar2.prems have "is_prefix (f (length ws) # ws) f" by simp
|
|
358 |
thus ?case by (iprover intro: bar2)
|
|
359 |
qed
|
|
360 |
|
|
361 |
theorem good_prefix: "\<exists>vs. is_prefix vs f \<and> good vs"
|
|
362 |
using higman
|
|
363 |
by (rule good_prefix_lemma) simp+
|
|
364 |
|
|
365 |
subsection {* Extracting the program *}
|
|
366 |
|
|
367 |
declare R.induct [ind_realizer]
|
|
368 |
declare T.induct [ind_realizer]
|
|
369 |
declare L.induct [ind_realizer]
|
|
370 |
declare good.induct [ind_realizer]
|
|
371 |
declare bar.induct [ind_realizer]
|
|
372 |
|
|
373 |
extract higman_idx
|
|
374 |
|
|
375 |
text {*
|
|
376 |
Program extracted from the proof of @{text higman_idx}:
|
|
377 |
@{thm [display] higman_idx_def [no_vars]}
|
|
378 |
Corresponding correctness theorem:
|
|
379 |
@{thm [display] higman_idx_correctness [no_vars]}
|
|
380 |
Program extracted from the proof of @{text higman}:
|
|
381 |
@{thm [display] higman_def [no_vars]}
|
|
382 |
Program extracted from the proof of @{text prop1}:
|
|
383 |
@{thm [display] prop1_def [no_vars]}
|
|
384 |
Program extracted from the proof of @{text prop2}:
|
|
385 |
@{thm [display] prop2_def [no_vars]}
|
|
386 |
Program extracted from the proof of @{text prop3}:
|
|
387 |
@{thm [display] prop3_def [no_vars]}
|
|
388 |
*}
|
|
389 |
|
|
390 |
|
|
391 |
subsection {* Some examples *}
|
|
392 |
|
|
393 |
instantiation LT and TT :: default
|
|
394 |
begin
|
|
395 |
|
|
396 |
definition "default = L0 [] []"
|
|
397 |
|
|
398 |
definition "default = T0 A [] [] [] R0"
|
|
399 |
|
|
400 |
instance ..
|
|
401 |
|
|
402 |
end
|
|
403 |
|
|
404 |
function mk_word_aux :: "nat \<Rightarrow> Random.seed \<Rightarrow> letter list \<times> Random.seed" where
|
|
405 |
"mk_word_aux k = exec {
|
|
406 |
i \<leftarrow> Random.range 10;
|
|
407 |
(if i > 7 \<and> k > 2 \<or> k > 1000 then Pair []
|
|
408 |
else exec {
|
|
409 |
let l = (if i mod 2 = 0 then A else B);
|
|
410 |
ls \<leftarrow> mk_word_aux (Suc k);
|
|
411 |
Pair (l # ls)
|
|
412 |
})}"
|
|
413 |
by pat_completeness auto
|
|
414 |
termination by (relation "measure ((op -) 1001)") auto
|
|
415 |
|
|
416 |
definition mk_word :: "Random.seed \<Rightarrow> letter list \<times> Random.seed" where
|
|
417 |
"mk_word = mk_word_aux 0"
|
|
418 |
|
|
419 |
primrec mk_word_s :: "nat \<Rightarrow> Random.seed \<Rightarrow> letter list \<times> Random.seed" where
|
|
420 |
"mk_word_s 0 = mk_word"
|
|
421 |
| "mk_word_s (Suc n) = exec {
|
|
422 |
_ \<leftarrow> mk_word;
|
|
423 |
mk_word_s n
|
|
424 |
}"
|
|
425 |
|
|
426 |
definition g1 :: "nat \<Rightarrow> letter list" where
|
|
427 |
"g1 s = fst (mk_word_s s (20000, 1))"
|
|
428 |
|
|
429 |
definition g2 :: "nat \<Rightarrow> letter list" where
|
|
430 |
"g2 s = fst (mk_word_s s (50000, 1))"
|
|
431 |
|
|
432 |
fun f1 :: "nat \<Rightarrow> letter list" where
|
|
433 |
"f1 0 = [A, A]"
|
|
434 |
| "f1 (Suc 0) = [B]"
|
|
435 |
| "f1 (Suc (Suc 0)) = [A, B]"
|
|
436 |
| "f1 _ = []"
|
|
437 |
|
|
438 |
fun f2 :: "nat \<Rightarrow> letter list" where
|
|
439 |
"f2 0 = [A, A]"
|
|
440 |
| "f2 (Suc 0) = [B]"
|
|
441 |
| "f2 (Suc (Suc 0)) = [B, A]"
|
|
442 |
| "f2 _ = []"
|
|
443 |
|
|
444 |
ML {*
|
|
445 |
local
|
|
446 |
val higman_idx = @{code higman_idx};
|
|
447 |
val g1 = @{code g1};
|
|
448 |
val g2 = @{code g2};
|
|
449 |
val f1 = @{code f1};
|
|
450 |
val f2 = @{code f2};
|
|
451 |
in
|
|
452 |
val (i1, j1) = higman_idx g1;
|
|
453 |
val (v1, w1) = (g1 i1, g1 j1);
|
|
454 |
val (i2, j2) = higman_idx g2;
|
|
455 |
val (v2, w2) = (g2 i2, g2 j2);
|
|
456 |
val (i3, j3) = higman_idx f1;
|
|
457 |
val (v3, w3) = (f1 i3, f1 j3);
|
|
458 |
val (i4, j4) = higman_idx f2;
|
|
459 |
val (v4, w4) = (f2 i4, f2 j4);
|
|
460 |
end;
|
|
461 |
*}
|
|
462 |
|
|
463 |
text {* The same story with the legacy SML code generator,
|
|
464 |
this can be removed once the code generator is removed. *}
|
|
465 |
|
|
466 |
code_module Higman
|
|
467 |
contains
|
|
468 |
higman = higman_idx
|
|
469 |
|
|
470 |
ML {*
|
|
471 |
local open Higman in
|
|
472 |
|
|
473 |
val a = 16807.0;
|
|
474 |
val m = 2147483647.0;
|
|
475 |
|
|
476 |
fun nextRand seed =
|
|
477 |
let val t = a*seed
|
|
478 |
in t - m * real (Real.floor(t/m)) end;
|
|
479 |
|
|
480 |
fun mk_word seed l =
|
|
481 |
let
|
|
482 |
val r = nextRand seed;
|
|
483 |
val i = Real.round (r / m * 10.0);
|
|
484 |
in if i > 7 andalso l > 2 then (r, []) else
|
|
485 |
apsnd (cons (if i mod 2 = 0 then A else B)) (mk_word r (l+1))
|
|
486 |
end;
|
|
487 |
|
|
488 |
fun f s zero = mk_word s 0
|
|
489 |
| f s (Suc n) = f (fst (mk_word s 0)) n;
|
|
490 |
|
|
491 |
val g1 = snd o (f 20000.0);
|
|
492 |
|
|
493 |
val g2 = snd o (f 50000.0);
|
|
494 |
|
|
495 |
fun f1 zero = [A,A]
|
|
496 |
| f1 (Suc zero) = [B]
|
|
497 |
| f1 (Suc (Suc zero)) = [A,B]
|
|
498 |
| f1 _ = [];
|
|
499 |
|
|
500 |
fun f2 zero = [A,A]
|
|
501 |
| f2 (Suc zero) = [B]
|
|
502 |
| f2 (Suc (Suc zero)) = [B,A]
|
|
503 |
| f2 _ = [];
|
|
504 |
|
|
505 |
val (i1, j1) = higman g1;
|
|
506 |
val (v1, w1) = (g1 i1, g1 j1);
|
|
507 |
val (i2, j2) = higman g2;
|
|
508 |
val (v2, w2) = (g2 i2, g2 j2);
|
|
509 |
val (i3, j3) = higman f1;
|
|
510 |
val (v3, w3) = (f1 i3, f1 j3);
|
|
511 |
val (i4, j4) = higman f2;
|
|
512 |
val (v4, w4) = (f2 i4, f2 j4);
|
|
513 |
|
|
514 |
end;
|
|
515 |
*}
|
|
516 |
|
|
517 |
end
|