84
|
1 |
theory Myhill_1
|
|
2 |
imports Main
|
|
3 |
begin
|
|
4 |
|
|
5 |
(*
|
|
6 |
text {*
|
|
7 |
\begin{figure}
|
|
8 |
\centering
|
|
9 |
\scalebox{0.95}{
|
|
10 |
\begin{tikzpicture}[->,>=latex,shorten >=1pt,auto,node distance=1.2cm, semithick]
|
|
11 |
\node[state,initial] (n1) {$1$};
|
|
12 |
\node[state,accepting] (n2) [right = 10em of n1] {$2$};
|
|
13 |
|
|
14 |
\path (n1) edge [bend left] node {$0$} (n2)
|
|
15 |
(n1) edge [loop above] node{$1$} (n1)
|
|
16 |
(n2) edge [loop above] node{$0$} (n2)
|
|
17 |
(n2) edge [bend left] node {$1$} (n1)
|
|
18 |
;
|
|
19 |
\end{tikzpicture}}
|
|
20 |
\caption{An example automaton (or partition)}\label{fig:example_automata}
|
|
21 |
\end{figure}
|
|
22 |
*}
|
|
23 |
|
|
24 |
*)
|
|
25 |
|
|
26 |
|
|
27 |
section {* Preliminary definitions *}
|
|
28 |
|
|
29 |
types lang = "string set"
|
|
30 |
|
|
31 |
text {* Sequential composition of two languages *}
|
|
32 |
|
|
33 |
definition
|
|
34 |
Seq :: "lang \<Rightarrow> lang \<Rightarrow> lang" (infixr ";;" 100)
|
|
35 |
where
|
|
36 |
"A ;; B = {s\<^isub>1 @ s\<^isub>2 | s\<^isub>1 s\<^isub>2. s\<^isub>1 \<in> A \<and> s\<^isub>2 \<in> B}"
|
|
37 |
|
|
38 |
|
|
39 |
text {* Some properties of operator @{text ";;"}. *}
|
|
40 |
|
|
41 |
lemma seq_add_left:
|
|
42 |
assumes a: "A = B"
|
|
43 |
shows "C ;; A = C ;; B"
|
|
44 |
using a by simp
|
|
45 |
|
|
46 |
lemma seq_union_distrib_right:
|
|
47 |
shows "(A \<union> B) ;; C = (A ;; C) \<union> (B ;; C)"
|
|
48 |
unfolding Seq_def by auto
|
|
49 |
|
|
50 |
lemma seq_union_distrib_left:
|
|
51 |
shows "C ;; (A \<union> B) = (C ;; A) \<union> (C ;; B)"
|
|
52 |
unfolding Seq_def by auto
|
|
53 |
|
|
54 |
lemma seq_intro:
|
|
55 |
assumes a: "x \<in> A" "y \<in> B"
|
|
56 |
shows "x @ y \<in> A ;; B "
|
|
57 |
using a by (auto simp: Seq_def)
|
|
58 |
|
|
59 |
lemma seq_assoc:
|
|
60 |
shows "(A ;; B) ;; C = A ;; (B ;; C)"
|
|
61 |
unfolding Seq_def
|
|
62 |
apply(auto)
|
|
63 |
apply(blast)
|
|
64 |
by (metis append_assoc)
|
|
65 |
|
|
66 |
lemma seq_empty [simp]:
|
|
67 |
shows "A ;; {[]} = A"
|
|
68 |
and "{[]} ;; A = A"
|
|
69 |
by (simp_all add: Seq_def)
|
|
70 |
|
|
71 |
|
|
72 |
text {* Power and Star of a language *}
|
|
73 |
|
|
74 |
fun
|
|
75 |
pow :: "lang \<Rightarrow> nat \<Rightarrow> lang" (infixl "\<up>" 100)
|
|
76 |
where
|
|
77 |
"A \<up> 0 = {[]}"
|
|
78 |
| "A \<up> (Suc n) = A ;; (A \<up> n)"
|
|
79 |
|
|
80 |
definition
|
|
81 |
Star :: "lang \<Rightarrow> lang" ("_\<star>" [101] 102)
|
|
82 |
where
|
|
83 |
"A\<star> \<equiv> (\<Union>n. A \<up> n)"
|
|
84 |
|
|
85 |
|
|
86 |
lemma star_start[intro]:
|
|
87 |
shows "[] \<in> A\<star>"
|
|
88 |
proof -
|
|
89 |
have "[] \<in> A \<up> 0" by auto
|
|
90 |
then show "[] \<in> A\<star>" unfolding Star_def by blast
|
|
91 |
qed
|
|
92 |
|
|
93 |
lemma star_step [intro]:
|
|
94 |
assumes a: "s1 \<in> A"
|
|
95 |
and b: "s2 \<in> A\<star>"
|
|
96 |
shows "s1 @ s2 \<in> A\<star>"
|
|
97 |
proof -
|
|
98 |
from b obtain n where "s2 \<in> A \<up> n" unfolding Star_def by auto
|
|
99 |
then have "s1 @ s2 \<in> A \<up> (Suc n)" using a by (auto simp add: Seq_def)
|
|
100 |
then show "s1 @ s2 \<in> A\<star>" unfolding Star_def by blast
|
|
101 |
qed
|
|
102 |
|
|
103 |
lemma star_induct[consumes 1, case_names start step]:
|
|
104 |
assumes a: "x \<in> A\<star>"
|
|
105 |
and b: "P []"
|
|
106 |
and c: "\<And>s1 s2. \<lbrakk>s1 \<in> A; s2 \<in> A\<star>; P s2\<rbrakk> \<Longrightarrow> P (s1 @ s2)"
|
|
107 |
shows "P x"
|
|
108 |
proof -
|
|
109 |
from a obtain n where "x \<in> A \<up> n" unfolding Star_def by auto
|
|
110 |
then show "P x"
|
|
111 |
by (induct n arbitrary: x)
|
|
112 |
(auto intro!: b c simp add: Seq_def Star_def)
|
|
113 |
qed
|
|
114 |
|
|
115 |
lemma star_intro1:
|
|
116 |
assumes a: "x \<in> A\<star>"
|
|
117 |
and b: "y \<in> A\<star>"
|
|
118 |
shows "x @ y \<in> A\<star>"
|
|
119 |
using a b
|
|
120 |
by (induct rule: star_induct) (auto)
|
|
121 |
|
|
122 |
lemma star_intro2:
|
|
123 |
assumes a: "y \<in> A"
|
|
124 |
shows "y \<in> A\<star>"
|
|
125 |
proof -
|
|
126 |
from a have "y @ [] \<in> A\<star>" by blast
|
|
127 |
then show "y \<in> A\<star>" by simp
|
|
128 |
qed
|
|
129 |
|
|
130 |
lemma star_intro3:
|
|
131 |
assumes a: "x \<in> A\<star>"
|
|
132 |
and b: "y \<in> A"
|
|
133 |
shows "x @ y \<in> A\<star>"
|
|
134 |
using a b by (blast intro: star_intro1 star_intro2)
|
|
135 |
|
|
136 |
lemma star_cases:
|
|
137 |
shows "A\<star> = {[]} \<union> A ;; A\<star>"
|
|
138 |
proof
|
|
139 |
{ fix x
|
|
140 |
have "x \<in> A\<star> \<Longrightarrow> x \<in> {[]} \<union> A ;; A\<star>"
|
|
141 |
unfolding Seq_def
|
|
142 |
by (induct rule: star_induct) (auto)
|
|
143 |
}
|
|
144 |
then show "A\<star> \<subseteq> {[]} \<union> A ;; A\<star>" by auto
|
|
145 |
next
|
|
146 |
show "{[]} \<union> A ;; A\<star> \<subseteq> A\<star>"
|
|
147 |
unfolding Seq_def by auto
|
|
148 |
qed
|
|
149 |
|
|
150 |
lemma star_decom:
|
|
151 |
assumes a: "x \<in> A\<star>" "x \<noteq> []"
|
|
152 |
shows "\<exists>a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> A \<and> b \<in> A\<star>"
|
|
153 |
using a
|
|
154 |
apply(induct rule: star_induct)
|
|
155 |
apply(simp)
|
|
156 |
apply(blast)
|
|
157 |
done
|
|
158 |
|
|
159 |
lemma
|
|
160 |
shows seq_Union_left: "B ;; (\<Union>n. A \<up> n) = (\<Union>n. B ;; (A \<up> n))"
|
|
161 |
and seq_Union_right: "(\<Union>n. A \<up> n) ;; B = (\<Union>n. (A \<up> n) ;; B)"
|
|
162 |
unfolding Seq_def by auto
|
|
163 |
|
|
164 |
lemma seq_pow_comm:
|
|
165 |
shows "A ;; (A \<up> n) = (A \<up> n) ;; A"
|
|
166 |
by (induct n) (simp_all add: seq_assoc[symmetric])
|
|
167 |
|
|
168 |
lemma seq_star_comm:
|
|
169 |
shows "A ;; A\<star> = A\<star> ;; A"
|
|
170 |
unfolding Star_def
|
|
171 |
unfolding seq_Union_left
|
|
172 |
unfolding seq_pow_comm
|
|
173 |
unfolding seq_Union_right
|
|
174 |
by simp
|
|
175 |
|
|
176 |
text {* Two lemmas about the length of strings in @{text "A \<up> n"} *}
|
|
177 |
|
|
178 |
lemma pow_length:
|
|
179 |
assumes a: "[] \<notin> A"
|
|
180 |
and b: "s \<in> A \<up> Suc n"
|
|
181 |
shows "n < length s"
|
|
182 |
using b
|
|
183 |
proof (induct n arbitrary: s)
|
|
184 |
case 0
|
|
185 |
have "s \<in> A \<up> Suc 0" by fact
|
|
186 |
with a have "s \<noteq> []" by auto
|
|
187 |
then show "0 < length s" by auto
|
|
188 |
next
|
|
189 |
case (Suc n)
|
|
190 |
have ih: "\<And>s. s \<in> A \<up> Suc n \<Longrightarrow> n < length s" by fact
|
|
191 |
have "s \<in> A \<up> Suc (Suc n)" by fact
|
|
192 |
then obtain s1 s2 where eq: "s = s1 @ s2" and *: "s1 \<in> A" and **: "s2 \<in> A \<up> Suc n"
|
|
193 |
by (auto simp add: Seq_def)
|
|
194 |
from ih ** have "n < length s2" by simp
|
|
195 |
moreover have "0 < length s1" using * a by auto
|
|
196 |
ultimately show "Suc n < length s" unfolding eq
|
|
197 |
by (simp only: length_append)
|
|
198 |
qed
|
|
199 |
|
|
200 |
lemma seq_pow_length:
|
|
201 |
assumes a: "[] \<notin> A"
|
|
202 |
and b: "s \<in> B ;; (A \<up> Suc n)"
|
|
203 |
shows "n < length s"
|
|
204 |
proof -
|
|
205 |
from b obtain s1 s2 where eq: "s = s1 @ s2" and *: "s2 \<in> A \<up> Suc n"
|
|
206 |
unfolding Seq_def by auto
|
|
207 |
from * have " n < length s2" by (rule pow_length[OF a])
|
|
208 |
then show "n < length s" using eq by simp
|
|
209 |
qed
|
|
210 |
|
|
211 |
|
|
212 |
section {* A slightly modified version of Arden's lemma *}
|
|
213 |
|
|
214 |
|
|
215 |
text {* A helper lemma for Arden *}
|
|
216 |
|
|
217 |
lemma ardens_helper:
|
|
218 |
assumes eq: "X = X ;; A \<union> B"
|
|
219 |
shows "X = X ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))"
|
|
220 |
proof (induct n)
|
|
221 |
case 0
|
|
222 |
show "X = X ;; (A \<up> Suc 0) \<union> (\<Union>(m::nat)\<in>{0..0}. B ;; (A \<up> m))"
|
|
223 |
using eq by simp
|
|
224 |
next
|
|
225 |
case (Suc n)
|
|
226 |
have ih: "X = X ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" by fact
|
|
227 |
also have "\<dots> = (X ;; A \<union> B) ;; (A \<up> Suc n) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))" using eq by simp
|
|
228 |
also have "\<dots> = X ;; (A \<up> Suc (Suc n)) \<union> (B ;; (A \<up> Suc n)) \<union> (\<Union>m\<in>{0..n}. B ;; (A \<up> m))"
|
|
229 |
by (simp add: seq_union_distrib_right seq_assoc)
|
|
230 |
also have "\<dots> = X ;; (A \<up> Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B ;; (A \<up> m))"
|
|
231 |
by (auto simp add: le_Suc_eq)
|
|
232 |
finally show "X = X ;; (A \<up> Suc (Suc n)) \<union> (\<Union>m\<in>{0..Suc n}. B ;; (A \<up> m))" .
|
|
233 |
qed
|
|
234 |
|
|
235 |
theorem ardens_revised:
|
|
236 |
assumes nemp: "[] \<notin> A"
|
|
237 |
shows "X = X ;; A \<union> B \<longleftrightarrow> X = B ;; A\<star>"
|
|
238 |
proof
|
|
239 |
assume eq: "X = B ;; A\<star>"
|
|
240 |
have "A\<star> = {[]} \<union> A\<star> ;; A"
|
|
241 |
unfolding seq_star_comm[symmetric]
|
|
242 |
by (rule star_cases)
|
|
243 |
then have "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)"
|
|
244 |
by (rule seq_add_left)
|
|
245 |
also have "\<dots> = B \<union> B ;; (A\<star> ;; A)"
|
|
246 |
unfolding seq_union_distrib_left by simp
|
|
247 |
also have "\<dots> = B \<union> (B ;; A\<star>) ;; A"
|
|
248 |
by (simp only: seq_assoc)
|
|
249 |
finally show "X = X ;; A \<union> B"
|
|
250 |
using eq by blast
|
|
251 |
next
|
|
252 |
assume eq: "X = X ;; A \<union> B"
|
|
253 |
{ fix n::nat
|
|
254 |
have "B ;; (A \<up> n) \<subseteq> X" using ardens_helper[OF eq, of "n"] by auto }
|
|
255 |
then have "B ;; A\<star> \<subseteq> X"
|
|
256 |
unfolding Seq_def Star_def UNION_def
|
|
257 |
by auto
|
|
258 |
moreover
|
|
259 |
{ fix s::string
|
|
260 |
obtain k where "k = length s" by auto
|
|
261 |
then have not_in: "s \<notin> X ;; (A \<up> Suc k)"
|
|
262 |
using seq_pow_length[OF nemp] by blast
|
|
263 |
assume "s \<in> X"
|
|
264 |
then have "s \<in> X ;; (A \<up> Suc k) \<union> (\<Union>m\<in>{0..k}. B ;; (A \<up> m))"
|
|
265 |
using ardens_helper[OF eq, of "k"] by auto
|
|
266 |
then have "s \<in> (\<Union>m\<in>{0..k}. B ;; (A \<up> m))" using not_in by auto
|
|
267 |
moreover
|
|
268 |
have "(\<Union>m\<in>{0..k}. B ;; (A \<up> m)) \<subseteq> (\<Union>n. B ;; (A \<up> n))" by auto
|
|
269 |
ultimately
|
|
270 |
have "s \<in> B ;; A\<star>"
|
|
271 |
unfolding seq_Union_left Star_def
|
|
272 |
by auto }
|
|
273 |
then have "X \<subseteq> B ;; A\<star>" by auto
|
|
274 |
ultimately
|
|
275 |
show "X = B ;; A\<star>" by simp
|
|
276 |
qed
|
|
277 |
|
|
278 |
|
|
279 |
section {* Regular Expressions *}
|
|
280 |
|
|
281 |
datatype rexp =
|
|
282 |
NULL
|
|
283 |
| EMPTY
|
|
284 |
| CHAR char
|
|
285 |
| SEQ rexp rexp
|
|
286 |
| ALT rexp rexp
|
|
287 |
| STAR rexp
|
|
288 |
|
|
289 |
|
|
290 |
text {*
|
|
291 |
The following @{text "L"} is an overloaded operator, where @{text "L(x)"} evaluates to
|
|
292 |
the language represented by the syntactic object @{text "x"}.
|
|
293 |
*}
|
|
294 |
|
|
295 |
consts L:: "'a \<Rightarrow> lang"
|
|
296 |
|
|
297 |
text {* The @{text "L (rexp)"} for regular expressions. *}
|
|
298 |
|
|
299 |
overloading L_rexp \<equiv> "L:: rexp \<Rightarrow> lang"
|
|
300 |
begin
|
|
301 |
fun
|
|
302 |
L_rexp :: "rexp \<Rightarrow> string set"
|
|
303 |
where
|
|
304 |
"L_rexp (NULL) = {}"
|
|
305 |
| "L_rexp (EMPTY) = {[]}"
|
|
306 |
| "L_rexp (CHAR c) = {[c]}"
|
|
307 |
| "L_rexp (SEQ r1 r2) = (L_rexp r1) ;; (L_rexp r2)"
|
|
308 |
| "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)"
|
|
309 |
| "L_rexp (STAR r) = (L_rexp r)\<star>"
|
|
310 |
end
|
|
311 |
|
|
312 |
|
|
313 |
section {* Folds for Sets *}
|
|
314 |
|
|
315 |
text {*
|
|
316 |
To obtain equational system out of finite set of equivalence classes, a fold operation
|
|
317 |
on finite sets @{text "folds"} is defined. The use of @{text "SOME"} makes @{text "folds"}
|
|
318 |
more robust than the @{text "fold"} in the Isabelle library. The expression @{text "folds f"}
|
|
319 |
makes sense when @{text "f"} is not @{text "associative"} and @{text "commutitive"},
|
|
320 |
while @{text "fold f"} does not.
|
|
321 |
*}
|
|
322 |
|
|
323 |
|
|
324 |
definition
|
|
325 |
folds :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"
|
|
326 |
where
|
|
327 |
"folds f z S \<equiv> SOME x. fold_graph f z S x"
|
|
328 |
|
|
329 |
abbreviation
|
|
330 |
Setalt ("\<Uplus>_" [1000] 999)
|
|
331 |
where
|
|
332 |
"\<Uplus>A == folds ALT NULL A"
|
|
333 |
|
|
334 |
text {*
|
|
335 |
The following lemma ensures that the arbitrary choice made by the
|
|
336 |
@{text "SOME"} in @{text "folds"} does not affect the @{text "L"}-value
|
|
337 |
of the resultant regular expression.
|
|
338 |
*}
|
|
339 |
|
|
340 |
lemma folds_alt_simp [simp]:
|
|
341 |
assumes a: "finite rs"
|
|
342 |
shows "L (\<Uplus>rs) = \<Union> (L ` rs)"
|
|
343 |
apply(rule set_eqI)
|
|
344 |
apply(simp add: folds_def)
|
|
345 |
apply(rule someI2_ex)
|
|
346 |
apply(rule_tac finite_imp_fold_graph[OF a])
|
|
347 |
apply(erule fold_graph.induct)
|
|
348 |
apply(auto)
|
|
349 |
done
|
|
350 |
|
|
351 |
|
|
352 |
text {* Just a technical lemma for collections and pairs *}
|
|
353 |
|
|
354 |
lemma Pair_Collect[simp]:
|
|
355 |
shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y"
|
|
356 |
by simp
|
|
357 |
|
|
358 |
text {*
|
|
359 |
@{text "\<approx>A"} is an equivalence class defined by language @{text "A"}.
|
|
360 |
*}
|
|
361 |
definition
|
|
362 |
str_eq_rel :: "lang \<Rightarrow> (string \<times> string) set" ("\<approx>_" [100] 100)
|
|
363 |
where
|
|
364 |
"\<approx>A \<equiv> {(x, y). (\<forall>z. x @ z \<in> A \<longleftrightarrow> y @ z \<in> A)}"
|
|
365 |
|
|
366 |
text {*
|
|
367 |
Among the equivalence clases of @{text "\<approx>A"}, the set @{text "finals A"} singles out
|
|
368 |
those which contains the strings from @{text "A"}.
|
|
369 |
*}
|
|
370 |
|
|
371 |
definition
|
|
372 |
finals :: "lang \<Rightarrow> lang set"
|
|
373 |
where
|
|
374 |
"finals A \<equiv> {\<approx>A `` {x} | x . x \<in> A}"
|
|
375 |
|
|
376 |
text {*
|
|
377 |
The following lemma establishes the relationshipt between
|
|
378 |
@{text "finals A"} and @{text "A"}.
|
|
379 |
*}
|
|
380 |
|
|
381 |
lemma lang_is_union_of_finals:
|
|
382 |
shows "A = \<Union> finals A"
|
|
383 |
unfolding finals_def
|
|
384 |
unfolding Image_def
|
|
385 |
unfolding str_eq_rel_def
|
|
386 |
apply(auto)
|
|
387 |
apply(drule_tac x = "[]" in spec)
|
|
388 |
apply(auto)
|
|
389 |
done
|
|
390 |
|
|
391 |
lemma finals_in_partitions:
|
|
392 |
shows "finals A \<subseteq> (UNIV // \<approx>A)"
|
|
393 |
unfolding finals_def
|
|
394 |
unfolding quotient_def
|
|
395 |
by auto
|
|
396 |
|
|
397 |
section {* Direction @{text "finite partition \<Rightarrow> regular language"}*}
|
|
398 |
|
|
399 |
text {*
|
|
400 |
The relationship between equivalent classes can be described by an
|
|
401 |
equational system. For example, in equational system \eqref{example_eqns},
|
|
402 |
$X_0, X_1$ are equivalent classes. The first equation says every string in
|
|
403 |
$X_0$ is obtained either by appending one $b$ to a string in $X_0$ or by
|
|
404 |
appending one $a$ to a string in $X_1$ or just be an empty string
|
|
405 |
(represented by the regular expression $\lambda$). Similary, the second
|
|
406 |
equation tells how the strings inside $X_1$ are composed.
|
|
407 |
|
|
408 |
\begin{equation}\label{example_eqns}
|
|
409 |
\begin{aligned}
|
|
410 |
X_0 & = X_0 b + X_1 a + \lambda \\
|
|
411 |
X_1 & = X_0 a + X_1 b
|
|
412 |
\end{aligned}
|
|
413 |
\end{equation}
|
|
414 |
|
|
415 |
\noindent
|
|
416 |
The summands on the right hand side is represented by the following data
|
|
417 |
type @{text "rhs_item"}, mnemonic for 'right hand side item'. Generally,
|
|
418 |
there are two kinds of right hand side items, one kind corresponds to pure
|
|
419 |
regular expressions, like the $\lambda$ in \eqref{example_eqns}, the other
|
|
420 |
kind corresponds to transitions from one one equivalent class to another,
|
|
421 |
like the $X_0 b, X_1 a$ etc.
|
|
422 |
|
|
423 |
*}
|
|
424 |
|
|
425 |
datatype rhs_item =
|
|
426 |
Lam "rexp" (* Lambda *)
|
|
427 |
| Trn "lang" "rexp" (* Transition *)
|
|
428 |
|
|
429 |
|
|
430 |
text {*
|
|
431 |
In this formalization, pure regular expressions like $\lambda$ is
|
|
432 |
repsented by @{text "Lam(EMPTY)"}, while transitions like $X_0 a$ is
|
|
433 |
represented by @{term "Trn X\<^isub>0 (CHAR a)"}.
|
|
434 |
*}
|
|
435 |
|
|
436 |
text {*
|
|
437 |
Every right-hand side item @{text "itm"} defines a language given
|
|
438 |
by @{text "L(itm)"}, defined as:
|
|
439 |
*}
|
|
440 |
|
|
441 |
overloading L_rhs_e \<equiv> "L:: rhs_item \<Rightarrow> lang"
|
|
442 |
begin
|
|
443 |
fun L_rhs_e:: "rhs_item \<Rightarrow> lang"
|
|
444 |
where
|
|
445 |
"L_rhs_e (Lam r) = L r"
|
|
446 |
| "L_rhs_e (Trn X r) = X ;; L r"
|
|
447 |
end
|
|
448 |
|
|
449 |
text {*
|
|
450 |
The right hand side of every equation is represented by a set of
|
|
451 |
items. The string set defined by such a set @{text "itms"} is given
|
|
452 |
by @{text "L(itms)"}, defined as:
|
|
453 |
*}
|
|
454 |
|
|
455 |
overloading L_rhs \<equiv> "L:: rhs_item set \<Rightarrow> lang"
|
|
456 |
begin
|
|
457 |
fun L_rhs:: "rhs_item set \<Rightarrow> lang"
|
|
458 |
where
|
|
459 |
"L_rhs rhs = \<Union> (L ` rhs)"
|
|
460 |
end
|
|
461 |
|
|
462 |
text {*
|
|
463 |
Given a set of equivalence classes @{text "CS"} and one equivalence class @{text "X"} among
|
|
464 |
@{text "CS"}, the term @{text "init_rhs CS X"} is used to extract the right hand side of
|
|
465 |
the equation describing the formation of @{text "X"}. The definition of @{text "init_rhs"}
|
|
466 |
is:
|
|
467 |
*}
|
|
468 |
|
|
469 |
definition
|
|
470 |
transition :: "lang \<Rightarrow> rexp \<Rightarrow> lang \<Rightarrow> bool" ("_ \<Turnstile>_\<Rightarrow>_" [100,100,100] 100)
|
|
471 |
where
|
|
472 |
"Y \<Turnstile>r\<Rightarrow> X \<equiv> Y ;; (L r) \<subseteq> X"
|
|
473 |
|
|
474 |
definition
|
|
475 |
"init_rhs CS X \<equiv>
|
|
476 |
if ([] \<in> X) then
|
|
477 |
{Lam EMPTY} \<union> {Trn Y (CHAR c) | Y c. Y \<in> CS \<and> Y \<Turnstile>(CHAR c)\<Rightarrow> X}
|
|
478 |
else
|
|
479 |
{Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y \<Turnstile>(CHAR c)\<Rightarrow> X}"
|
|
480 |
|
|
481 |
text {*
|
|
482 |
In the definition of @{text "init_rhs"}, the term
|
|
483 |
@{text "{Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"} appearing on both branches
|
|
484 |
describes the formation of strings in @{text "X"} out of transitions, while
|
|
485 |
the term @{text "{Lam(EMPTY)}"} describes the empty string which is intrinsically contained in
|
|
486 |
@{text "X"} rather than by transition. This @{text "{Lam(EMPTY)}"} corresponds to
|
|
487 |
the $\lambda$ in \eqref{example_eqns}.
|
|
488 |
|
|
489 |
With the help of @{text "init_rhs"}, the equitional system descrbing the formation of every
|
|
490 |
equivalent class inside @{text "CS"} is given by the following @{text "eqs(CS)"}.
|
|
491 |
*}
|
|
492 |
|
|
493 |
|
|
494 |
definition "eqs CS \<equiv> {(X, init_rhs CS X) | X. X \<in> CS}"
|
|
495 |
|
|
496 |
|
|
497 |
|
|
498 |
(************ arden's lemma variation ********************)
|
|
499 |
|
|
500 |
text {*
|
|
501 |
The following @{text "trns_of rhs X"} returns all @{text "X"}-items in @{text "rhs"}.
|
|
502 |
*}
|
|
503 |
|
|
504 |
definition
|
|
505 |
"trns_of rhs X \<equiv> {Trn X r | r. Trn X r \<in> rhs}"
|
|
506 |
|
|
507 |
text {*
|
|
508 |
The following @{text "attach_rexp rexp' itm"} attach
|
|
509 |
the regular expression @{text "rexp'"} to
|
|
510 |
the right of right hand side item @{text "itm"}.
|
|
511 |
*}
|
|
512 |
|
|
513 |
fun
|
|
514 |
attach_rexp :: "rexp \<Rightarrow> rhs_item \<Rightarrow> rhs_item"
|
|
515 |
where
|
|
516 |
"attach_rexp rexp' (Lam rexp) = Lam (SEQ rexp rexp')"
|
|
517 |
| "attach_rexp rexp' (Trn X rexp) = Trn X (SEQ rexp rexp')"
|
|
518 |
|
|
519 |
text {*
|
|
520 |
The following @{text "append_rhs_rexp rhs rexp"} attaches
|
|
521 |
@{text "rexp"} to every item in @{text "rhs"}.
|
|
522 |
*}
|
|
523 |
|
|
524 |
definition
|
|
525 |
"append_rhs_rexp rhs rexp \<equiv> (attach_rexp rexp) ` rhs"
|
|
526 |
|
|
527 |
text {*
|
|
528 |
With the help of the two functions immediately above, Ardens'
|
|
529 |
transformation on right hand side @{text "rhs"} is implemented
|
|
530 |
by the following function @{text "arden_variate X rhs"}.
|
|
531 |
After this transformation, the recursive occurence of @{text "X"}
|
|
532 |
in @{text "rhs"} will be eliminated, while the string set defined
|
|
533 |
by @{text "rhs"} is kept unchanged.
|
|
534 |
*}
|
|
535 |
|
|
536 |
definition
|
|
537 |
"arden_variate X rhs \<equiv>
|
|
538 |
append_rhs_rexp (rhs - trns_of rhs X) (STAR (\<Uplus> {r. Trn X r \<in> rhs}))"
|
|
539 |
|
|
540 |
|
|
541 |
(*********** substitution of ES *************)
|
|
542 |
|
|
543 |
text {*
|
|
544 |
Suppose the equation defining @{text "X"} is $X = xrhs$,
|
|
545 |
the purpose of @{text "rhs_subst"} is to substitute all occurences of @{text "X"} in
|
|
546 |
@{text "rhs"} by @{text "xrhs"}.
|
|
547 |
A litte thought may reveal that the final result
|
|
548 |
should be: first append $(a_1 | a_2 | \ldots | a_n)$ to every item of @{text "xrhs"} and then
|
|
549 |
union the result with all non-@{text "X"}-items of @{text "rhs"}.
|
|
550 |
*}
|
|
551 |
|
|
552 |
definition
|
|
553 |
"rhs_subst rhs X xrhs \<equiv>
|
|
554 |
(rhs - (trns_of rhs X)) \<union> (append_rhs_rexp xrhs (\<Uplus> {r. Trn X r \<in> rhs}))"
|
|
555 |
|
|
556 |
text {*
|
|
557 |
Suppose the equation defining @{text "X"} is $X = xrhs$, the follwing
|
|
558 |
@{text "eqs_subst ES X xrhs"} substitute @{text "xrhs"} into every equation
|
|
559 |
of the equational system @{text "ES"}.
|
|
560 |
*}
|
|
561 |
|
|
562 |
definition
|
|
563 |
"eqs_subst ES X xrhs \<equiv> {(Y, rhs_subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}"
|
|
564 |
|
|
565 |
text {*
|
|
566 |
The computation of regular expressions for equivalence classes is accomplished
|
|
567 |
using a iteration principle given by the following lemma.
|
|
568 |
*}
|
|
569 |
|
|
570 |
lemma wf_iter [rule_format]:
|
|
571 |
fixes f
|
|
572 |
assumes step: "\<And> e. \<lbrakk>P e; \<not> Q e\<rbrakk> \<Longrightarrow> (\<exists> e'. P e' \<and> (f(e'), f(e)) \<in> less_than)"
|
|
573 |
shows pe: "P e \<longrightarrow> (\<exists> e'. P e' \<and> Q e')"
|
|
574 |
proof(induct e rule: wf_induct
|
|
575 |
[OF wf_inv_image[OF wf_less_than, where f = "f"]], clarify)
|
|
576 |
fix x
|
|
577 |
assume h [rule_format]:
|
|
578 |
"\<forall>y. (y, x) \<in> inv_image less_than f \<longrightarrow> P y \<longrightarrow> (\<exists>e'. P e' \<and> Q e')"
|
|
579 |
and px: "P x"
|
|
580 |
show "\<exists>e'. P e' \<and> Q e'"
|
|
581 |
proof(cases "Q x")
|
|
582 |
assume "Q x" with px show ?thesis by blast
|
|
583 |
next
|
|
584 |
assume nq: "\<not> Q x"
|
|
585 |
from step [OF px nq]
|
|
586 |
obtain e' where pe': "P e'" and ltf: "(f e', f x) \<in> less_than" by auto
|
|
587 |
show ?thesis
|
|
588 |
proof(rule h)
|
|
589 |
from ltf show "(e', x) \<in> inv_image less_than f"
|
|
590 |
by (simp add:inv_image_def)
|
|
591 |
next
|
|
592 |
from pe' show "P e'" .
|
|
593 |
qed
|
|
594 |
qed
|
|
595 |
qed
|
|
596 |
|
|
597 |
text {*
|
|
598 |
The @{text "P"} in lemma @{text "wf_iter"} is an invariant kept throughout the iteration procedure.
|
|
599 |
The particular invariant used to solve our problem is defined by function @{text "Inv(ES)"},
|
|
600 |
an invariant over equal system @{text "ES"}.
|
|
601 |
Every definition starting next till @{text "Inv"} stipulates a property to be satisfied by @{text "ES"}.
|
|
602 |
*}
|
|
603 |
|
|
604 |
text {*
|
|
605 |
Every variable is defined at most onece in @{text "ES"}.
|
|
606 |
*}
|
|
607 |
|
|
608 |
definition
|
|
609 |
"distinct_equas ES \<equiv>
|
|
610 |
\<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'"
|
|
611 |
|
|
612 |
text {*
|
|
613 |
Every equation in @{text "ES"} (represented by @{text "(X, rhs)"}) is valid, i.e. @{text "(X = L rhs)"}.
|
|
614 |
*}
|
|
615 |
definition
|
|
616 |
"valid_eqns ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> (X = L rhs)"
|
|
617 |
|
|
618 |
text {*
|
|
619 |
The following @{text "rhs_nonempty rhs"} requires regular expressions occuring in transitional
|
|
620 |
items of @{text "rhs"} does not contain empty string. This is necessary for
|
|
621 |
the application of Arden's transformation to @{text "rhs"}.
|
|
622 |
*}
|
|
623 |
|
|
624 |
definition
|
|
625 |
"rhs_nonempty rhs \<equiv> (\<forall> Y r. Trn Y r \<in> rhs \<longrightarrow> [] \<notin> L r)"
|
|
626 |
|
|
627 |
text {*
|
|
628 |
The following @{text "ardenable ES"} requires that Arden's transformation is applicable
|
|
629 |
to every equation of equational system @{text "ES"}.
|
|
630 |
*}
|
|
631 |
|
|
632 |
definition
|
|
633 |
"ardenable ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> rhs_nonempty rhs"
|
|
634 |
|
|
635 |
(* The following non_empty seems useless. *)
|
|
636 |
definition
|
|
637 |
"non_empty ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> X \<noteq> {}"
|
|
638 |
|
|
639 |
text {*
|
|
640 |
The following @{text "finite_rhs ES"} requires every equation in @{text "rhs"} be finite.
|
|
641 |
*}
|
|
642 |
definition
|
|
643 |
"finite_rhs ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> finite rhs"
|
|
644 |
|
|
645 |
text {*
|
|
646 |
The following @{text "classes_of rhs"} returns all variables (or equivalent classes)
|
|
647 |
occuring in @{text "rhs"}.
|
|
648 |
*}
|
|
649 |
definition
|
|
650 |
"classes_of rhs \<equiv> {X. \<exists> r. Trn X r \<in> rhs}"
|
|
651 |
|
|
652 |
text {*
|
|
653 |
The following @{text "lefts_of ES"} returns all variables
|
|
654 |
defined by equational system @{text "ES"}.
|
|
655 |
*}
|
|
656 |
definition
|
|
657 |
"lefts_of ES \<equiv> {Y | Y yrhs. (Y, yrhs) \<in> ES}"
|
|
658 |
|
|
659 |
text {*
|
|
660 |
The following @{text "self_contained ES"} requires that every
|
|
661 |
variable occuring on the right hand side of equations is already defined by some
|
|
662 |
equation in @{text "ES"}.
|
|
663 |
*}
|
|
664 |
definition
|
|
665 |
"self_contained ES \<equiv> \<forall> (X, xrhs) \<in> ES. classes_of xrhs \<subseteq> lefts_of ES"
|
|
666 |
|
|
667 |
|
|
668 |
text {*
|
|
669 |
The invariant @{text "Inv(ES)"} is a conjunction of all the previously defined constaints.
|
|
670 |
*}
|
|
671 |
definition
|
|
672 |
"Inv ES \<equiv> valid_eqns ES \<and> finite ES \<and> distinct_equas ES \<and> ardenable ES \<and>
|
|
673 |
non_empty ES \<and> finite_rhs ES \<and> self_contained ES"
|
|
674 |
|
|
675 |
subsection {* The proof of this direction *}
|
|
676 |
|
|
677 |
subsubsection {* Basic properties *}
|
|
678 |
|
|
679 |
text {*
|
|
680 |
The following are some basic properties of the above definitions.
|
|
681 |
*}
|
|
682 |
|
|
683 |
lemma L_rhs_union_distrib:
|
|
684 |
fixes A B::"rhs_item set"
|
|
685 |
shows "L A \<union> L B = L (A \<union> B)"
|
|
686 |
by simp
|
|
687 |
|
|
688 |
lemma finite_Trn:
|
|
689 |
assumes fin: "finite rhs"
|
|
690 |
shows "finite {r. Trn Y r \<in> rhs}"
|
|
691 |
proof -
|
|
692 |
have "finite {Trn Y r | Y r. Trn Y r \<in> rhs}"
|
|
693 |
by (rule rev_finite_subset[OF fin]) (auto)
|
|
694 |
then have "finite ((\<lambda>(Y, r). Trn Y r) ` {(Y, r) | Y r. Trn Y r \<in> rhs})"
|
|
695 |
by (simp add: image_Collect)
|
|
696 |
then have "finite {(Y, r) | Y r. Trn Y r \<in> rhs}"
|
|
697 |
by (erule_tac finite_imageD) (simp add: inj_on_def)
|
|
698 |
then show "finite {r. Trn Y r \<in> rhs}"
|
|
699 |
by (erule_tac f="snd" in finite_surj) (auto simp add: image_def)
|
|
700 |
qed
|
|
701 |
|
|
702 |
lemma finite_Lam:
|
|
703 |
assumes fin:"finite rhs"
|
|
704 |
shows "finite {r. Lam r \<in> rhs}"
|
|
705 |
proof -
|
|
706 |
have "finite {Lam r | r. Lam r \<in> rhs}"
|
|
707 |
by (rule rev_finite_subset[OF fin]) (auto)
|
|
708 |
then show "finite {r. Lam r \<in> rhs}"
|
|
709 |
apply(simp add: image_Collect[symmetric])
|
|
710 |
apply(erule finite_imageD)
|
|
711 |
apply(auto simp add: inj_on_def)
|
|
712 |
done
|
|
713 |
qed
|
|
714 |
|
|
715 |
lemma rexp_of_empty:
|
|
716 |
assumes finite:"finite rhs"
|
|
717 |
and nonempty:"rhs_nonempty rhs"
|
|
718 |
shows "[] \<notin> L (\<Uplus> {r. Trn X r \<in> rhs})"
|
|
719 |
using finite nonempty rhs_nonempty_def
|
|
720 |
using finite_Trn[OF finite]
|
|
721 |
by (auto)
|
|
722 |
|
|
723 |
lemma [intro!]:
|
|
724 |
"P (Trn X r) \<Longrightarrow> (\<exists>a. (\<exists>r. a = Trn X r \<and> P a))" by auto
|
|
725 |
|
|
726 |
lemma lang_of_rexp_of:
|
|
727 |
assumes finite:"finite rhs"
|
|
728 |
shows "L ({Trn X r| r. Trn X r \<in> rhs}) = X ;; (L (\<Uplus>{r. Trn X r \<in> rhs}))"
|
|
729 |
proof -
|
|
730 |
have "finite {r. Trn X r \<in> rhs}"
|
|
731 |
by (rule finite_Trn[OF finite])
|
|
732 |
then show ?thesis
|
|
733 |
apply(auto simp add: Seq_def)
|
|
734 |
apply(rule_tac x = "s\<^isub>1" in exI, rule_tac x = "s\<^isub>2" in exI, auto)
|
|
735 |
apply(rule_tac x= "Trn X xa" in exI)
|
|
736 |
apply(auto simp: Seq_def)
|
|
737 |
done
|
|
738 |
qed
|
|
739 |
|
|
740 |
lemma rexp_of_lam_eq_lam_set:
|
|
741 |
assumes fin: "finite rhs"
|
|
742 |
shows "L (\<Uplus>{r. Lam r \<in> rhs}) = L ({Lam r | r. Lam r \<in> rhs})"
|
|
743 |
proof -
|
|
744 |
have "finite ({r. Lam r \<in> rhs})" using fin by (rule finite_Lam)
|
|
745 |
then show ?thesis by auto
|
|
746 |
qed
|
|
747 |
|
|
748 |
lemma [simp]:
|
|
749 |
"L (attach_rexp r xb) = L xb ;; L r"
|
|
750 |
apply (cases xb, auto simp: Seq_def)
|
|
751 |
apply(rule_tac x = "s\<^isub>1 @ s\<^isub>1'" in exI, rule_tac x = "s\<^isub>2'" in exI)
|
|
752 |
apply(auto simp: Seq_def)
|
|
753 |
done
|
|
754 |
|
|
755 |
lemma lang_of_append_rhs:
|
|
756 |
"L (append_rhs_rexp rhs r) = L rhs ;; L r"
|
|
757 |
apply (auto simp:append_rhs_rexp_def image_def)
|
|
758 |
apply (auto simp:Seq_def)
|
|
759 |
apply (rule_tac x = "L xb ;; L r" in exI, auto simp add:Seq_def)
|
|
760 |
by (rule_tac x = "attach_rexp r xb" in exI, auto simp:Seq_def)
|
|
761 |
|
|
762 |
lemma classes_of_union_distrib:
|
|
763 |
"classes_of A \<union> classes_of B = classes_of (A \<union> B)"
|
|
764 |
by (auto simp add:classes_of_def)
|
|
765 |
|
|
766 |
lemma lefts_of_union_distrib:
|
|
767 |
"lefts_of A \<union> lefts_of B = lefts_of (A \<union> B)"
|
|
768 |
by (auto simp:lefts_of_def)
|
|
769 |
|
|
770 |
|
|
771 |
subsubsection {* Intialization *}
|
|
772 |
|
|
773 |
text {*
|
|
774 |
The following several lemmas until @{text "init_ES_satisfy_Inv"} shows that
|
|
775 |
the initial equational system satisfies invariant @{text "Inv"}.
|
|
776 |
*}
|
|
777 |
|
|
778 |
lemma defined_by_str:
|
|
779 |
"\<lbrakk>s \<in> X; X \<in> UNIV // (\<approx>Lang)\<rbrakk> \<Longrightarrow> X = (\<approx>Lang) `` {s}"
|
|
780 |
by (auto simp:quotient_def Image_def str_eq_rel_def)
|
|
781 |
|
|
782 |
lemma every_eqclass_has_transition:
|
|
783 |
assumes has_str: "s @ [c] \<in> X"
|
|
784 |
and in_CS: "X \<in> UNIV // (\<approx>Lang)"
|
|
785 |
obtains Y where "Y \<in> UNIV // (\<approx>Lang)" and "Y ;; {[c]} \<subseteq> X" and "s \<in> Y"
|
|
786 |
proof -
|
|
787 |
def Y \<equiv> "(\<approx>Lang) `` {s}"
|
|
788 |
have "Y \<in> UNIV // (\<approx>Lang)"
|
|
789 |
unfolding Y_def quotient_def by auto
|
|
790 |
moreover
|
|
791 |
have "X = (\<approx>Lang) `` {s @ [c]}"
|
|
792 |
using has_str in_CS defined_by_str by blast
|
|
793 |
then have "Y ;; {[c]} \<subseteq> X"
|
|
794 |
unfolding Y_def Image_def Seq_def
|
|
795 |
unfolding str_eq_rel_def
|
|
796 |
by clarsimp
|
|
797 |
moreover
|
|
798 |
have "s \<in> Y" unfolding Y_def
|
|
799 |
unfolding Image_def str_eq_rel_def by simp
|
|
800 |
ultimately show thesis by (blast intro: that)
|
|
801 |
qed
|
|
802 |
|
|
803 |
lemma l_eq_r_in_eqs:
|
|
804 |
assumes X_in_eqs: "(X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))"
|
|
805 |
shows "X = L xrhs"
|
|
806 |
proof
|
|
807 |
show "X \<subseteq> L xrhs"
|
|
808 |
proof
|
|
809 |
fix x
|
|
810 |
assume "(1)": "x \<in> X"
|
|
811 |
show "x \<in> L xrhs"
|
|
812 |
proof (cases "x = []")
|
|
813 |
assume empty: "x = []"
|
|
814 |
thus ?thesis using X_in_eqs "(1)"
|
|
815 |
by (auto simp:eqs_def init_rhs_def)
|
|
816 |
next
|
|
817 |
assume not_empty: "x \<noteq> []"
|
|
818 |
then obtain clist c where decom: "x = clist @ [c]"
|
|
819 |
by (case_tac x rule:rev_cases, auto)
|
|
820 |
have "X \<in> UNIV // (\<approx>Lang)" using X_in_eqs by (auto simp:eqs_def)
|
|
821 |
then obtain Y
|
|
822 |
where "Y \<in> UNIV // (\<approx>Lang)"
|
|
823 |
and "Y ;; {[c]} \<subseteq> X"
|
|
824 |
and "clist \<in> Y"
|
|
825 |
using decom "(1)" every_eqclass_has_transition by blast
|
|
826 |
hence
|
|
827 |
"x \<in> L {Trn Y (CHAR c)| Y c. Y \<in> UNIV // (\<approx>Lang) \<and> Y \<Turnstile>(CHAR c)\<Rightarrow> X}"
|
|
828 |
unfolding transition_def
|
|
829 |
using "(1)" decom
|
|
830 |
by (simp, rule_tac x = "Trn Y (CHAR c)" in exI, simp add:Seq_def)
|
|
831 |
thus ?thesis using X_in_eqs "(1)"
|
|
832 |
by (simp add: eqs_def init_rhs_def)
|
|
833 |
qed
|
|
834 |
qed
|
|
835 |
next
|
|
836 |
show "L xrhs \<subseteq> X" using X_in_eqs
|
|
837 |
by (auto simp:eqs_def init_rhs_def transition_def)
|
|
838 |
qed
|
|
839 |
|
|
840 |
lemma finite_init_rhs:
|
|
841 |
assumes finite: "finite CS"
|
|
842 |
shows "finite (init_rhs CS X)"
|
|
843 |
proof-
|
|
844 |
have "finite {Trn Y (CHAR c) |Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" (is "finite ?A")
|
|
845 |
proof -
|
|
846 |
def S \<equiv> "{(Y, c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"
|
|
847 |
def h \<equiv> "\<lambda> (Y, c). Trn Y (CHAR c)"
|
|
848 |
have "finite (CS \<times> (UNIV::char set))" using finite by auto
|
|
849 |
hence "finite S" using S_def
|
|
850 |
by (rule_tac B = "CS \<times> UNIV" in finite_subset, auto)
|
|
851 |
moreover have "?A = h ` S" by (auto simp: S_def h_def image_def)
|
|
852 |
ultimately show ?thesis
|
|
853 |
by auto
|
|
854 |
qed
|
|
855 |
thus ?thesis by (simp add:init_rhs_def transition_def)
|
|
856 |
qed
|
|
857 |
|
|
858 |
lemma init_ES_satisfy_Inv:
|
|
859 |
assumes finite_CS: "finite (UNIV // (\<approx>Lang))"
|
|
860 |
shows "Inv (eqs (UNIV // (\<approx>Lang)))"
|
|
861 |
proof -
|
|
862 |
have "finite (eqs (UNIV // (\<approx>Lang)))" using finite_CS
|
|
863 |
by (simp add:eqs_def)
|
|
864 |
moreover have "distinct_equas (eqs (UNIV // (\<approx>Lang)))"
|
|
865 |
by (simp add:distinct_equas_def eqs_def)
|
|
866 |
moreover have "ardenable (eqs (UNIV // (\<approx>Lang)))"
|
|
867 |
by (auto simp add:ardenable_def eqs_def init_rhs_def rhs_nonempty_def del:L_rhs.simps)
|
|
868 |
moreover have "valid_eqns (eqs (UNIV // (\<approx>Lang)))"
|
|
869 |
using l_eq_r_in_eqs by (simp add:valid_eqns_def)
|
|
870 |
moreover have "non_empty (eqs (UNIV // (\<approx>Lang)))"
|
|
871 |
by (auto simp:non_empty_def eqs_def quotient_def Image_def str_eq_rel_def)
|
|
872 |
moreover have "finite_rhs (eqs (UNIV // (\<approx>Lang)))"
|
|
873 |
using finite_init_rhs[OF finite_CS]
|
|
874 |
by (auto simp:finite_rhs_def eqs_def)
|
|
875 |
moreover have "self_contained (eqs (UNIV // (\<approx>Lang)))"
|
|
876 |
by (auto simp:self_contained_def eqs_def init_rhs_def classes_of_def lefts_of_def)
|
|
877 |
ultimately show ?thesis by (simp add:Inv_def)
|
|
878 |
qed
|
|
879 |
|
|
880 |
subsubsection {*
|
|
881 |
Interation step
|
|
882 |
*}
|
|
883 |
|
|
884 |
text {*
|
|
885 |
From this point until @{text "iteration_step"}, it is proved
|
|
886 |
that there exists iteration steps which keep @{text "Inv(ES)"} while
|
|
887 |
decreasing the size of @{text "ES"}.
|
|
888 |
*}
|
|
889 |
|
|
890 |
lemma arden_variate_keeps_eq:
|
|
891 |
assumes l_eq_r: "X = L rhs"
|
|
892 |
and not_empty: "[] \<notin> L (\<Uplus>{r. Trn X r \<in> rhs})"
|
|
893 |
and finite: "finite rhs"
|
|
894 |
shows "X = L (arden_variate X rhs)"
|
|
895 |
proof -
|
|
896 |
def A \<equiv> "L (\<Uplus>{r. Trn X r \<in> rhs})"
|
|
897 |
def b \<equiv> "rhs - trns_of rhs X"
|
|
898 |
def B \<equiv> "L b"
|
|
899 |
have "X = B ;; A\<star>"
|
|
900 |
proof-
|
|
901 |
have "L rhs = L(trns_of rhs X \<union> b)" by (auto simp: b_def trns_of_def)
|
|
902 |
also have "\<dots> = X ;; A \<union> B"
|
|
903 |
unfolding trns_of_def
|
|
904 |
unfolding L_rhs_union_distrib[symmetric]
|
|
905 |
by (simp only: lang_of_rexp_of finite B_def A_def)
|
|
906 |
finally show ?thesis
|
|
907 |
using l_eq_r not_empty
|
|
908 |
apply(rule_tac ardens_revised[THEN iffD1])
|
|
909 |
apply(simp add: A_def)
|
|
910 |
apply(simp)
|
|
911 |
done
|
|
912 |
qed
|
|
913 |
moreover have "L (arden_variate X rhs) = (B ;; A\<star>)"
|
|
914 |
by (simp only:arden_variate_def L_rhs_union_distrib lang_of_append_rhs
|
|
915 |
B_def A_def b_def L_rexp.simps seq_union_distrib_left)
|
|
916 |
ultimately show ?thesis by simp
|
|
917 |
qed
|
|
918 |
|
|
919 |
lemma append_keeps_finite:
|
|
920 |
"finite rhs \<Longrightarrow> finite (append_rhs_rexp rhs r)"
|
|
921 |
by (auto simp:append_rhs_rexp_def)
|
|
922 |
|
|
923 |
lemma arden_variate_keeps_finite:
|
|
924 |
"finite rhs \<Longrightarrow> finite (arden_variate X rhs)"
|
|
925 |
by (auto simp:arden_variate_def append_keeps_finite)
|
|
926 |
|
|
927 |
lemma append_keeps_nonempty:
|
|
928 |
"rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (append_rhs_rexp rhs r)"
|
|
929 |
apply (auto simp:rhs_nonempty_def append_rhs_rexp_def)
|
|
930 |
by (case_tac x, auto simp:Seq_def)
|
|
931 |
|
|
932 |
lemma nonempty_set_sub:
|
|
933 |
"rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (rhs - A)"
|
|
934 |
by (auto simp:rhs_nonempty_def)
|
|
935 |
|
|
936 |
lemma nonempty_set_union:
|
|
937 |
"\<lbrakk>rhs_nonempty rhs; rhs_nonempty rhs'\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs \<union> rhs')"
|
|
938 |
by (auto simp:rhs_nonempty_def)
|
|
939 |
|
|
940 |
lemma arden_variate_keeps_nonempty:
|
|
941 |
"rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (arden_variate X rhs)"
|
|
942 |
by (simp only:arden_variate_def append_keeps_nonempty nonempty_set_sub)
|
|
943 |
|
|
944 |
|
|
945 |
lemma rhs_subst_keeps_nonempty:
|
|
946 |
"\<lbrakk>rhs_nonempty rhs; rhs_nonempty xrhs\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs_subst rhs X xrhs)"
|
|
947 |
by (simp only:rhs_subst_def append_keeps_nonempty nonempty_set_union nonempty_set_sub)
|
|
948 |
|
|
949 |
lemma rhs_subst_keeps_eq:
|
|
950 |
assumes substor: "X = L xrhs"
|
|
951 |
and finite: "finite rhs"
|
|
952 |
shows "L (rhs_subst rhs X xrhs) = L rhs" (is "?Left = ?Right")
|
|
953 |
proof-
|
|
954 |
def A \<equiv> "L (rhs - trns_of rhs X)"
|
|
955 |
have "?Left = A \<union> L (append_rhs_rexp xrhs (\<Uplus>{r. Trn X r \<in> rhs}))"
|
|
956 |
unfolding rhs_subst_def
|
|
957 |
unfolding L_rhs_union_distrib[symmetric]
|
|
958 |
by (simp add: A_def)
|
|
959 |
moreover have "?Right = A \<union> L ({Trn X r | r. Trn X r \<in> rhs})"
|
|
960 |
proof-
|
|
961 |
have "rhs = (rhs - trns_of rhs X) \<union> (trns_of rhs X)" by (auto simp add: trns_of_def)
|
|
962 |
thus ?thesis
|
|
963 |
unfolding A_def
|
|
964 |
unfolding L_rhs_union_distrib
|
|
965 |
unfolding trns_of_def
|
|
966 |
by simp
|
|
967 |
qed
|
|
968 |
moreover have "L (append_rhs_rexp xrhs (\<Uplus>{r. Trn X r \<in> rhs})) = L ({Trn X r | r. Trn X r \<in> rhs})"
|
|
969 |
using finite substor by (simp only:lang_of_append_rhs lang_of_rexp_of)
|
|
970 |
ultimately show ?thesis by simp
|
|
971 |
qed
|
|
972 |
|
|
973 |
lemma rhs_subst_keeps_finite_rhs:
|
|
974 |
"\<lbrakk>finite rhs; finite yrhs\<rbrakk> \<Longrightarrow> finite (rhs_subst rhs Y yrhs)"
|
|
975 |
by (auto simp:rhs_subst_def append_keeps_finite)
|
|
976 |
|
|
977 |
lemma eqs_subst_keeps_finite:
|
|
978 |
assumes finite:"finite (ES:: (string set \<times> rhs_item set) set)"
|
|
979 |
shows "finite (eqs_subst ES Y yrhs)"
|
|
980 |
proof -
|
|
981 |
have "finite {(Ya, rhs_subst yrhsa Y yrhs) |Ya yrhsa. (Ya, yrhsa) \<in> ES}"
|
|
982 |
(is "finite ?A")
|
|
983 |
proof-
|
|
984 |
def eqns' \<equiv> "{((Ya::string set), yrhsa)| Ya yrhsa. (Ya, yrhsa) \<in> ES}"
|
|
985 |
def h \<equiv> "\<lambda> ((Ya::string set), yrhsa). (Ya, rhs_subst yrhsa Y yrhs)"
|
|
986 |
have "finite (h ` eqns')" using finite h_def eqns'_def by auto
|
|
987 |
moreover have "?A = h ` eqns'" by (auto simp:h_def eqns'_def)
|
|
988 |
ultimately show ?thesis by auto
|
|
989 |
qed
|
|
990 |
thus ?thesis by (simp add:eqs_subst_def)
|
|
991 |
qed
|
|
992 |
|
|
993 |
lemma eqs_subst_keeps_finite_rhs:
|
|
994 |
"\<lbrakk>finite_rhs ES; finite yrhs\<rbrakk> \<Longrightarrow> finite_rhs (eqs_subst ES Y yrhs)"
|
|
995 |
by (auto intro:rhs_subst_keeps_finite_rhs simp add:eqs_subst_def finite_rhs_def)
|
|
996 |
|
|
997 |
lemma append_rhs_keeps_cls:
|
|
998 |
"classes_of (append_rhs_rexp rhs r) = classes_of rhs"
|
|
999 |
apply (auto simp:classes_of_def append_rhs_rexp_def)
|
|
1000 |
apply (case_tac xa, auto simp:image_def)
|
|
1001 |
by (rule_tac x = "SEQ ra r" in exI, rule_tac x = "Trn x ra" in bexI, simp+)
|
|
1002 |
|
|
1003 |
lemma arden_variate_removes_cl:
|
|
1004 |
"classes_of (arden_variate Y yrhs) = classes_of yrhs - {Y}"
|
|
1005 |
apply (simp add:arden_variate_def append_rhs_keeps_cls trns_of_def)
|
|
1006 |
by (auto simp:classes_of_def)
|
|
1007 |
|
|
1008 |
lemma lefts_of_keeps_cls:
|
|
1009 |
"lefts_of (eqs_subst ES Y yrhs) = lefts_of ES"
|
|
1010 |
by (auto simp:lefts_of_def eqs_subst_def)
|
|
1011 |
|
|
1012 |
lemma rhs_subst_updates_cls:
|
|
1013 |
"X \<notin> classes_of xrhs \<Longrightarrow>
|
|
1014 |
classes_of (rhs_subst rhs X xrhs) = classes_of rhs \<union> classes_of xrhs - {X}"
|
|
1015 |
apply (simp only:rhs_subst_def append_rhs_keeps_cls
|
|
1016 |
classes_of_union_distrib[THEN sym])
|
|
1017 |
by (auto simp:classes_of_def trns_of_def)
|
|
1018 |
|
|
1019 |
lemma eqs_subst_keeps_self_contained:
|
|
1020 |
fixes Y
|
|
1021 |
assumes sc: "self_contained (ES \<union> {(Y, yrhs)})" (is "self_contained ?A")
|
|
1022 |
shows "self_contained (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
1023 |
(is "self_contained ?B")
|
|
1024 |
proof-
|
|
1025 |
{ fix X xrhs'
|
|
1026 |
assume "(X, xrhs') \<in> ?B"
|
|
1027 |
then obtain xrhs
|
|
1028 |
where xrhs_xrhs': "xrhs' = rhs_subst xrhs Y (arden_variate Y yrhs)"
|
|
1029 |
and X_in: "(X, xrhs) \<in> ES" by (simp add:eqs_subst_def, blast)
|
|
1030 |
have "classes_of xrhs' \<subseteq> lefts_of ?B"
|
|
1031 |
proof-
|
|
1032 |
have "lefts_of ?B = lefts_of ES" by (auto simp add:lefts_of_def eqs_subst_def)
|
|
1033 |
moreover have "classes_of xrhs' \<subseteq> lefts_of ES"
|
|
1034 |
proof-
|
|
1035 |
have "classes_of xrhs' \<subseteq>
|
|
1036 |
classes_of xrhs \<union> classes_of (arden_variate Y yrhs) - {Y}"
|
|
1037 |
proof-
|
|
1038 |
have "Y \<notin> classes_of (arden_variate Y yrhs)"
|
|
1039 |
using arden_variate_removes_cl by simp
|
|
1040 |
thus ?thesis using xrhs_xrhs' by (auto simp:rhs_subst_updates_cls)
|
|
1041 |
qed
|
|
1042 |
moreover have "classes_of xrhs \<subseteq> lefts_of ES \<union> {Y}" using X_in sc
|
|
1043 |
apply (simp only:self_contained_def lefts_of_union_distrib[THEN sym])
|
|
1044 |
by (drule_tac x = "(X, xrhs)" in bspec, auto simp:lefts_of_def)
|
|
1045 |
moreover have "classes_of (arden_variate Y yrhs) \<subseteq> lefts_of ES \<union> {Y}"
|
|
1046 |
using sc
|
|
1047 |
by (auto simp add:arden_variate_removes_cl self_contained_def lefts_of_def)
|
|
1048 |
ultimately show ?thesis by auto
|
|
1049 |
qed
|
|
1050 |
ultimately show ?thesis by simp
|
|
1051 |
qed
|
|
1052 |
} thus ?thesis by (auto simp only:eqs_subst_def self_contained_def)
|
|
1053 |
qed
|
|
1054 |
|
|
1055 |
lemma eqs_subst_satisfy_Inv:
|
|
1056 |
assumes Inv_ES: "Inv (ES \<union> {(Y, yrhs)})"
|
|
1057 |
shows "Inv (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
1058 |
proof -
|
|
1059 |
have finite_yrhs: "finite yrhs"
|
|
1060 |
using Inv_ES by (auto simp:Inv_def finite_rhs_def)
|
|
1061 |
have nonempty_yrhs: "rhs_nonempty yrhs"
|
|
1062 |
using Inv_ES by (auto simp:Inv_def ardenable_def)
|
|
1063 |
have Y_eq_yrhs: "Y = L yrhs"
|
|
1064 |
using Inv_ES by (simp only:Inv_def valid_eqns_def, blast)
|
|
1065 |
have "distinct_equas (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
1066 |
using Inv_ES
|
|
1067 |
by (auto simp:distinct_equas_def eqs_subst_def Inv_def)
|
|
1068 |
moreover have "finite (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
1069 |
using Inv_ES by (simp add:Inv_def eqs_subst_keeps_finite)
|
|
1070 |
moreover have "finite_rhs (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
1071 |
proof-
|
|
1072 |
have "finite_rhs ES" using Inv_ES
|
|
1073 |
by (simp add:Inv_def finite_rhs_def)
|
|
1074 |
moreover have "finite (arden_variate Y yrhs)"
|
|
1075 |
proof -
|
|
1076 |
have "finite yrhs" using Inv_ES
|
|
1077 |
by (auto simp:Inv_def finite_rhs_def)
|
|
1078 |
thus ?thesis using arden_variate_keeps_finite by simp
|
|
1079 |
qed
|
|
1080 |
ultimately show ?thesis
|
|
1081 |
by (simp add:eqs_subst_keeps_finite_rhs)
|
|
1082 |
qed
|
|
1083 |
moreover have "ardenable (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
1084 |
proof -
|
|
1085 |
{ fix X rhs
|
|
1086 |
assume "(X, rhs) \<in> ES"
|
|
1087 |
hence "rhs_nonempty rhs" using prems Inv_ES
|
|
1088 |
by (simp add:Inv_def ardenable_def)
|
|
1089 |
with nonempty_yrhs
|
|
1090 |
have "rhs_nonempty (rhs_subst rhs Y (arden_variate Y yrhs))"
|
|
1091 |
by (simp add:nonempty_yrhs
|
|
1092 |
rhs_subst_keeps_nonempty arden_variate_keeps_nonempty)
|
|
1093 |
} thus ?thesis by (auto simp add:ardenable_def eqs_subst_def)
|
|
1094 |
qed
|
|
1095 |
moreover have "valid_eqns (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
1096 |
proof-
|
|
1097 |
have "Y = L (arden_variate Y yrhs)"
|
|
1098 |
using Y_eq_yrhs Inv_ES finite_yrhs nonempty_yrhs
|
|
1099 |
by (rule_tac arden_variate_keeps_eq, (simp add:rexp_of_empty)+)
|
|
1100 |
thus ?thesis using Inv_ES
|
|
1101 |
by (clarsimp simp add:valid_eqns_def
|
|
1102 |
eqs_subst_def rhs_subst_keeps_eq Inv_def finite_rhs_def
|
|
1103 |
simp del:L_rhs.simps)
|
|
1104 |
qed
|
|
1105 |
moreover have
|
|
1106 |
non_empty_subst: "non_empty (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
1107 |
using Inv_ES by (auto simp:Inv_def non_empty_def eqs_subst_def)
|
|
1108 |
moreover
|
|
1109 |
have self_subst: "self_contained (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
1110 |
using Inv_ES eqs_subst_keeps_self_contained by (simp add:Inv_def)
|
|
1111 |
ultimately show ?thesis using Inv_ES by (simp add:Inv_def)
|
|
1112 |
qed
|
|
1113 |
|
|
1114 |
lemma eqs_subst_card_le:
|
|
1115 |
assumes finite: "finite (ES::(string set \<times> rhs_item set) set)"
|
|
1116 |
shows "card (eqs_subst ES Y yrhs) <= card ES"
|
|
1117 |
proof-
|
|
1118 |
def f \<equiv> "\<lambda> x. ((fst x)::string set, rhs_subst (snd x) Y yrhs)"
|
|
1119 |
have "eqs_subst ES Y yrhs = f ` ES"
|
|
1120 |
apply (auto simp:eqs_subst_def f_def image_def)
|
|
1121 |
by (rule_tac x = "(Ya, yrhsa)" in bexI, simp+)
|
|
1122 |
thus ?thesis using finite by (auto intro:card_image_le)
|
|
1123 |
qed
|
|
1124 |
|
|
1125 |
lemma eqs_subst_cls_remains:
|
|
1126 |
"(X, xrhs) \<in> ES \<Longrightarrow> \<exists> xrhs'. (X, xrhs') \<in> (eqs_subst ES Y yrhs)"
|
|
1127 |
by (auto simp:eqs_subst_def)
|
|
1128 |
|
|
1129 |
lemma card_noteq_1_has_more:
|
|
1130 |
assumes card:"card S \<noteq> 1"
|
|
1131 |
and e_in: "e \<in> S"
|
|
1132 |
and finite: "finite S"
|
|
1133 |
obtains e' where "e' \<in> S \<and> e \<noteq> e'"
|
|
1134 |
proof-
|
|
1135 |
have "card (S - {e}) > 0"
|
|
1136 |
proof -
|
|
1137 |
have "card S > 1" using card e_in finite
|
|
1138 |
by (case_tac "card S", auto)
|
|
1139 |
thus ?thesis using finite e_in by auto
|
|
1140 |
qed
|
|
1141 |
hence "S - {e} \<noteq> {}" using finite by (rule_tac notI, simp)
|
|
1142 |
thus "(\<And>e'. e' \<in> S \<and> e \<noteq> e' \<Longrightarrow> thesis) \<Longrightarrow> thesis" by auto
|
|
1143 |
qed
|
|
1144 |
|
|
1145 |
lemma iteration_step:
|
|
1146 |
assumes Inv_ES: "Inv ES"
|
|
1147 |
and X_in_ES: "(X, xrhs) \<in> ES"
|
|
1148 |
and not_T: "card ES \<noteq> 1"
|
|
1149 |
shows "\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'.(X, xrhs') \<in> ES')) \<and>
|
|
1150 |
(card ES', card ES) \<in> less_than" (is "\<exists> ES'. ?P ES'")
|
|
1151 |
proof -
|
|
1152 |
have finite_ES: "finite ES" using Inv_ES by (simp add:Inv_def)
|
|
1153 |
then obtain Y yrhs
|
|
1154 |
where Y_in_ES: "(Y, yrhs) \<in> ES" and not_eq: "(X, xrhs) \<noteq> (Y, yrhs)"
|
|
1155 |
using not_T X_in_ES by (drule_tac card_noteq_1_has_more, auto)
|
|
1156 |
def ES' == "ES - {(Y, yrhs)}"
|
|
1157 |
let ?ES'' = "eqs_subst ES' Y (arden_variate Y yrhs)"
|
|
1158 |
have "?P ?ES''"
|
|
1159 |
proof -
|
|
1160 |
have "Inv ?ES''" using Y_in_ES Inv_ES
|
|
1161 |
by (rule_tac eqs_subst_satisfy_Inv, simp add:ES'_def insert_absorb)
|
|
1162 |
moreover have "\<exists>xrhs'. (X, xrhs') \<in> ?ES''" using not_eq X_in_ES
|
|
1163 |
by (rule_tac ES = ES' in eqs_subst_cls_remains, auto simp add:ES'_def)
|
|
1164 |
moreover have "(card ?ES'', card ES) \<in> less_than"
|
|
1165 |
proof -
|
|
1166 |
have "finite ES'" using finite_ES ES'_def by auto
|
|
1167 |
moreover have "card ES' < card ES" using finite_ES Y_in_ES
|
|
1168 |
by (auto simp:ES'_def card_gt_0_iff intro:diff_Suc_less)
|
|
1169 |
ultimately show ?thesis
|
|
1170 |
by (auto dest:eqs_subst_card_le elim:le_less_trans)
|
|
1171 |
qed
|
|
1172 |
ultimately show ?thesis by simp
|
|
1173 |
qed
|
|
1174 |
thus ?thesis by blast
|
|
1175 |
qed
|
|
1176 |
|
|
1177 |
subsubsection {*
|
|
1178 |
Conclusion of the proof
|
|
1179 |
*}
|
|
1180 |
|
|
1181 |
text {*
|
|
1182 |
From this point until @{text "hard_direction"}, the hard direction is proved
|
|
1183 |
through a simple application of the iteration principle.
|
|
1184 |
*}
|
|
1185 |
|
|
1186 |
lemma iteration_conc:
|
|
1187 |
assumes history: "Inv ES"
|
|
1188 |
and X_in_ES: "\<exists> xrhs. (X, xrhs) \<in> ES"
|
|
1189 |
shows
|
|
1190 |
"\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'. (X, xrhs') \<in> ES')) \<and> card ES' = 1"
|
|
1191 |
(is "\<exists> ES'. ?P ES'")
|
|
1192 |
proof (cases "card ES = 1")
|
|
1193 |
case True
|
|
1194 |
thus ?thesis using history X_in_ES
|
|
1195 |
by blast
|
|
1196 |
next
|
|
1197 |
case False
|
|
1198 |
thus ?thesis using history iteration_step X_in_ES
|
|
1199 |
by (rule_tac f = card in wf_iter, auto)
|
|
1200 |
qed
|
|
1201 |
|
|
1202 |
lemma last_cl_exists_rexp:
|
|
1203 |
assumes ES_single: "ES = {(X, xrhs)}"
|
|
1204 |
and Inv_ES: "Inv ES"
|
|
1205 |
shows "\<exists> (r::rexp). L r = X" (is "\<exists> r. ?P r")
|
|
1206 |
proof-
|
|
1207 |
def A \<equiv> "arden_variate X xrhs"
|
|
1208 |
have "?P (\<Uplus>{r. Lam r \<in> A})"
|
|
1209 |
proof -
|
|
1210 |
have "L (\<Uplus>{r. Lam r \<in> A}) = L ({Lam r | r. Lam r \<in> A})"
|
|
1211 |
proof(rule rexp_of_lam_eq_lam_set)
|
|
1212 |
show "finite A"
|
|
1213 |
unfolding A_def
|
|
1214 |
using Inv_ES ES_single
|
|
1215 |
by (rule_tac arden_variate_keeps_finite)
|
|
1216 |
(auto simp add: Inv_def finite_rhs_def)
|
|
1217 |
qed
|
|
1218 |
also have "\<dots> = L A"
|
|
1219 |
proof-
|
|
1220 |
have "{Lam r | r. Lam r \<in> A} = A"
|
|
1221 |
proof-
|
|
1222 |
have "classes_of A = {}" using Inv_ES ES_single
|
|
1223 |
unfolding A_def
|
|
1224 |
by (simp add:arden_variate_removes_cl
|
|
1225 |
self_contained_def Inv_def lefts_of_def)
|
|
1226 |
thus ?thesis
|
|
1227 |
unfolding A_def
|
|
1228 |
by (auto simp only: classes_of_def, case_tac x, auto)
|
|
1229 |
qed
|
|
1230 |
thus ?thesis by simp
|
|
1231 |
qed
|
|
1232 |
also have "\<dots> = X"
|
|
1233 |
unfolding A_def
|
|
1234 |
proof(rule arden_variate_keeps_eq [THEN sym])
|
|
1235 |
show "X = L xrhs" using Inv_ES ES_single
|
|
1236 |
by (auto simp only:Inv_def valid_eqns_def)
|
|
1237 |
next
|
|
1238 |
from Inv_ES ES_single show "[] \<notin> L (\<Uplus>{r. Trn X r \<in> xrhs})"
|
|
1239 |
by(simp add:Inv_def ardenable_def rexp_of_empty finite_rhs_def)
|
|
1240 |
next
|
|
1241 |
from Inv_ES ES_single show "finite xrhs"
|
|
1242 |
by (simp add:Inv_def finite_rhs_def)
|
|
1243 |
qed
|
|
1244 |
finally show ?thesis by simp
|
|
1245 |
qed
|
|
1246 |
thus ?thesis by auto
|
|
1247 |
qed
|
|
1248 |
|
|
1249 |
lemma every_eqcl_has_reg:
|
|
1250 |
assumes finite_CS: "finite (UNIV // (\<approx>Lang))"
|
|
1251 |
and X_in_CS: "X \<in> (UNIV // (\<approx>Lang))"
|
|
1252 |
shows "\<exists> (reg::rexp). L reg = X" (is "\<exists> r. ?E r")
|
|
1253 |
proof -
|
|
1254 |
from X_in_CS have "\<exists> xrhs. (X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))"
|
|
1255 |
by (auto simp:eqs_def init_rhs_def)
|
|
1256 |
then obtain ES xrhs where Inv_ES: "Inv ES"
|
|
1257 |
and X_in_ES: "(X, xrhs) \<in> ES"
|
|
1258 |
and card_ES: "card ES = 1"
|
|
1259 |
using finite_CS X_in_CS init_ES_satisfy_Inv iteration_conc
|
|
1260 |
by blast
|
|
1261 |
hence ES_single_equa: "ES = {(X, xrhs)}"
|
|
1262 |
by (auto simp:Inv_def dest!:card_Suc_Diff1 simp:card_eq_0_iff)
|
|
1263 |
thus ?thesis using Inv_ES
|
|
1264 |
by (rule last_cl_exists_rexp)
|
|
1265 |
qed
|
|
1266 |
|
|
1267 |
theorem hard_direction:
|
|
1268 |
assumes finite_CS: "finite (UNIV // \<approx>A)"
|
|
1269 |
shows "\<exists>r::rexp. A = L r"
|
|
1270 |
proof -
|
|
1271 |
have "\<forall> X \<in> (UNIV // \<approx>A). \<exists>reg::rexp. X = L reg"
|
|
1272 |
using finite_CS every_eqcl_has_reg by blast
|
|
1273 |
then obtain f
|
|
1274 |
where f_prop: "\<forall> X \<in> (UNIV // \<approx>A). X = L ((f X)::rexp)"
|
|
1275 |
by (auto dest: bchoice)
|
|
1276 |
def rs \<equiv> "f ` (finals A)"
|
|
1277 |
have "A = \<Union> (finals A)" using lang_is_union_of_finals by auto
|
|
1278 |
also have "\<dots> = L (\<Uplus>rs)"
|
|
1279 |
proof -
|
|
1280 |
have "finite rs"
|
|
1281 |
proof -
|
|
1282 |
have "finite (finals A)"
|
|
1283 |
using finite_CS finals_in_partitions[of "A"]
|
|
1284 |
by (erule_tac finite_subset, simp)
|
|
1285 |
thus ?thesis using rs_def by auto
|
|
1286 |
qed
|
|
1287 |
thus ?thesis
|
|
1288 |
using f_prop rs_def finals_in_partitions[of "A"] by auto
|
|
1289 |
qed
|
|
1290 |
finally show ?thesis by blast
|
|
1291 |
qed
|
|
1292 |
|
|
1293 |
end |