22
|
1 |
theory My
|
|
2 |
imports Main
|
|
3 |
begin
|
|
4 |
|
|
5 |
|
|
6 |
definition
|
|
7 |
lang_seq :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ; _" [100,100] 100)
|
|
8 |
where
|
|
9 |
"L1 ; L2 = {s1 @ s2 | s1 s2. s1 \<in> L1 \<and> s2 \<in> L2}"
|
|
10 |
|
|
11 |
inductive_set
|
|
12 |
Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
|
|
13 |
for L :: "string set"
|
|
14 |
where
|
|
15 |
start[intro]: "[] \<in> L\<star>"
|
|
16 |
| step[intro]: "\<lbrakk>s1 \<in> L; s2 \<in> L\<star>\<rbrakk> \<Longrightarrow> s1@s2 \<in> L\<star>"
|
|
17 |
|
|
18 |
|
|
19 |
datatype rexp =
|
|
20 |
NULL
|
|
21 |
| EMPTY
|
|
22 |
| CHAR char
|
|
23 |
| SEQ rexp rexp
|
|
24 |
| ALT rexp rexp
|
|
25 |
| STAR rexp
|
|
26 |
|
|
27 |
fun
|
|
28 |
L_rexp :: "rexp \<Rightarrow> string set"
|
|
29 |
where
|
|
30 |
"L_rexp (NULL) = {}"
|
|
31 |
| "L_rexp (EMPTY) = {[]}"
|
|
32 |
| "L_rexp (CHAR c) = {[c]}"
|
|
33 |
| "L_rexp (SEQ r1 r2) = (L_rexp r1) ; (L_rexp r2)"
|
|
34 |
| "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)"
|
|
35 |
| "L_rexp (STAR r) = (L_rexp r)\<star>"
|
|
36 |
|
|
37 |
definition
|
|
38 |
folds :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"
|
|
39 |
where
|
|
40 |
"folds f z S \<equiv> SOME x. fold_graph f z S x"
|
|
41 |
|
|
42 |
lemma folds_simp_null [simp]:
|
|
43 |
"finite rs \<Longrightarrow> x \<in> L_rexp (folds ALT NULL rs) = (\<exists>r \<in> rs. x \<in> L_rexp r)"
|
|
44 |
apply (simp add: folds_def)
|
|
45 |
apply (rule someI2_ex)
|
|
46 |
apply (erule finite_imp_fold_graph)
|
|
47 |
apply (erule fold_graph.induct)
|
|
48 |
apply (auto)
|
|
49 |
done
|
|
50 |
|
|
51 |
lemma folds_simp_empty [simp]:
|
|
52 |
"finite rs \<Longrightarrow> x \<in> L_rexp (folds ALT EMPTY rs) = ((\<exists>r \<in> rs. x \<in> L_rexp r) \<or> x = [])"
|
|
53 |
apply (simp add: folds_def)
|
|
54 |
apply (rule someI2_ex)
|
|
55 |
apply (erule finite_imp_fold_graph)
|
|
56 |
apply (erule fold_graph.induct)
|
|
57 |
apply (auto)
|
|
58 |
done
|
|
59 |
|
|
60 |
lemma [simp]:
|
|
61 |
"(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y"
|
|
62 |
by simp
|
|
63 |
|
|
64 |
definition
|
|
65 |
str_eq ("_ \<approx>_ _")
|
|
66 |
where
|
|
67 |
"x \<approx>Lang y \<equiv> (\<forall>z. x @ z \<in> Lang \<longleftrightarrow> y @ z \<in> Lang)"
|
|
68 |
|
|
69 |
definition
|
|
70 |
str_eq_rel ("\<approx>_")
|
|
71 |
where
|
|
72 |
"\<approx>Lang \<equiv> {(x, y). x \<approx>Lang y}"
|
|
73 |
|
|
74 |
definition
|
|
75 |
final :: "string set \<Rightarrow> string set \<Rightarrow> bool"
|
|
76 |
where
|
|
77 |
"final X Lang \<equiv> (X \<in> UNIV // \<approx>Lang) \<and> (\<forall>s \<in> X. s \<in> Lang)"
|
|
78 |
|
|
79 |
lemma lang_is_union_of_finals:
|
|
80 |
"Lang = \<Union> {X. final X Lang}"
|
|
81 |
proof -
|
|
82 |
have "Lang \<subseteq> \<Union> {X. final X Lang}"
|
|
83 |
unfolding final_def
|
|
84 |
unfolding quotient_def Image_def
|
|
85 |
unfolding str_eq_rel_def
|
|
86 |
apply(simp)
|
|
87 |
apply(auto)
|
|
88 |
apply(rule_tac x="(\<approx>Lang) `` {x}" in exI)
|
|
89 |
unfolding Image_def
|
|
90 |
unfolding str_eq_rel_def
|
|
91 |
apply(auto)
|
|
92 |
unfolding str_eq_def
|
|
93 |
apply(auto)
|
|
94 |
apply(drule_tac x="[]" in spec)
|
|
95 |
apply(simp)
|
|
96 |
done
|
|
97 |
moreover
|
|
98 |
have "\<Union>{X. final X Lang} \<subseteq> Lang"
|
|
99 |
unfolding final_def by auto
|
|
100 |
ultimately
|
|
101 |
show "Lang = \<Union> {X. final X Lang}"
|
|
102 |
by blast
|
|
103 |
qed
|
|
104 |
|
|
105 |
lemma all_rexp:
|
|
106 |
"\<lbrakk>finite (UNIV // \<approx>Lang); X \<in> (UNIV // \<approx>Lang)\<rbrakk> \<Longrightarrow> \<exists>r. X = L_rexp r"
|
|
107 |
sorry
|
|
108 |
|
|
109 |
lemma final_rexp:
|
|
110 |
"\<lbrakk>finite (UNIV // (\<approx>Lang)); final X Lang\<rbrakk> \<Longrightarrow> \<exists>r. X = L_rexp r"
|
|
111 |
unfolding final_def
|
|
112 |
using all_rexp by blast
|
|
113 |
|
|
114 |
lemma finite_f_one_to_one:
|
|
115 |
assumes "finite B"
|
|
116 |
and "\<forall>x \<in> B. \<exists>y. f y = x"
|
|
117 |
shows "\<exists>rs. finite rs \<and> (B = {f y | y . y \<in> rs})"
|
|
118 |
using assms
|
|
119 |
by (induct) (auto)
|
|
120 |
|
|
121 |
lemma finite_final:
|
|
122 |
assumes "finite (UNIV // (\<approx>Lang))"
|
|
123 |
shows "finite {X. final X Lang}"
|
|
124 |
using assms
|
|
125 |
proof -
|
|
126 |
have "{X. final X Lang} \<subseteq> (UNIV // (\<approx>Lang))"
|
|
127 |
unfolding final_def by auto
|
|
128 |
with assms show "finite {X. final X Lang}"
|
|
129 |
using finite_subset by auto
|
|
130 |
qed
|
|
131 |
|
|
132 |
lemma finite_regular_aux:
|
|
133 |
fixes Lang :: "string set"
|
|
134 |
assumes "finite (UNIV // (\<approx>Lang))"
|
|
135 |
shows "\<exists>rs. Lang = L_rexp (folds ALT NULL rs)"
|
|
136 |
apply(subst lang_is_union_of_finals)
|
|
137 |
using assms
|
|
138 |
apply -
|
|
139 |
apply(drule finite_final)
|
|
140 |
apply(drule_tac f="L_rexp" in finite_f_one_to_one)
|
|
141 |
apply(clarify)
|
|
142 |
apply(drule final_rexp[OF assms])
|
|
143 |
apply(auto)[1]
|
|
144 |
apply(clarify)
|
|
145 |
apply(rule_tac x="rs" in exI)
|
|
146 |
apply(simp)
|
|
147 |
apply(rule set_eqI)
|
|
148 |
apply(auto)
|
|
149 |
done
|
|
150 |
|
|
151 |
lemma finite_regular:
|
|
152 |
fixes Lang :: "string set"
|
|
153 |
assumes "finite (UNIV // (\<approx>Lang))"
|
|
154 |
shows "\<exists>r. Lang = L_rexp r"
|
|
155 |
using assms finite_regular_aux
|
|
156 |
by auto
|
|
157 |
|
|
158 |
|
|
159 |
|
|
160 |
section {* other direction *}
|
|
161 |
|
|
162 |
|
|
163 |
lemma inj_image_lang:
|
|
164 |
fixes f::"string \<Rightarrow> 'a"
|
|
165 |
assumes str_inj: "\<And>x y. f x = f y \<Longrightarrow> x \<approx>Lang y"
|
|
166 |
shows "inj_on (image f) (UNIV // (\<approx>Lang))"
|
|
167 |
proof -
|
|
168 |
{ fix x y::string
|
|
169 |
assume eq_tag: "f ` {z. x \<approx>Lang z} = f ` {z. y \<approx>Lang z}"
|
|
170 |
moreover
|
|
171 |
have "{z. x \<approx>Lang z} \<noteq> {}" unfolding str_eq_def by auto
|
|
172 |
ultimately obtain a b where "x \<approx>Lang a" "y \<approx>Lang b" "f a = f b" by blast
|
|
173 |
then have "x \<approx>Lang a" "y \<approx>Lang b" "a \<approx>Lang b" using str_inj by auto
|
|
174 |
then have "x \<approx>Lang y" unfolding str_eq_def by simp
|
|
175 |
then have "{z. x \<approx>Lang z} = {z. y \<approx>Lang z}" unfolding str_eq_def by simp
|
|
176 |
}
|
|
177 |
then have "\<forall>x\<in>UNIV // \<approx>Lang. \<forall>y\<in>UNIV // \<approx>Lang. f ` x = f ` y \<longrightarrow> x = y"
|
|
178 |
unfolding quotient_def Image_def str_eq_rel_def by simp
|
|
179 |
then show "inj_on (image f) (UNIV // (\<approx>Lang))"
|
|
180 |
unfolding inj_on_def by simp
|
|
181 |
qed
|
|
182 |
|
|
183 |
|
|
184 |
lemma finite_range_image:
|
|
185 |
assumes fin: "finite (range f)"
|
|
186 |
shows "finite ((image f) ` X)"
|
|
187 |
proof -
|
|
188 |
from fin have "finite (Pow (f ` UNIV))" by auto
|
|
189 |
moreover
|
|
190 |
have "(image f) ` X \<subseteq> Pow (f ` UNIV)" by auto
|
|
191 |
ultimately show "finite ((image f) ` X)" using finite_subset by auto
|
|
192 |
qed
|
|
193 |
|
|
194 |
definition
|
|
195 |
tag1 :: "string set \<Rightarrow> string set \<Rightarrow> string \<Rightarrow> (string set \<times> string set)"
|
|
196 |
where
|
|
197 |
"tag1 L\<^isub>1 L\<^isub>2 \<equiv> \<lambda>x. ((\<approx>L\<^isub>1) `` {x}, (\<approx>L\<^isub>2) `` {x})"
|
|
198 |
|
|
199 |
lemma tag1_range_finite:
|
|
200 |
assumes finite1: "finite (UNIV // \<approx>L\<^isub>1)"
|
|
201 |
and finite2: "finite (UNIV // \<approx>L\<^isub>2)"
|
|
202 |
shows "finite (range (tag1 L\<^isub>1 L\<^isub>2))"
|
|
203 |
proof -
|
|
204 |
have "finite (UNIV // \<approx>L\<^isub>1 \<times> UNIV // \<approx>L\<^isub>2)" using finite1 finite2 by auto
|
|
205 |
moreover
|
|
206 |
have "range (tag1 L\<^isub>1 L\<^isub>2) \<subseteq> (UNIV // \<approx>L\<^isub>1) \<times> (UNIV // \<approx>L\<^isub>2)"
|
|
207 |
unfolding tag1_def quotient_def by auto
|
|
208 |
ultimately show "finite (range (tag1 L\<^isub>1 L\<^isub>2))"
|
|
209 |
using finite_subset by blast
|
|
210 |
qed
|
|
211 |
|
|
212 |
lemma tag1_inj:
|
|
213 |
"tag1 L\<^isub>1 L\<^isub>2 x = tag1 L\<^isub>1 L\<^isub>2 y \<Longrightarrow> x \<approx>(L\<^isub>1 \<union> L\<^isub>2) y"
|
|
214 |
unfolding tag1_def Image_def str_eq_rel_def str_eq_def
|
|
215 |
by auto
|
|
216 |
|
|
217 |
lemma quot_alt_cu:
|
|
218 |
fixes L\<^isub>1 L\<^isub>2::"string set"
|
|
219 |
assumes fin1: "finite (UNIV // \<approx>L\<^isub>1)"
|
|
220 |
and fin2: "finite (UNIV // \<approx>L\<^isub>2)"
|
|
221 |
shows "finite (UNIV // \<approx>(L\<^isub>1 \<union> L\<^isub>2))"
|
|
222 |
proof -
|
|
223 |
have "finite (range (tag1 L\<^isub>1 L\<^isub>2))"
|
|
224 |
using fin1 fin2 tag1_range_finite by simp
|
|
225 |
then have "finite (image (tag1 L\<^isub>1 L\<^isub>2) ` (UNIV // \<approx>(L\<^isub>1 \<union> L\<^isub>2)))"
|
|
226 |
using finite_range_image by blast
|
|
227 |
moreover
|
|
228 |
have "\<And>x y. tag1 L\<^isub>1 L\<^isub>2 x = tag1 L\<^isub>1 L\<^isub>2 y \<Longrightarrow> x \<approx>(L\<^isub>1 \<union> L\<^isub>2) y"
|
|
229 |
using tag1_inj by simp
|
|
230 |
then have "inj_on (image (tag1 L\<^isub>1 L\<^isub>2)) (UNIV // \<approx>(L\<^isub>1 \<union> L\<^isub>2))"
|
|
231 |
using inj_image_lang by blast
|
|
232 |
ultimately
|
|
233 |
show "finite (UNIV // \<approx>(L\<^isub>1 \<union> L\<^isub>2))" by (rule finite_imageD)
|
|
234 |
qed
|
|
235 |
|
|
236 |
|
|
237 |
section {* finite \<Rightarrow> regular *}
|
|
238 |
|
|
239 |
definition
|
|
240 |
transitions :: "string set \<Rightarrow> string set \<Rightarrow> rexp set" ("_\<Turnstile>\<Rightarrow>_")
|
|
241 |
where
|
|
242 |
"Y \<Turnstile>\<Rightarrow> X \<equiv> {CHAR c | c. Y ; {[c]} \<subseteq> X}"
|
|
243 |
|
|
244 |
definition
|
|
245 |
transitions_rexp ("_ \<turnstile>\<rightarrow> _")
|
|
246 |
where
|
|
247 |
"Y \<turnstile>\<rightarrow> X \<equiv> if [] \<in> X then folds ALT EMPTY (Y \<Turnstile>\<Rightarrow>X) else folds ALT NULL (Y \<Turnstile>\<Rightarrow>X)"
|
|
248 |
|
|
249 |
definition
|
|
250 |
"rhs CS X \<equiv> if X = {[]} then {({[]}, EMPTY)} else {(Y, Y \<turnstile>\<rightarrow>X) | Y. Y \<in> CS}"
|
|
251 |
|
|
252 |
definition
|
|
253 |
"rhs_sem CS X \<equiv> \<Union> {(Y; L_rexp r) | Y r . (Y, r) \<in> rhs CS X}"
|
|
254 |
|
|
255 |
definition
|
|
256 |
"eqs CS \<equiv> (\<Union>X \<in> CS. {(X, rhs CS X)})"
|
|
257 |
|
|
258 |
definition
|
|
259 |
"eqs_sem CS \<equiv> (\<Union>X \<in> CS. {(X, rhs_sem CS X)})"
|
|
260 |
|
|
261 |
lemma [simp]:
|
|
262 |
shows "finite (Y \<Turnstile>\<Rightarrow> X)"
|
|
263 |
unfolding transitions_def
|
|
264 |
by auto
|
|
265 |
|
|
266 |
|
|
267 |
lemma defined_by_str:
|
|
268 |
assumes "s \<in> X"
|
|
269 |
and "X \<in> UNIV // (\<approx>Lang)"
|
|
270 |
shows "X = (\<approx>Lang) `` {s}"
|
|
271 |
using assms
|
|
272 |
unfolding quotient_def Image_def
|
|
273 |
unfolding str_eq_rel_def str_eq_def
|
|
274 |
by auto
|
|
275 |
|
|
276 |
lemma every_eqclass_has_transition:
|
|
277 |
assumes has_str: "s @ [c] \<in> X"
|
|
278 |
and in_CS: "X \<in> UNIV // (\<approx>Lang)"
|
|
279 |
obtains Y where "Y \<in> UNIV // (\<approx>Lang)" and "Y ; {[c]} \<subseteq> X" and "s \<in> Y"
|
|
280 |
proof -
|
|
281 |
def Y \<equiv> "(\<approx>Lang) `` {s}"
|
|
282 |
have "Y \<in> UNIV // (\<approx>Lang)"
|
|
283 |
unfolding Y_def quotient_def by auto
|
|
284 |
moreover
|
|
285 |
have "X = (\<approx>Lang) `` {s @ [c]}"
|
|
286 |
using has_str in_CS defined_by_str by blast
|
|
287 |
then have "Y ; {[c]} \<subseteq> X"
|
|
288 |
unfolding Y_def Image_def lang_seq_def
|
|
289 |
unfolding str_eq_rel_def
|
|
290 |
by (auto) (simp add: str_eq_def)
|
|
291 |
moreover
|
|
292 |
have "s \<in> Y" unfolding Y_def
|
|
293 |
unfolding Image_def str_eq_rel_def str_eq_def by simp
|
|
294 |
moreover
|
|
295 |
have "True" by simp (* FIXME *)
|
|
296 |
note that
|
|
297 |
ultimately show thesis by blast
|
|
298 |
qed
|
|
299 |
|
|
300 |
lemma test:
|
|
301 |
assumes "[] \<in> X"
|
|
302 |
shows "[] \<in> L_rexp (Y \<turnstile>\<rightarrow> X)"
|
|
303 |
using assms
|
|
304 |
by (simp add: transitions_rexp_def)
|
|
305 |
|
|
306 |
lemma rhs_sem:
|
|
307 |
assumes "X \<in> (UNIV // (\<approx>Lang))"
|
|
308 |
shows "X \<subseteq> rhs_sem (UNIV // (\<approx>Lang)) X"
|
|
309 |
apply(case_tac "X = {[]}")
|
|
310 |
apply(simp)
|
|
311 |
apply(simp add: rhs_sem_def rhs_def lang_seq_def)
|
|
312 |
apply(rule subsetI)
|
|
313 |
apply(case_tac "x = []")
|
|
314 |
apply(simp add: rhs_sem_def rhs_def)
|
|
315 |
apply(rule_tac x = "X" in exI)
|
|
316 |
apply(simp)
|
|
317 |
apply(rule_tac x = "X" in exI)
|
|
318 |
apply(simp add: assms)
|
|
319 |
apply(simp add: transitions_rexp_def)
|
|
320 |
oops |