| 
222
 | 
     1  | 
(*  Title:      HOL/Proofs/Extraction/Higman.thy
  | 
| 
 | 
     2  | 
    Author:     Stefan Berghofer, TU Muenchen
  | 
| 
 | 
     3  | 
    Author:     Monika Seisenberger, LMU Muenchen
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
header {* Higman's lemma *}
 | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
theory Higman
  | 
| 
 | 
     9  | 
imports Main "~~/src/HOL/Library/State_Monad" Random
  | 
| 
 | 
    10  | 
begin
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
text {*
 | 
| 
 | 
    13  | 
  Formalization by Stefan Berghofer and Monika Seisenberger,
  | 
| 
 | 
    14  | 
  based on Coquand and Fridlender \cite{Coquand93}.
 | 
| 
 | 
    15  | 
*}
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
datatype letter = A | B
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
inductive emb :: "letter list \<Rightarrow> letter list \<Rightarrow> bool"
  | 
| 
 | 
    20  | 
where
  | 
| 
 | 
    21  | 
   emb0 [Pure.intro]: "emb [] bs"
  | 
| 
 | 
    22  | 
 | emb1 [Pure.intro]: "emb as bs \<Longrightarrow> emb as (b # bs)"
  | 
| 
 | 
    23  | 
 | emb2 [Pure.intro]: "emb as bs \<Longrightarrow> emb (a # as) (a # bs)"
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
inductive L :: "letter list \<Rightarrow> letter list list \<Rightarrow> bool"
  | 
| 
 | 
    26  | 
  for v :: "letter list"
  | 
| 
 | 
    27  | 
where
  | 
| 
 | 
    28  | 
   L0 [Pure.intro]: "emb w v \<Longrightarrow> L v (w # ws)"
  | 
| 
 | 
    29  | 
 | L1 [Pure.intro]: "L v ws \<Longrightarrow> L v (w # ws)"
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
inductive good :: "letter list list \<Rightarrow> bool"
  | 
| 
 | 
    32  | 
where
  | 
| 
 | 
    33  | 
    good0 [Pure.intro]: "L w ws \<Longrightarrow> good (w # ws)"
  | 
| 
 | 
    34  | 
  | good1 [Pure.intro]: "good ws \<Longrightarrow> good (w # ws)"
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
inductive R :: "letter \<Rightarrow> letter list list \<Rightarrow> letter list list \<Rightarrow> bool"
  | 
| 
 | 
    37  | 
  for a :: letter
  | 
| 
 | 
    38  | 
where
  | 
| 
 | 
    39  | 
    R0 [Pure.intro]: "R a [] []"
  | 
| 
 | 
    40  | 
  | R1 [Pure.intro]: "R a vs ws \<Longrightarrow> R a (w # vs) ((a # w) # ws)"
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
inductive T :: "letter \<Rightarrow> letter list list \<Rightarrow> letter list list \<Rightarrow> bool"
  | 
| 
 | 
    43  | 
  for a :: letter
  | 
| 
 | 
    44  | 
where
  | 
| 
 | 
    45  | 
    T0 [Pure.intro]: "a \<noteq> b \<Longrightarrow> R b ws zs \<Longrightarrow> T a (w # zs) ((a # w) # zs)"
  | 
| 
 | 
    46  | 
  | T1 [Pure.intro]: "T a ws zs \<Longrightarrow> T a (w # ws) ((a # w) # zs)"
  | 
| 
 | 
    47  | 
  | T2 [Pure.intro]: "a \<noteq> b \<Longrightarrow> T a ws zs \<Longrightarrow> T a ws ((b # w) # zs)"
  | 
| 
 | 
    48  | 
  | 
| 
 | 
    49  | 
inductive bar :: "letter list list \<Rightarrow> bool"
  | 
| 
 | 
    50  | 
where
  | 
| 
 | 
    51  | 
    bar1 [Pure.intro]: "good ws \<Longrightarrow> bar ws"
  | 
| 
 | 
    52  | 
  | bar2 [Pure.intro]: "(\<And>w. bar (w # ws)) \<Longrightarrow> bar ws"
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
theorem prop1: "bar ([] # ws)" by iprover
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
theorem lemma1: "L as ws \<Longrightarrow> L (a # as) ws"
  | 
| 
 | 
    57  | 
  by (erule L.induct, iprover+)
  | 
| 
 | 
    58  | 
  | 
| 
 | 
    59  | 
lemma lemma2': "R a vs ws \<Longrightarrow> L as vs \<Longrightarrow> L (a # as) ws"
  | 
| 
 | 
    60  | 
  apply (induct set: R)
  | 
| 
 | 
    61  | 
  apply (erule L.cases)
  | 
| 
 | 
    62  | 
  apply simp+
  | 
| 
 | 
    63  | 
  apply (erule L.cases)
  | 
| 
 | 
    64  | 
  apply simp_all
  | 
| 
 | 
    65  | 
  apply (rule L0)
  | 
| 
 | 
    66  | 
  apply (erule emb2)
  | 
| 
 | 
    67  | 
  apply (erule L1)
  | 
| 
 | 
    68  | 
  done
  | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
lemma lemma2: "R a vs ws \<Longrightarrow> good vs \<Longrightarrow> good ws"
  | 
| 
 | 
    71  | 
  apply (induct set: R)
  | 
| 
 | 
    72  | 
  apply iprover
  | 
| 
 | 
    73  | 
  apply (erule good.cases)
  | 
| 
 | 
    74  | 
  apply simp_all
  | 
| 
 | 
    75  | 
  apply (rule good0)
  | 
| 
 | 
    76  | 
  apply (erule lemma2')
  | 
| 
 | 
    77  | 
  apply assumption
  | 
| 
 | 
    78  | 
  apply (erule good1)
  | 
| 
 | 
    79  | 
  done
  | 
| 
 | 
    80  | 
  | 
| 
 | 
    81  | 
lemma lemma3': "T a vs ws \<Longrightarrow> L as vs \<Longrightarrow> L (a # as) ws"
  | 
| 
 | 
    82  | 
  apply (induct set: T)
  | 
| 
 | 
    83  | 
  apply (erule L.cases)
  | 
| 
 | 
    84  | 
  apply simp_all
  | 
| 
 | 
    85  | 
  apply (rule L0)
  | 
| 
 | 
    86  | 
  apply (erule emb2)
  | 
| 
 | 
    87  | 
  apply (rule L1)
  | 
| 
 | 
    88  | 
  apply (erule lemma1)
  | 
| 
 | 
    89  | 
  apply (erule L.cases)
  | 
| 
 | 
    90  | 
  apply simp_all
  | 
| 
 | 
    91  | 
  apply iprover+
  | 
| 
 | 
    92  | 
  done
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
lemma lemma3: "T a ws zs \<Longrightarrow> good ws \<Longrightarrow> good zs"
  | 
| 
 | 
    95  | 
  apply (induct set: T)
  | 
| 
 | 
    96  | 
  apply (erule good.cases)
  | 
| 
 | 
    97  | 
  apply simp_all
  | 
| 
 | 
    98  | 
  apply (rule good0)
  | 
| 
 | 
    99  | 
  apply (erule lemma1)
  | 
| 
 | 
   100  | 
  apply (erule good1)
  | 
| 
 | 
   101  | 
  apply (erule good.cases)
  | 
| 
 | 
   102  | 
  apply simp_all
  | 
| 
 | 
   103  | 
  apply (rule good0)
  | 
| 
 | 
   104  | 
  apply (erule lemma3')
  | 
| 
 | 
   105  | 
  apply iprover+
  | 
| 
 | 
   106  | 
  done
  | 
| 
 | 
   107  | 
  | 
| 
 | 
   108  | 
lemma lemma4: "R a ws zs \<Longrightarrow> ws \<noteq> [] \<Longrightarrow> T a ws zs"
  | 
| 
 | 
   109  | 
  apply (induct set: R)
  | 
| 
 | 
   110  | 
  apply iprover
  | 
| 
 | 
   111  | 
  apply (case_tac vs)
  | 
| 
 | 
   112  | 
  apply (erule R.cases)
  | 
| 
 | 
   113  | 
  apply simp
  | 
| 
 | 
   114  | 
  apply (case_tac a)
  | 
| 
 | 
   115  | 
  apply (rule_tac b=B in T0)
  | 
| 
 | 
   116  | 
  apply simp
  | 
| 
 | 
   117  | 
  apply (rule R0)
  | 
| 
 | 
   118  | 
  apply (rule_tac b=A in T0)
  | 
| 
 | 
   119  | 
  apply simp
  | 
| 
 | 
   120  | 
  apply (rule R0)
  | 
| 
 | 
   121  | 
  apply simp
  | 
| 
 | 
   122  | 
  apply (rule T1)
  | 
| 
 | 
   123  | 
  apply simp
  | 
| 
 | 
   124  | 
  done
  | 
| 
 | 
   125  | 
  | 
| 
 | 
   126  | 
lemma letter_neq: "(a::letter) \<noteq> b \<Longrightarrow> c \<noteq> a \<Longrightarrow> c = b"
  | 
| 
 | 
   127  | 
  apply (case_tac a)
  | 
| 
 | 
   128  | 
  apply (case_tac b)
  | 
| 
 | 
   129  | 
  apply (case_tac c, simp, simp)
  | 
| 
 | 
   130  | 
  apply (case_tac c, simp, simp)
  | 
| 
 | 
   131  | 
  apply (case_tac b)
  | 
| 
 | 
   132  | 
  apply (case_tac c, simp, simp)
  | 
| 
 | 
   133  | 
  apply (case_tac c, simp, simp)
  | 
| 
 | 
   134  | 
  done
  | 
| 
 | 
   135  | 
  | 
| 
 | 
   136  | 
lemma letter_eq_dec: "(a::letter) = b \<or> a \<noteq> b"
  | 
| 
 | 
   137  | 
  apply (case_tac a)
  | 
| 
 | 
   138  | 
  apply (case_tac b)
  | 
| 
 | 
   139  | 
  apply simp
  | 
| 
 | 
   140  | 
  apply simp
  | 
| 
 | 
   141  | 
  apply (case_tac b)
  | 
| 
 | 
   142  | 
  apply simp
  | 
| 
 | 
   143  | 
  apply simp
  | 
| 
 | 
   144  | 
  done
  | 
| 
 | 
   145  | 
  | 
| 
 | 
   146  | 
theorem prop2:
  | 
| 
 | 
   147  | 
  assumes ab: "a \<noteq> b" and bar: "bar xs"
  | 
| 
 | 
   148  | 
  shows "\<And>ys zs. bar ys \<Longrightarrow> T a xs zs \<Longrightarrow> T b ys zs \<Longrightarrow> bar zs" using bar
  | 
| 
 | 
   149  | 
proof induct
  | 
| 
 | 
   150  | 
  fix xs zs assume "T a xs zs" and "good xs"
  | 
| 
 | 
   151  | 
  hence "good zs" by (rule lemma3)
  | 
| 
 | 
   152  | 
  then show "bar zs" by (rule bar1)
  | 
| 
 | 
   153  | 
next
  | 
| 
 | 
   154  | 
  fix xs ys
  | 
| 
 | 
   155  | 
  assume I: "\<And>w ys zs. bar ys \<Longrightarrow> T a (w # xs) zs \<Longrightarrow> T b ys zs \<Longrightarrow> bar zs"
  | 
| 
 | 
   156  | 
  assume "bar ys"
  | 
| 
 | 
   157  | 
  thus "\<And>zs. T a xs zs \<Longrightarrow> T b ys zs \<Longrightarrow> bar zs"
  | 
| 
 | 
   158  | 
  proof induct
  | 
| 
 | 
   159  | 
    fix ys zs assume "T b ys zs" and "good ys"
  | 
| 
 | 
   160  | 
    then have "good zs" by (rule lemma3)
  | 
| 
 | 
   161  | 
    then show "bar zs" by (rule bar1)
  | 
| 
 | 
   162  | 
  next
  | 
| 
 | 
   163  | 
    fix ys zs assume I': "\<And>w zs. T a xs zs \<Longrightarrow> T b (w # ys) zs \<Longrightarrow> bar zs"
  | 
| 
 | 
   164  | 
    and ys: "\<And>w. bar (w # ys)" and Ta: "T a xs zs" and Tb: "T b ys zs"
  | 
| 
 | 
   165  | 
    show "bar zs"
  | 
| 
 | 
   166  | 
    proof (rule bar2)
  | 
| 
 | 
   167  | 
      fix w
  | 
| 
 | 
   168  | 
      show "bar (w # zs)"
  | 
| 
 | 
   169  | 
      proof (cases w)
  | 
| 
 | 
   170  | 
        case Nil
  | 
| 
 | 
   171  | 
        thus ?thesis by simp (rule prop1)
  | 
| 
 | 
   172  | 
      next
  | 
| 
 | 
   173  | 
        case (Cons c cs)
  | 
| 
 | 
   174  | 
        from letter_eq_dec show ?thesis
  | 
| 
 | 
   175  | 
        proof
  | 
| 
 | 
   176  | 
          assume ca: "c = a"
  | 
| 
 | 
   177  | 
          from ab have "bar ((a # cs) # zs)" by (iprover intro: I ys Ta Tb)
  | 
| 
 | 
   178  | 
          thus ?thesis by (simp add: Cons ca)
  | 
| 
 | 
   179  | 
        next
  | 
| 
 | 
   180  | 
          assume "c \<noteq> a"
  | 
| 
 | 
   181  | 
          with ab have cb: "c = b" by (rule letter_neq)
  | 
| 
 | 
   182  | 
          from ab have "bar ((b # cs) # zs)" by (iprover intro: I' Ta Tb)
  | 
| 
 | 
   183  | 
          thus ?thesis by (simp add: Cons cb)
  | 
| 
 | 
   184  | 
        qed
  | 
| 
 | 
   185  | 
      qed
  | 
| 
 | 
   186  | 
    qed
  | 
| 
 | 
   187  | 
  qed
  | 
| 
 | 
   188  | 
qed
  | 
| 
 | 
   189  | 
  | 
| 
 | 
   190  | 
theorem prop3:
  | 
| 
 | 
   191  | 
  assumes bar: "bar xs"
  | 
| 
 | 
   192  | 
  shows "\<And>zs. xs \<noteq> [] \<Longrightarrow> R a xs zs \<Longrightarrow> bar zs" using bar
  | 
| 
 | 
   193  | 
proof induct
  | 
| 
 | 
   194  | 
  fix xs zs
  | 
| 
 | 
   195  | 
  assume "R a xs zs" and "good xs"
  | 
| 
 | 
   196  | 
  then have "good zs" by (rule lemma2)
  | 
| 
 | 
   197  | 
  then show "bar zs" by (rule bar1)
  | 
| 
 | 
   198  | 
next
  | 
| 
 | 
   199  | 
  fix xs zs
  | 
| 
 | 
   200  | 
  assume I: "\<And>w zs. w # xs \<noteq> [] \<Longrightarrow> R a (w # xs) zs \<Longrightarrow> bar zs"
  | 
| 
 | 
   201  | 
  and xsb: "\<And>w. bar (w # xs)" and xsn: "xs \<noteq> []" and R: "R a xs zs"
  | 
| 
 | 
   202  | 
  show "bar zs"
  | 
| 
 | 
   203  | 
  proof (rule bar2)
  | 
| 
 | 
   204  | 
    fix w
  | 
| 
 | 
   205  | 
    show "bar (w # zs)"
  | 
| 
 | 
   206  | 
    proof (induct w)
  | 
| 
 | 
   207  | 
      case Nil
  | 
| 
 | 
   208  | 
      show ?case by (rule prop1)
  | 
| 
 | 
   209  | 
    next
  | 
| 
 | 
   210  | 
      case (Cons c cs)
  | 
| 
 | 
   211  | 
      from letter_eq_dec show ?case
  | 
| 
 | 
   212  | 
      proof
  | 
| 
 | 
   213  | 
        assume "c = a"
  | 
| 
 | 
   214  | 
        thus ?thesis by (iprover intro: I [simplified] R)
  | 
| 
 | 
   215  | 
      next
  | 
| 
 | 
   216  | 
        from R xsn have T: "T a xs zs" by (rule lemma4)
  | 
| 
 | 
   217  | 
        assume "c \<noteq> a"
  | 
| 
 | 
   218  | 
        thus ?thesis by (iprover intro: prop2 Cons xsb xsn R T)
  | 
| 
 | 
   219  | 
      qed
  | 
| 
 | 
   220  | 
    qed
  | 
| 
 | 
   221  | 
  qed
  | 
| 
 | 
   222  | 
qed
  | 
| 
 | 
   223  | 
  | 
| 
 | 
   224  | 
theorem higman: "bar []"
  | 
| 
 | 
   225  | 
proof (rule bar2)
  | 
| 
 | 
   226  | 
  fix w
  | 
| 
 | 
   227  | 
  show "bar [w]"
  | 
| 
 | 
   228  | 
  proof (induct w)
  | 
| 
 | 
   229  | 
    show "bar [[]]" by (rule prop1)
  | 
| 
 | 
   230  | 
  next
  | 
| 
 | 
   231  | 
    fix c cs assume "bar [cs]"
  | 
| 
 | 
   232  | 
    thus "bar [c # cs]" by (rule prop3) (simp, iprover)
  | 
| 
 | 
   233  | 
  qed
  | 
| 
 | 
   234  | 
qed
  | 
| 
 | 
   235  | 
  | 
| 
 | 
   236  | 
primrec
  | 
| 
 | 
   237  | 
  is_prefix :: "'a list \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> bool"
  | 
| 
 | 
   238  | 
where
  | 
| 
 | 
   239  | 
    "is_prefix [] f = True"
  | 
| 
 | 
   240  | 
  | "is_prefix (x # xs) f = (x = f (length xs) \<and> is_prefix xs f)"
  | 
| 
 | 
   241  | 
  | 
| 
 | 
   242  | 
theorem L_idx:
  | 
| 
 | 
   243  | 
  assumes L: "L w ws"
  | 
| 
 | 
   244  | 
  shows "is_prefix ws f \<Longrightarrow> \<exists>i. emb (f i) w \<and> i < length ws" using L
  | 
| 
 | 
   245  | 
proof induct
  | 
| 
 | 
   246  | 
  case (L0 v ws)
  | 
| 
 | 
   247  | 
  hence "emb (f (length ws)) w" by simp
  | 
| 
 | 
   248  | 
  moreover have "length ws < length (v # ws)" by simp
  | 
| 
 | 
   249  | 
  ultimately show ?case by iprover
  | 
| 
 | 
   250  | 
next
  | 
| 
 | 
   251  | 
  case (L1 ws v)
  | 
| 
 | 
   252  | 
  then obtain i where emb: "emb (f i) w" and "i < length ws"
  | 
| 
 | 
   253  | 
    by simp iprover
  | 
| 
 | 
   254  | 
  hence "i < length (v # ws)" by simp
  | 
| 
 | 
   255  | 
  with emb show ?case by iprover
  | 
| 
 | 
   256  | 
qed
  | 
| 
 | 
   257  | 
  | 
| 
 | 
   258  | 
theorem good_idx:
  | 
| 
 | 
   259  | 
  assumes good: "good ws"
  | 
| 
 | 
   260  | 
  shows "is_prefix ws f \<Longrightarrow> \<exists>i j. emb (f i) (f j) \<and> i < j" using good
  | 
| 
 | 
   261  | 
proof induct
  | 
| 
 | 
   262  | 
  case (good0 w ws)
  | 
| 
 | 
   263  | 
  hence "w = f (length ws)" and "is_prefix ws f" by simp_all
  | 
| 
 | 
   264  | 
  with good0 show ?case by (iprover dest: L_idx)
  | 
| 
 | 
   265  | 
next
  | 
| 
 | 
   266  | 
  case (good1 ws w)
  | 
| 
 | 
   267  | 
  thus ?case by simp
  | 
| 
 | 
   268  | 
qed
  | 
| 
 | 
   269  | 
  | 
| 
 | 
   270  | 
theorem bar_idx:
  | 
| 
 | 
   271  | 
  assumes bar: "bar ws"
  | 
| 
 | 
   272  | 
  shows "is_prefix ws f \<Longrightarrow> \<exists>i j. emb (f i) (f j) \<and> i < j" using bar
  | 
| 
 | 
   273  | 
proof induct
  | 
| 
 | 
   274  | 
  case (bar1 ws)
  | 
| 
 | 
   275  | 
  thus ?case by (rule good_idx)
  | 
| 
 | 
   276  | 
next
  | 
| 
 | 
   277  | 
  case (bar2 ws)
  | 
| 
 | 
   278  | 
  hence "is_prefix (f (length ws) # ws) f" by simp
  | 
| 
 | 
   279  | 
  thus ?case by (rule bar2)
  | 
| 
 | 
   280  | 
qed
  | 
| 
 | 
   281  | 
  | 
| 
 | 
   282  | 
text {*
 | 
| 
 | 
   283  | 
Strong version: yields indices of words that can be embedded into each other.
  | 
| 
 | 
   284  | 
*}
  | 
| 
 | 
   285  | 
  | 
| 
 | 
   286  | 
theorem higman_idx: "\<exists>(i::nat) j. emb (f i) (f j) \<and> i < j"
  | 
| 
 | 
   287  | 
proof (rule bar_idx)
  | 
| 
 | 
   288  | 
  show "bar []" by (rule higman)
  | 
| 
 | 
   289  | 
  show "is_prefix [] f" by simp
  | 
| 
 | 
   290  | 
qed
  | 
| 
 | 
   291  | 
  | 
| 
 | 
   292  | 
text {*
 | 
| 
 | 
   293  | 
Weak version: only yield sequence containing words
  | 
| 
 | 
   294  | 
that can be embedded into each other.
  | 
| 
 | 
   295  | 
*}
  | 
| 
 | 
   296  | 
  | 
| 
 | 
   297  | 
theorem good_prefix_lemma:
  | 
| 
 | 
   298  | 
  assumes bar: "bar ws"
  | 
| 
 | 
   299  | 
  shows "is_prefix ws f \<Longrightarrow> \<exists>vs. is_prefix vs f \<and> good vs" using bar
  | 
| 
 | 
   300  | 
proof induct
  | 
| 
 | 
   301  | 
  case bar1
  | 
| 
 | 
   302  | 
  thus ?case by iprover
  | 
| 
 | 
   303  | 
next
  | 
| 
 | 
   304  | 
  case (bar2 ws)
  | 
| 
 | 
   305  | 
  from bar2.prems have "is_prefix (f (length ws) # ws) f" by simp
  | 
| 
 | 
   306  | 
  thus ?case by (iprover intro: bar2)
  | 
| 
 | 
   307  | 
qed
  | 
| 
 | 
   308  | 
  | 
| 
 | 
   309  | 
theorem good_prefix: "\<exists>vs. is_prefix vs f \<and> good vs"
  | 
| 
 | 
   310  | 
  using higman
  | 
| 
 | 
   311  | 
  by (rule good_prefix_lemma) simp+
  | 
| 
 | 
   312  | 
  | 
| 
 | 
   313  | 
  | 
| 
 | 
   314  | 
end
  |