| author | urbanc |
| Wed, 09 Feb 2011 06:09:46 +0000 | |
| changeset 88 | 1436fc451bb9 |
| parent 83 | f438f4dbaada |
| child 90 | 97b783438316 |
| permissions | -rw-r--r-- |
| 24 | 1 |
\documentclass{llncs}
|
2 |
\usepackage{isabelle}
|
|
3 |
\usepackage{isabellesym}
|
|
4 |
\usepackage{amsmath}
|
|
5 |
\usepackage{amssymb}
|
|
6 |
\usepackage{tikz}
|
|
7 |
\usepackage{pgf}
|
|
8 |
\usepackage{pdfsetup}
|
|
9 |
\usepackage{ot1patch}
|
|
10 |
\usepackage{times}
|
|
11 |
\usepackage{proof}
|
|
|
52
4a517c6ac07d
tuning of the syntax; needs the stmaryrd latex package
urbanc
parents:
24
diff
changeset
|
12 |
\usepackage{stmaryrd}
|
| 88 | 13 |
\usepackage{mathabx}
|
14 |
||
| 24 | 15 |
|
16 |
\urlstyle{rm}
|
|
17 |
\isabellestyle{it}
|
|
18 |
\renewcommand{\isastyleminor}{\it}%
|
|
19 |
\renewcommand{\isastyle}{\normalsize\it}%
|
|
20 |
||
21 |
||
22 |
\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,}
|
|
23 |
\renewcommand{\isasymequiv}{$\dn$}
|
|
24 |
\renewcommand{\isasymemptyset}{$\varnothing$}
|
|
25 |
\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}}
|
|
26 |
||
| 83 | 27 |
\newcommand{\isasymcalL}{\ensuremath{\cal{L}}}
|
| 24 | 28 |
\begin{document}
|
29 |
||
| 54 | 30 |
\title{A Formalisation of the Myhill-Nerode Theorem\\ based on Regular
|
31 |
Expressions (Proof Pearl)} |
|
| 24 | 32 |
\author{Chunhan Wu\inst{1} \and Xingjuan Zhang\inst{1} \and Christian Urban\inst{2}}
|
33 |
\institute{PLA University, China \and TU Munich, Germany}
|
|
34 |
\maketitle |
|
35 |
||
36 |
\begin{abstract}
|
|
| 88 | 37 |
There are numerous textbooks on regular languages. Nearly all of them |
38 |
introduce the subject by describing finite automata and only mentioning on the |
|
39 |
side a connection with regular expressions. Unfortunately, automata are a |
|
40 |
hassle for formalisations in HOL-based theorem provers. The reason is that |
|
41 |
they need to be represented as graphs, matrices or functions, none of which |
|
42 |
are inductive datatypes. Also convenient operations for disjoint unions of |
|
43 |
graphs and functions are not easily formalisiable in HOL. In contrast, regular |
|
44 |
expressions can be defined conveniently as datatype and a corresponding |
|
45 |
reasoning infrastructure comes for free. We show in this paper that a central |
|
46 |
result from formal language theory---the Myhill-Nerode theorem---can be |
|
47 |
recreated using only regular expressions. |
|
48 |
||
| 24 | 49 |
\end{abstract}
|
50 |
||
| 75 | 51 |
|
| 24 | 52 |
\input{session}
|
53 |
||
54 |
\bibliographystyle{plain}
|
|
55 |
\bibliography{root}
|
|
56 |
||
57 |
\end{document}
|
|
58 |
||
59 |
%%% Local Variables: |
|
60 |
%%% mode: latex |
|
61 |
%%% TeX-master: t |
|
62 |
%%% End: |