368
|
1 |
(* Title: Infinite Sequences
|
|
2 |
Author: Christian Sternagel <c-sterna@jaist.ac.jp>
|
|
3 |
René Thiemann <rene.thiemann@uibk.ac.at>
|
|
4 |
Maintainer: Christian Sternagel and René Thiemann
|
|
5 |
License: LGPL
|
|
6 |
*)
|
|
7 |
|
|
8 |
(*
|
|
9 |
Copyright 2012 Christian Sternagel, René Thiemann
|
|
10 |
|
|
11 |
This file is part of IsaFoR/CeTA.
|
|
12 |
|
|
13 |
IsaFoR/CeTA is free software: you can redistribute it and/or modify it under the
|
|
14 |
terms of the GNU Lesser General Public License as published by the Free Software
|
|
15 |
Foundation, either version 3 of the License, or (at your option) any later
|
|
16 |
version.
|
|
17 |
|
|
18 |
IsaFoR/CeTA is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
19 |
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
|
|
20 |
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
|
|
21 |
|
|
22 |
You should have received a copy of the GNU Lesser General Public License along
|
|
23 |
with IsaFoR/CeTA. If not, see <http://www.gnu.org/licenses/>.
|
|
24 |
*)
|
|
25 |
header {* Infinite Sequences *}
|
|
26 |
theory Seq
|
|
27 |
imports
|
|
28 |
Main
|
|
29 |
"~~/src/HOL/Library/Infinite_Set"
|
|
30 |
begin
|
|
31 |
|
|
32 |
text {*Infinite sequences are represented by functions of type @{typ "nat \<Rightarrow> 'a"}.*}
|
|
33 |
type_synonym 'a seq = "nat \<Rightarrow> 'a"
|
|
34 |
|
|
35 |
subsection {*Operations on Infinite Sequences*}
|
|
36 |
|
|
37 |
text {*Adding a new element at the front.*}
|
|
38 |
abbreviation cons :: "'a \<Rightarrow> 'a seq \<Rightarrow> 'a seq" (infixr "#s" 65) where (*FIXME: find better infix symbol*)
|
|
39 |
"x #s S \<equiv> (\<lambda>i. case i of 0 \<Rightarrow> x | Suc n \<Rightarrow> S n)"
|
|
40 |
|
|
41 |
text {*An infinite sequence is \emph{linked} by a binary predicate @{term P} if every two
|
|
42 |
consecutive elements satisfy it. Such a sequence is called a \emph{@{term P}-chain}. *}
|
|
43 |
abbreviation (input) chainp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow>'a seq \<Rightarrow> bool" where
|
|
44 |
"chainp P S \<equiv> \<forall>i. P (S i) (S (Suc i))"
|
|
45 |
|
|
46 |
text {*Special version for relations.*}
|
|
47 |
abbreviation (input) chain :: "'a rel \<Rightarrow> 'a seq \<Rightarrow> bool" where
|
|
48 |
"chain r S \<equiv> chainp (\<lambda>x y. (x, y) \<in> r) S"
|
|
49 |
|
|
50 |
text {*Extending a chain at the front.*}
|
|
51 |
lemma cons_chainp:
|
|
52 |
assumes "P x (S 0)" and "chainp P S"
|
|
53 |
shows "chainp P (x #s S)" (is "chainp P ?S")
|
|
54 |
proof
|
|
55 |
fix i show "P (?S i) (?S (Suc i))" using assms by (cases i) simp_all
|
|
56 |
qed
|
|
57 |
|
|
58 |
text {*Special version for relations.*}
|
|
59 |
lemma cons_chain:
|
|
60 |
assumes "(x, S 0) \<in> r" and "chain r S" shows "chain r (x #s S)"
|
|
61 |
using cons_chainp[of "\<lambda>x y. (x, y) \<in> r", OF assms] .
|
|
62 |
|
|
63 |
text {*A chain admits arbitrary transitive steps.*}
|
|
64 |
lemma chainp_imp_relpowp:
|
|
65 |
assumes "chainp P S" shows "(P^^j) (S i) (S (i + j))"
|
|
66 |
proof (induct "i + j" arbitrary: j)
|
|
67 |
case (Suc n) thus ?case using assms by (cases j) auto
|
|
68 |
qed simp
|
|
69 |
|
|
70 |
lemma chain_imp_relpow:
|
|
71 |
assumes "chain r S" shows "(S i, S (i + j)) \<in> r^^j"
|
|
72 |
proof (induct "i + j" arbitrary: j)
|
|
73 |
case (Suc n) thus ?case using assms by (cases j) auto
|
|
74 |
qed simp
|
|
75 |
|
|
76 |
lemma chainp_imp_tranclp:
|
|
77 |
assumes "chainp P S" and "i < j" shows "P^++ (S i) (S j)"
|
|
78 |
proof -
|
|
79 |
from less_imp_Suc_add[OF assms(2)] obtain n where "j = i + Suc n" by auto
|
|
80 |
with chainp_imp_relpowp[of P S "Suc n" i, OF assms(1)]
|
|
81 |
show ?thesis
|
|
82 |
unfolding trancl_power[of "(S i, S j)", to_pred]
|
|
83 |
by force
|
|
84 |
qed
|
|
85 |
|
|
86 |
lemma chain_imp_trancl:
|
|
87 |
assumes "chain r S" and "i < j" shows "(S i, S j) \<in> r^+"
|
|
88 |
proof -
|
|
89 |
from less_imp_Suc_add[OF assms(2)] obtain n where "j = i + Suc n" by auto
|
|
90 |
with chain_imp_relpow[OF assms(1), of i "Suc n"]
|
|
91 |
show ?thesis unfolding trancl_power by force
|
|
92 |
qed
|
|
93 |
|
|
94 |
text {*A chain admits arbitrary reflexive and transitive steps.*}
|
|
95 |
lemma chainp_imp_rtranclp:
|
|
96 |
assumes "chainp P S" and "i \<le> j" shows "P^** (S i) (S j)"
|
|
97 |
proof -
|
|
98 |
from assms(2) obtain n where "j = i + n" by (induct "j - i" arbitrary: j) force+
|
|
99 |
with chainp_imp_relpowp[of P S, OF assms(1), of n i] show ?thesis
|
|
100 |
by (simp add: relpow_imp_rtrancl[of "(S i, S (i + n))", to_pred])
|
|
101 |
qed
|
|
102 |
|
|
103 |
lemma chain_imp_rtrancl:
|
|
104 |
assumes "chain r S" and "i \<le> j" shows "(S i, S j) \<in> r^*"
|
|
105 |
proof -
|
|
106 |
from assms(2) obtain n where "j = i + n" by (induct "j - i" arbitrary: j) force+
|
|
107 |
with chain_imp_relpow[OF assms(1), of i n] show ?thesis by (simp add: relpow_imp_rtrancl)
|
|
108 |
qed
|
|
109 |
|
|
110 |
text {*If for every @{term i} there is a later index @{term "f i"} such that the
|
|
111 |
corresponding elements satisfy the predicate @{term P}, then there is a @{term P}-chain.*}
|
|
112 |
lemma stepfun_imp_chainp:
|
|
113 |
assumes "\<forall>i\<ge>n::nat. f i > i \<and> P (S i) (S (f i))"
|
|
114 |
shows "chainp P (\<lambda>i. S ((f ^^ i) n))" (is "chainp P ?T")
|
|
115 |
proof
|
|
116 |
fix i
|
|
117 |
from assms have "(f ^^ i) n \<ge> n" by (induct i) auto
|
|
118 |
with assms[THEN spec[of _ "(f ^^ i) n"]]
|
|
119 |
show "P (?T i) (?T (Suc i))" by simp
|
|
120 |
qed
|
|
121 |
|
|
122 |
text {*If for every @{term i} there is a later index @{term j} such that the
|
|
123 |
corresponding elements satisfy the predicate @{term P}, then there is a @{term P}-chain.*}
|
|
124 |
lemma steps_imp_chainp:
|
|
125 |
assumes "\<forall>i\<ge>n::nat. \<exists>j>i. P (S i) (S j)" shows "\<exists>T. chainp P T"
|
|
126 |
proof -
|
|
127 |
from assms have "\<forall>i\<in>{i. i \<ge> n}. \<exists>j>i. P (S i) (S j)" by auto
|
|
128 |
from bchoice[OF this]
|
|
129 |
obtain f where seq: "\<forall>i\<ge>n. f i > i \<and> P (S i) (S (f i))" by auto
|
|
130 |
from stepfun_imp_chainp[of n f P S, OF this] show ?thesis by fast
|
|
131 |
qed
|
|
132 |
|
|
133 |
|
|
134 |
subsection {* Predicates on Natural Numbers *}
|
|
135 |
|
|
136 |
text {*If some property holds for infinitely many natural numbers, obtain
|
|
137 |
an index function that points to these numbers in increasing order.*}
|
|
138 |
|
|
139 |
locale infinitely_many =
|
|
140 |
fixes p :: "nat \<Rightarrow> bool"
|
|
141 |
assumes infinite: "INFM j. p j"
|
|
142 |
begin
|
|
143 |
|
|
144 |
lemma inf: "\<exists>j\<ge>i. p j" using infinite[unfolded INFM_nat_le] by auto
|
|
145 |
|
|
146 |
fun index :: "nat seq" where
|
|
147 |
"index 0 = (LEAST n. p n)"
|
|
148 |
| "index (Suc n) = (LEAST k. p k \<and> k > index n)"
|
|
149 |
|
|
150 |
lemma index_p: "p (index n)"
|
|
151 |
proof (induct n)
|
|
152 |
case 0
|
|
153 |
from inf obtain j where "p j" by auto
|
|
154 |
with LeastI[of p j] show ?case by auto
|
|
155 |
next
|
|
156 |
case (Suc n)
|
|
157 |
from inf obtain k where "k \<ge> Suc (index n) \<and> p k" by auto
|
|
158 |
with LeastI[of "\<lambda> k. p k \<and> k > index n" k] show ?case by auto
|
|
159 |
qed
|
|
160 |
|
|
161 |
lemma index_ordered: "index n < index (Suc n)"
|
|
162 |
proof -
|
|
163 |
from inf obtain k where "k \<ge> Suc (index n) \<and> p k" by auto
|
|
164 |
with LeastI[of "\<lambda> k. p k \<and> k > index n" k] show ?thesis by auto
|
|
165 |
qed
|
|
166 |
|
|
167 |
lemma index_not_p_between:
|
|
168 |
assumes i1: "index n < i"
|
|
169 |
and i2: "i < index (Suc n)"
|
|
170 |
shows "\<not> p i"
|
|
171 |
proof -
|
|
172 |
from not_less_Least[OF i2[simplified]] i1 show ?thesis by auto
|
|
173 |
qed
|
|
174 |
|
|
175 |
lemma index_ordered_le:
|
|
176 |
assumes "i \<le> j" shows "index i \<le> index j"
|
|
177 |
proof -
|
|
178 |
from assms have "j = i + (j - i)" by auto
|
|
179 |
then obtain k where j: "j = i + k" by auto
|
|
180 |
have "index i \<le> index (i + k)"
|
|
181 |
proof (induct k)
|
|
182 |
case (Suc k)
|
|
183 |
with index_ordered[of "i + k"]
|
|
184 |
show ?case by auto
|
|
185 |
qed simp
|
|
186 |
thus ?thesis unfolding j .
|
|
187 |
qed
|
|
188 |
|
|
189 |
lemma index_surj:
|
|
190 |
assumes "k \<ge> index l"
|
|
191 |
shows "\<exists>i j. k = index i + j \<and> index i + j < index (Suc i)"
|
|
192 |
proof -
|
|
193 |
from assms have "k = index l + (k - index l)" by auto
|
|
194 |
then obtain u where k: "k = index l + u" by auto
|
|
195 |
show ?thesis unfolding k
|
|
196 |
proof (induct u)
|
|
197 |
case 0
|
|
198 |
show ?case
|
|
199 |
by (intro exI conjI, rule refl, insert index_ordered[of l], simp)
|
|
200 |
next
|
|
201 |
case (Suc u)
|
|
202 |
then obtain i j
|
|
203 |
where lu: "index l + u = index i + j" and lt: "index i + j < index (Suc i)" by auto
|
|
204 |
hence "index l + u < index (Suc i)" by auto
|
|
205 |
show ?case
|
|
206 |
proof (cases "index l + (Suc u) = index (Suc i)")
|
|
207 |
case False
|
|
208 |
show ?thesis
|
|
209 |
by (rule exI[of _ i], rule exI[of _ "Suc j"], insert lu lt False, auto)
|
|
210 |
next
|
|
211 |
case True
|
|
212 |
show ?thesis
|
|
213 |
by (rule exI[of _ "Suc i"], rule exI[of _ 0], insert True index_ordered[of "Suc i"], auto)
|
|
214 |
qed
|
|
215 |
qed
|
|
216 |
qed
|
|
217 |
|
|
218 |
lemma index_ordered_less:
|
|
219 |
assumes "i < j" shows "index i < index j"
|
|
220 |
proof -
|
|
221 |
from assms have "Suc i \<le> j" by auto
|
|
222 |
from index_ordered_le[OF this]
|
|
223 |
have "index (Suc i) \<le> index j" .
|
|
224 |
with index_ordered[of i] show ?thesis by auto
|
|
225 |
qed
|
|
226 |
|
|
227 |
lemma index_not_p_start: assumes i: "i < index 0" shows "\<not> p i"
|
|
228 |
proof -
|
|
229 |
from i[simplified index.simps] have "i < Least p" .
|
|
230 |
from not_less_Least[OF this] show ?thesis .
|
|
231 |
qed
|
|
232 |
|
|
233 |
end
|
|
234 |
|
|
235 |
|
|
236 |
subsection {* Assembling Infinite Words from Finite Words *}
|
|
237 |
|
|
238 |
text {*Concatenate infinitely many non-empty words to an infinite word.*}
|
|
239 |
|
|
240 |
fun inf_concat_simple :: "(nat \<Rightarrow> nat) \<Rightarrow> nat \<Rightarrow> (nat \<times> nat)" where
|
|
241 |
"inf_concat_simple f 0 = (0, 0)"
|
|
242 |
| "inf_concat_simple f (Suc n) = (
|
|
243 |
let (i, j) = inf_concat_simple f n in
|
|
244 |
if Suc j < f i then (i, Suc j)
|
|
245 |
else (Suc i, 0))"
|
|
246 |
|
|
247 |
lemma inf_concat_simple_add:
|
|
248 |
assumes ck: "inf_concat_simple f k = (i, j)"
|
|
249 |
and jl: "j + l < f i"
|
|
250 |
shows "inf_concat_simple f (k + l) = (i,j + l)"
|
|
251 |
using jl
|
|
252 |
proof (induct l)
|
|
253 |
case 0
|
|
254 |
thus ?case using ck by simp
|
|
255 |
next
|
|
256 |
case (Suc l)
|
|
257 |
hence c: "inf_concat_simple f (k + l) = (i, j+ l)" by auto
|
|
258 |
show ?case
|
|
259 |
by (simp add: c, insert Suc(2), auto)
|
|
260 |
qed
|
|
261 |
|
|
262 |
lemma inf_concat_simple_surj_zero: "\<exists> k. inf_concat_simple f k = (i,0)"
|
|
263 |
proof (induct i)
|
|
264 |
case 0
|
|
265 |
show ?case
|
|
266 |
by (rule exI[of _ 0], simp)
|
|
267 |
next
|
|
268 |
case (Suc i)
|
|
269 |
then obtain k where ck: "inf_concat_simple f k = (i,0)" by auto
|
|
270 |
show ?case
|
|
271 |
proof (cases "f i")
|
|
272 |
case 0
|
|
273 |
show ?thesis
|
|
274 |
by (rule exI[of _ "Suc k"], simp add: ck 0)
|
|
275 |
next
|
|
276 |
case (Suc n)
|
|
277 |
hence "0 + n < f i" by auto
|
|
278 |
from inf_concat_simple_add[OF ck, OF this] Suc
|
|
279 |
show ?thesis
|
|
280 |
by (intro exI[of _ "k + Suc n"], auto)
|
|
281 |
qed
|
|
282 |
qed
|
|
283 |
|
|
284 |
lemma inf_concat_simple_surj:
|
|
285 |
assumes "j < f i"
|
|
286 |
shows "\<exists> k. inf_concat_simple f k = (i,j)"
|
|
287 |
proof -
|
|
288 |
from assms have j: "0 + j < f i" by auto
|
|
289 |
from inf_concat_simple_surj_zero obtain k where "inf_concat_simple f k = (i,0)" by auto
|
|
290 |
from inf_concat_simple_add[OF this, OF j] show ?thesis by auto
|
|
291 |
qed
|
|
292 |
|
|
293 |
lemma inf_concat_simple_mono:
|
|
294 |
assumes "k \<le> k'" shows "fst (inf_concat_simple f k) \<le> fst (inf_concat_simple f k')"
|
|
295 |
proof -
|
|
296 |
from assms have "k' = k + (k' - k)" by auto
|
|
297 |
then obtain l where k': "k' = k + l" by auto
|
|
298 |
show ?thesis unfolding k'
|
|
299 |
proof (induct l)
|
|
300 |
case (Suc l)
|
|
301 |
obtain i j where ckl: "inf_concat_simple f (k+l) = (i,j)" by (cases "inf_concat_simple f (k+l)", auto)
|
|
302 |
with Suc have "fst (inf_concat_simple f k) \<le> i" by auto
|
|
303 |
also have "... \<le> fst (inf_concat_simple f (k + Suc l))"
|
|
304 |
by (simp add: ckl)
|
|
305 |
finally show ?case .
|
|
306 |
qed simp
|
|
307 |
qed
|
|
308 |
|
|
309 |
|
|
310 |
(* inf_concat assembles infinitely many (possibly empty) words to an infinite word *)
|
|
311 |
fun inf_concat :: "(nat \<Rightarrow> nat) \<Rightarrow> nat \<Rightarrow> nat \<times> nat" where
|
|
312 |
"inf_concat n 0 = (LEAST j. n j > 0, 0)"
|
|
313 |
| "inf_concat n (Suc k) = (let (i, j) = inf_concat n k in (if Suc j < n i then (i, Suc j) else (LEAST i'. i' > i \<and> n i' > 0, 0)))"
|
|
314 |
|
|
315 |
lemma inf_concat_bounds:
|
|
316 |
assumes inf: "INFM i. n i > 0"
|
|
317 |
and res: "inf_concat n k = (i,j)"
|
|
318 |
shows "j < n i"
|
|
319 |
proof (cases k)
|
|
320 |
case 0
|
|
321 |
with res have i: "i = (LEAST i. n i > 0)" and j: "j = 0" by auto
|
|
322 |
from inf[unfolded INFM_nat_le] obtain i' where i': "0 < n i'" by auto
|
|
323 |
have "0 < n (LEAST i. n i > 0)"
|
|
324 |
by (rule LeastI, rule i')
|
|
325 |
with i j show ?thesis by auto
|
|
326 |
next
|
|
327 |
case (Suc k')
|
|
328 |
obtain i' j' where res': "inf_concat n k' = (i',j')" by force
|
|
329 |
note res = res[unfolded Suc inf_concat.simps res' Let_def split]
|
|
330 |
show ?thesis
|
|
331 |
proof (cases "Suc j' < n i'")
|
|
332 |
case True
|
|
333 |
with res show ?thesis by auto
|
|
334 |
next
|
|
335 |
case False
|
|
336 |
with res have i: "i = (LEAST f. i' < f \<and> 0 < n f)" and j: "j = 0" by auto
|
|
337 |
from inf[unfolded INFM_nat] obtain f where f: "i' < f \<and> 0 < n f" by auto
|
|
338 |
have "0 < n (LEAST f. i' < f \<and> 0 < n f)"
|
|
339 |
using LeastI[of "\<lambda> f. i' < f \<and> 0 < n f", OF f]
|
|
340 |
by auto
|
|
341 |
with i j show ?thesis by auto
|
|
342 |
qed
|
|
343 |
qed
|
|
344 |
|
|
345 |
lemma inf_concat_add:
|
|
346 |
assumes res: "inf_concat n k = (i,j)"
|
|
347 |
and j: "j + m < n i"
|
|
348 |
shows "inf_concat n (k + m) = (i,j+m)"
|
|
349 |
using j
|
|
350 |
proof (induct m)
|
|
351 |
case 0 show ?case using res by auto
|
|
352 |
next
|
|
353 |
case (Suc m)
|
|
354 |
hence "inf_concat n (k + m) = (i, j+m)" by auto
|
|
355 |
with Suc(2)
|
|
356 |
show ?case by auto
|
|
357 |
qed
|
|
358 |
|
|
359 |
lemma inf_concat_step:
|
|
360 |
assumes res: "inf_concat n k = (i,j)"
|
|
361 |
and j: "Suc (j + m) = n i"
|
|
362 |
shows "inf_concat n (k + Suc m) = (LEAST i'. i' > i \<and> 0 < n i', 0)"
|
|
363 |
proof -
|
|
364 |
from j have "j + m < n i" by auto
|
|
365 |
note res = inf_concat_add[OF res, OF this]
|
|
366 |
show ?thesis by (simp add: res j)
|
|
367 |
qed
|
|
368 |
|
|
369 |
lemma inf_concat_surj_zero:
|
|
370 |
assumes "0 < n i"
|
|
371 |
shows "\<exists>k. inf_concat n k = (i, 0)"
|
|
372 |
proof -
|
|
373 |
{
|
|
374 |
fix l
|
|
375 |
have "\<forall> j. j < l \<and> 0 < n j \<longrightarrow> (\<exists> k. inf_concat n k = (j,0))"
|
|
376 |
proof (induct l)
|
|
377 |
case 0
|
|
378 |
thus ?case by auto
|
|
379 |
next
|
|
380 |
case (Suc l)
|
|
381 |
show ?case
|
|
382 |
proof (intro allI impI, elim conjE)
|
|
383 |
fix j
|
|
384 |
assume j: "j < Suc l" and nj: "0 < n j"
|
|
385 |
show "\<exists> k. inf_concat n k = (j, 0)"
|
|
386 |
proof (cases "j < l")
|
|
387 |
case True
|
|
388 |
from Suc[THEN spec[of _ j]] True nj show ?thesis by auto
|
|
389 |
next
|
|
390 |
case False
|
|
391 |
with j have j: "j = l" by auto
|
|
392 |
show ?thesis
|
|
393 |
proof (cases "\<exists> j'. j' < l \<and> 0 < n j'")
|
|
394 |
case False
|
|
395 |
have l: "(LEAST i. 0 < n i) = l"
|
|
396 |
proof (rule Least_equality, rule nj[unfolded j])
|
|
397 |
fix l'
|
|
398 |
assume "0 < n l'"
|
|
399 |
with False have "\<not> l' < l" by auto
|
|
400 |
thus "l \<le> l'" by auto
|
|
401 |
qed
|
|
402 |
show ?thesis
|
|
403 |
by (rule exI[of _ 0], simp add: l j)
|
|
404 |
next
|
|
405 |
case True
|
|
406 |
then obtain lll where lll: "lll < l" and nlll: "0 < n lll" by auto
|
|
407 |
then obtain ll where l: "l = Suc ll" by (cases l, auto)
|
|
408 |
from lll l have lll: "lll = ll - (ll - lll)" by auto
|
|
409 |
let ?l' = "LEAST d. 0 < n (ll - d)"
|
|
410 |
have nl': "0 < n (ll - ?l')"
|
|
411 |
proof (rule LeastI)
|
|
412 |
show "0 < n (ll - (ll - lll))" using lll nlll by auto
|
|
413 |
qed
|
|
414 |
with Suc[THEN spec[of _ "ll - ?l'"]] obtain k where k:
|
|
415 |
"inf_concat n k = (ll - ?l',0)" unfolding l by auto
|
|
416 |
from nl' obtain off where off: "Suc (0 + off) = n (ll - ?l')" by (cases "n (ll - ?l')", auto)
|
|
417 |
from inf_concat_step[OF k, OF off]
|
|
418 |
have id: "inf_concat n (k + Suc off) = (LEAST i'. ll - ?l' < i' \<and> 0 < n i',0)" (is "_ = (?l,0)") .
|
|
419 |
have ll: "?l = l" unfolding l
|
|
420 |
proof (rule Least_equality)
|
|
421 |
show "ll - ?l' < Suc ll \<and> 0 < n (Suc ll)" using nj[unfolded j l] by simp
|
|
422 |
next
|
|
423 |
fix l'
|
|
424 |
assume ass: "ll - ?l' < l' \<and> 0 < n l'"
|
|
425 |
show "Suc ll \<le> l'"
|
|
426 |
proof (rule ccontr)
|
|
427 |
assume not: "\<not> ?thesis"
|
|
428 |
hence "l' \<le> ll" by auto
|
|
429 |
hence "ll = l' + (ll - l')" by auto
|
|
430 |
then obtain k where ll: "ll = l' + k" by auto
|
|
431 |
from ass have "l' + k - ?l' < l'" unfolding ll by auto
|
|
432 |
hence kl': "k < ?l'" by auto
|
|
433 |
have "0 < n (ll - k)" using ass unfolding ll by simp
|
|
434 |
from Least_le[of "\<lambda> k. 0 < n (ll - k)", OF this] kl'
|
|
435 |
show False by auto
|
|
436 |
qed
|
|
437 |
qed
|
|
438 |
show ?thesis unfolding j
|
|
439 |
by (rule exI[of _ "k + Suc off"], unfold id ll, simp)
|
|
440 |
qed
|
|
441 |
qed
|
|
442 |
qed
|
|
443 |
qed
|
|
444 |
}
|
|
445 |
with assms show ?thesis by auto
|
|
446 |
qed
|
|
447 |
|
|
448 |
lemma inf_concat_surj:
|
|
449 |
assumes j: "j < n i"
|
|
450 |
shows "\<exists>k. inf_concat n k = (i, j)"
|
|
451 |
proof -
|
|
452 |
from j have "0 < n i" by auto
|
|
453 |
from inf_concat_surj_zero[of n, OF this]
|
|
454 |
obtain k where "inf_concat n k = (i,0)" by auto
|
|
455 |
from inf_concat_add[OF this, of j] j
|
|
456 |
show ?thesis by auto
|
|
457 |
qed
|
|
458 |
|
|
459 |
lemma inf_concat_mono:
|
|
460 |
assumes inf: "INFM i. n i > 0"
|
|
461 |
and resk: "inf_concat n k = (i, j)"
|
|
462 |
and reskp: "inf_concat n k' = (i', j')"
|
|
463 |
and lt: "i < i'"
|
|
464 |
shows "k < k'"
|
|
465 |
proof -
|
|
466 |
note bounds = inf_concat_bounds[OF inf]
|
|
467 |
{
|
|
468 |
assume "k' \<le> k"
|
|
469 |
hence "k = k' + (k - k')" by auto
|
|
470 |
then obtain l where k: "k = k' + l" by auto
|
|
471 |
have "i' \<le> fst (inf_concat n (k' + l))"
|
|
472 |
proof (induct l)
|
|
473 |
case 0
|
|
474 |
with reskp show ?case by auto
|
|
475 |
next
|
|
476 |
case (Suc l)
|
|
477 |
obtain i'' j'' where l: "inf_concat n (k' + l) = (i'',j'')" by force
|
|
478 |
with Suc have one: "i' \<le> i''" by auto
|
|
479 |
from bounds[OF l] have j'': "j'' < n i''" by auto
|
|
480 |
show ?case
|
|
481 |
proof (cases "Suc j'' < n i''")
|
|
482 |
case True
|
|
483 |
show ?thesis by (simp add: l True one)
|
|
484 |
next
|
|
485 |
case False
|
|
486 |
let ?i = "LEAST i'. i'' < i' \<and> 0 < n i'"
|
|
487 |
from inf[unfolded INFM_nat] obtain k where "i'' < k \<and> 0 < n k" by auto
|
|
488 |
from LeastI[of "\<lambda> k. i'' < k \<and> 0 < n k", OF this]
|
|
489 |
have "i'' < ?i" by auto
|
|
490 |
with one show ?thesis by (simp add: l False)
|
|
491 |
qed
|
|
492 |
qed
|
|
493 |
with resk k lt have False by auto
|
|
494 |
}
|
|
495 |
thus ?thesis by arith
|
|
496 |
qed
|
|
497 |
|
|
498 |
lemma inf_concat_Suc:
|
|
499 |
assumes inf: "INFM i. n i > 0"
|
|
500 |
and f: "\<And> i. f i (n i) = f (Suc i) 0"
|
|
501 |
and resk: "inf_concat n k = (i, j)"
|
|
502 |
and ressk: "inf_concat n (Suc k) = (i', j')"
|
|
503 |
shows "f i' j' = f i (Suc j)"
|
|
504 |
proof -
|
|
505 |
note bounds = inf_concat_bounds[OF inf]
|
|
506 |
from bounds[OF resk] have j: "j < n i" .
|
|
507 |
show ?thesis
|
|
508 |
proof (cases "Suc j < n i")
|
|
509 |
case True
|
|
510 |
with ressk resk
|
|
511 |
show ?thesis by simp
|
|
512 |
next
|
|
513 |
case False
|
|
514 |
let ?p = "\<lambda> i'. i < i' \<and> 0 < n i'"
|
|
515 |
let ?i' = "LEAST i'. ?p i'"
|
|
516 |
from False j have id: "Suc (j + 0) = n i" by auto
|
|
517 |
from inf_concat_step[OF resk, OF id] ressk
|
|
518 |
have i': "i' = ?i'" and j': "j' = 0" by auto
|
|
519 |
from id have j: "Suc j = n i" by simp
|
|
520 |
from inf[unfolded INFM_nat] obtain k where "?p k" by auto
|
|
521 |
from LeastI[of ?p, OF this] have "?p ?i'" .
|
|
522 |
hence "?i' = Suc i + (?i' - Suc i)" by simp
|
|
523 |
then obtain d where ii': "?i' = Suc i + d" by auto
|
|
524 |
from not_less_Least[of _ ?p, unfolded ii'] have d': "\<And> d'. d' < d \<Longrightarrow> n (Suc i + d') = 0" by auto
|
|
525 |
have "f (Suc i) 0 = f ?i' 0" unfolding ii' using d'
|
|
526 |
proof (induct d)
|
|
527 |
case 0
|
|
528 |
show ?case by simp
|
|
529 |
next
|
|
530 |
case (Suc d)
|
|
531 |
hence "f (Suc i) 0 = f (Suc i + d) 0" by auto
|
|
532 |
also have "... = f (Suc (Suc i + d)) 0"
|
|
533 |
unfolding f[symmetric]
|
|
534 |
using Suc(2)[of d] by simp
|
|
535 |
finally show ?case by simp
|
|
536 |
qed
|
|
537 |
thus ?thesis unfolding i' j' j f by simp
|
|
538 |
qed
|
|
539 |
qed
|
|
540 |
|
|
541 |
end |