
A Formalisation of an
Access Control Framework

joint work with Chunhan Wu and Xingyuan Zhang from the
PLA University of Science and Technology in Nanjing

Christian Urban
King's College London

CPP, 13 December 2013 -- p. 1/11

Access Control

perhaps most known are Unix-style access control
systems (root super-user, setuid mechanism)

> ls -ld . * */*
drwxr-xr-x 1 alice staff 32768 Apr 2 2010 .
-rw----r-- 1 alice students 31359 Jul 24 2011 manual.txt
-rwsr--r-x 1 bob students 141359 Jun 1 2013 microedit
dr--r-xr-x 1 bob staff 32768 Jul 23 2011 src
-rw-r--r-- 1 bob staff 81359 Feb 28 2012 src/code.c

CPP, 13 December 2013 -- p. 2/11

Access Control

more fine-grained access control is provided by

SELinux
(security enhanced Linux devloped by the NSA;
mandatory access control system)

Role-Compatibility Model
(developed by Amon Ott;
main application in the Apache server)

CPP, 13 December 2013 -- p. 2/11

Operations in the OS
using Paulson's inductive method a state of the
system is a trace, a list of events (system calls):

[e1, . . . , e2]

e ::= CreateFile p f | ReadFile p f | Send p i
| WriteFile p f | Execute p f | Recv p i
| DeleteFile p f | Clone p p’ | CreateIPC p i
| ChangeOwner p u | ChangeRole p r | DeleteIPC p i
| Kill p p’

CPP, 13 December 2013 -- p. 3/11

Valid Traces

we need to restrict the traces to valid traces:

valid []
valid s admissible s e granted s e

valid (e::s)

CPP, 13 December 2013 -- p. 4/11

..

OS ..

RC

Valid Traces

we need to restrict the traces to valid traces:

valid []
valid s admissible s e granted s e

valid (e::s)

CPP, 13 December 2013 -- p. 4/11

..

OS

..

RC

Valid Traces

we need to restrict the traces to valid traces:

valid []
valid s admissible s e granted s e

valid (e::s)

CPP, 13 December 2013 -- p. 4/11

..

OS
..

p ∈ current_procs s
p’ /∈ current_procs s

admissible s (Clone p p’)

..

RC

Valid Traces

we need to restrict the traces to valid traces:

valid []
valid s admissible s e granted s e

valid (e::s)

CPP, 13 December 2013 -- p. 4/11

..

OS

..

RC

..
is_current_role s p r is_file_type s f t

(r, t, Execute) ∈ permissions
granted s (Execute p f)

Design of AC-Policies

''what you specify is what you get but
not necessarily what you want…''

CPP, 13 December 2013 -- p. 5/11

Testing Policies

..core
system

.

your system

.policy +

CPP, 13 December 2013 -- p. 6/11

Testing Policies

..core
system

.

your system

.policy + .

a seed
virus, Trojan

CPP, 13 December 2013 -- p. 6/11

Testing Policies

..core
system

.

your system

.policy + .
tainted

CPP, 13 December 2013 -- p. 6/11

Testing Policies

..core
system

.

your system

.policy + .
tainted

CPP, 13 December 2013 -- p. 6/11

Testing Policies

..core
system

.

your system

.policy + .
tainted

CPP, 13 December 2013 -- p. 6/11

..f ∈ tainted s valid (ReadFile p f::s)
p ∈ tainted (ReadFile p f::s)

Testing Policies

..core
system

.

your system

.policy + .
tainted

.

…

CPP, 13 December 2013 -- p. 6/11

..f ∈ tainted s valid (ReadFile p f::s)
p ∈ tainted (ReadFile p f::s)

A Sound and Complete Test
working purely in the dynamic world does not
work --- infinite state space

working purely on static policies also does not
work --- because of over approximation

suppose a tainted file has type bin and
there is a role r which can both read and write bin-files

then we would conclude that this tainted file can spread
but if there is no process with role r and it will never
been created, then the file actually does not spread

our solution: take a middle ground and record
precisely the information of the initial state, but
be less precise about every newly created object.

CPP, 13 December 2013 -- p. 7/11

A Sound and Complete Test
working purely in the dynamic world does not
work --- infinite state space

working purely on static policies also does not
work --- because of over approximation

suppose a tainted file has type bin and
there is a role r which can both read and write bin-files
then we would conclude that this tainted file can spread

but if there is no process with role r and it will never
been created, then the file actually does not spread

our solution: take a middle ground and record
precisely the information of the initial state, but
be less precise about every newly created object.

CPP, 13 December 2013 -- p. 7/11

A Sound and Complete Test
working purely in the dynamic world does not
work --- infinite state space

working purely on static policies also does not
work --- because of over approximation

suppose a tainted file has type bin and
there is a role r which can both read and write bin-files
then we would conclude that this tainted file can spread
but if there is no process with role r and it will never
been created, then the file actually does not spread

our solution: take a middle ground and record
precisely the information of the initial state, but
be less precise about every newly created object.

CPP, 13 December 2013 -- p. 7/11

A Sound and Complete Test
working purely in the dynamic world does not
work --- infinite state space

working purely on static policies also does not
work --- because of over approximation

suppose a tainted file has type bin and
there is a role r which can both read and write bin-files
then we would conclude that this tainted file can spread
but if there is no process with role r and it will never
been created, then the file actually does not spread

our solution: take a middle ground and record
precisely the information of the initial state, but
be less precise about every newly created object.

CPP, 13 December 2013 -- p. 7/11

Results about our Test
we can show that the objects (files, processes, …)
we need to consider are only finite (at some point
it does not matter if we create another bin-file)
Thm (Soundness)
If our test says an object is taintable, then it is
taintable in the OS, and we produce a sequence
of events that show how it can be tainted.

Thm (Completeness)
If an object is taintable and undeletable⋆, then our
test will find out that it is taintable.

⋆ an object is undeleteable if it exists in the initial state, but
there exists no valid state in which it could have been deleted

CPP, 13 December 2013 -- p. 8/11

Results about our Test
we can show that the objects (files, processes, …)
we need to consider are only finite (at some point
it does not matter if we create another bin-file)
Thm (Soundness)
If our test says an object is taintable, then it is
taintable in the OS, and we produce a sequence
of events that show how it can be tainted.

Thm (Completeness)
If an object is taintable and undeletable⋆, then our
test will find out that it is taintable.

⋆ an object is undeleteable if it exists in the initial state, but
there exists no valid state in which it could have been deleted

CPP, 13 December 2013 -- p. 8/11

Why the Restriction?
assume a process with ID is tainted but gets
killed by another process
after that a proces with the same ID gets
re-created by cloning an untainted process

clearly the new process should be considered
untainted

unfortunately our test will not be able to detect
the difference (we are less precise about newly
created processes)

Is this a serious restriction? We think not …

CPP, 13 December 2013 -- p. 9/11

Why the Restriction?
assume a process with ID is tainted but gets
killed by another process
after that a proces with the same ID gets
re-created by cloning an untainted process

clearly the new process should be considered
untainted

unfortunately our test will not be able to detect
the difference (we are less precise about newly
created processes)

Is this a serious restriction? We think not …

CPP, 13 December 2013 -- p. 9/11

Why the Restriction?
assume a process with ID is tainted but gets
killed by another process
after that a proces with the same ID gets
re-created by cloning an untainted process

clearly the new process should be considered
untainted

unfortunately our test will not be able to detect
the difference (we are less precise about newly
created processes)

Is this a serious restriction? We think not …
CPP, 13 December 2013 -- p. 9/11

Core System
Admins usually ask whether their policy is strong
enough to protect their core system?

..core
system

.
tainted

core system files are typically undeletable
CPP, 13 December 2013 -- p. 10/11

Conclusion
we considered the Role-Compatibility Model
used for securing the Apache Server
13 events, 13 rules for OS admisibility, 14 rules for
RC-granting, 10 rules for tainted

we can scale this to SELinux
more fine-grainded OS events (inodes, hard-links,
shared memory, …)

22 events, 22 admisibility, 22 granting, 15 taintable

hard sell to Ott (who designed the RC-model)
hard sell to the community working on access
control (beyond good science)

CPP, 13 December 2013 -- p. 11/11

Conclusion
we considered the Role-Compatibility Model
used for securing the Apache Server
13 events, 13 rules for OS admisibility, 14 rules for
RC-granting, 10 rules for tainted

we can scale this to SELinux
more fine-grainded OS events (inodes, hard-links,
shared memory, …)

22 events, 22 admisibility, 22 granting, 15 taintable

hard sell to Ott (who designed the RC-model)
hard sell to the community working on access
control (beyond good science)

CPP, 13 December 2013 -- p. 11/11

Salvador, 26. August 2008 -- p. 11/11

