obj2sobj_prop.thy
author chunhan
Fri, 12 Apr 2013 10:46:43 +0100
changeset 2 301f567e2a8e
parent 1 dcde836219bc
child 6 4294abb1f38c
permissions -rw-r--r--
add document

theory obj2sobj_prop 
imports Main rc_theory os_rc deleted_prop
begin

context tainting_s_complete begin

(** file 2 sfile   **)

lemma init_son_deleted_D:
  "\<lbrakk>deleted (File pf) s; f # pf \<in> init_files; valid s\<rbrakk> \<Longrightarrow> deleted (File (f # pf)) s"
apply (induct s, simp)
by (frule valid_cons, frule valid_os, case_tac a, auto dest:init_notin_curf_deleted)

lemma init_parent_undeleted_I:
  "\<lbrakk>\<not> deleted (File (f # pf)) s; f # pf \<in> init_files; valid s\<rbrakk> \<Longrightarrow> \<not> deleted (File pf) s"
by (rule notI, simp add:init_son_deleted_D)

lemma source_dir_in_init:
  "source_dir s f = Some sd \<Longrightarrow> sd \<in> init_files"
by (induct f, auto split:if_splits)

lemma source_dir_of_init: "\<lbrakk>source_dir [] f = Some sd; f \<in> init_files\<rbrakk> \<Longrightarrow> f = sd"
by (induct f, auto)

lemma source_dir_of_init': "f \<in> init_files \<Longrightarrow> source_dir [] f = Some f"
by (induct f, auto)

lemma init_not_curf_imp_deleted:
  "\<lbrakk>f \<in> init_files; f \<notin> current_files s; valid s\<rbrakk> \<Longrightarrow> deleted (File f) s"
apply (induct s, simp)
apply (frule valid_cons, frule valid_os, case_tac a, auto)
done

lemma source_dir_of_init'': 
  "\<lbrakk>f \<in> init_files; \<not> deleted (File f) s; valid s\<rbrakk> \<Longrightarrow> source_dir s f = Some f"
by (induct f, auto)


lemma source_dir_createf:
  "valid (CreateFile p (f#pf) # s) \<Longrightarrow> 
  source_dir (CreateFile p (f#pf) # s) = (source_dir s) ((f#pf)  := source_dir s pf)"
apply (frule valid_os, frule valid_cons)
apply (rule ext, induct_tac x)
apply (auto dest:init_not_curf_imp_deleted)
done

lemma source_dir_createf':
  "valid (CreateFile p f # s) \<Longrightarrow> 
  source_dir (CreateFile p f # s) = (source_dir s) (f := (case (parent f) of
                                                            Some pf \<Rightarrow> source_dir s pf
                                                          | _       \<Rightarrow> None))"
apply (frule valid_os, case_tac f, simp+)
apply (drule source_dir_createf, auto)
done

lemma source_dir_other:
  "\<lbrakk>valid (e # s); \<forall> p f. e \<noteq> CreateFile p f; \<forall> p f. e \<noteq> DeleteFile p f\<rbrakk>
   \<Longrightarrow> source_dir (e#s) = source_dir s"
apply (rule ext, induct_tac x, simp)
apply (auto dest:not_deleted_cons_D)
apply (case_tac [!] e, auto)
done

lemma source_dir_deletef:
  "valid (DeleteFile p f # s) \<Longrightarrow> source_dir (DeleteFile p f # s) f' =  
     (if (source_dir s f') = Some f then parent f else (source_dir s f'))"
apply (frule valid_os, frule valid_cons)
apply (case_tac "f \<in> init_files")
apply (induct_tac f', simp)
apply (auto dest!:init_parent_undeleted_I intro:parent_file_in_init'
            intro!: source_dir_of_init'')[1]
apply (induct_tac f', auto)
done

lemma source_dir_deletef':
  "valid (DeleteFile p f # s) \<Longrightarrow> source_dir (DeleteFile p f # s) = (\<lambda> f'.   
     (if (source_dir s f') = Some f then parent f else (source_dir s f')) )"
by (auto dest:source_dir_deletef)

lemmas source_dir_simps = source_dir_of_init' source_dir_of_init'' source_dir_createf' 
  source_dir_deletef' source_dir_other

declare source_dir.simps [simp del]

lemma source_dir_is_ancient:
  "source_dir s f = Some sd ==> sd \<preceq> f"
apply (induct f)
by (auto simp:source_dir.simps no_junior_def split:if_splits)

lemma no_junior_trans: "\<lbrakk>f \<preceq> f'; f' \<preceq> f''\<rbrakk> \<Longrightarrow> f \<preceq> f''"
by (auto elim:no_juniorE)

lemma ancient_has_parent:
  "[| f \<preceq> f'; f \<noteq> f'|] ==> \<exists> sonf. parent sonf = Some f \<and> sonf \<preceq> f' "
apply (induct f')
apply (simp add:no_junior_def)
apply (case_tac "f = f'")
apply (rule_tac x = "a # f'" in exI, simp add:no_junior_def)
apply (frule no_junior_noteq, simp)
apply clarsimp
apply (rule_tac x = sonf in exI, simp add:no_junior_trans)
done

lemma source_dir_prop:
  "[|\<forall>fn. fn # f' \<notin> current_files s; source_dir s f = Some f'; f \<in> current_files s; valid s|]
  ==> f = f'"
  apply (drule source_dir_is_ancient)
  apply (case_tac "f = f'", simp)
  apply (drule ancient_has_parent, simp, clarsimp)
  apply (drule_tac ancient_file_in_current, simp+)
  apply (case_tac sonf, auto)
  done

lemma current_file_has_sd:
  "\<lbrakk>f \<in> current_files s; valid s\<rbrakk> \<Longrightarrow> \<exists> sd. source_dir s f = Some sd"
apply (induct s arbitrary:f, simp add:source_dir_of_init')
apply (frule valid_cons, frule valid_os, case_tac a, auto simp:source_dir_simps)
apply (case_tac list, simp)
apply (rule_tac f = f in cannot_del_root, simp+)
done

lemma current_file_has_sd':
  "\<lbrakk>source_dir s f = None; valid s\<rbrakk> \<Longrightarrow> f \<notin> current_files s"
by (rule notI, auto dest:current_file_has_sd)

lemma current_file_has_sfile:
  "\<lbrakk>f \<in> current_files s; valid s\<rbrakk> \<Longrightarrow> \<exists> et sd. cf2sfile s f = Some (et, sd)"
apply (frule current_file_has_sd, simp+)
apply (frule current_file_has_etype, auto)
done

lemma current_file_has_sfile':
  "\<lbrakk>f \<in> current_files s; valid s\<rbrakk> \<Longrightarrow> \<exists> sf. cf2sfile s f = Some sf"
by (auto dest:current_file_has_sfile)
  
(*
lemma not_deleted_sf_remains:
  "\<lbrakk>f \<in> current_files s; \<not> deleted (File f) s; valid s\<rbrakk> \<Longrightarrow> "
*)

lemma current_proc_has_sproc:
  "\<lbrakk>p \<in> current_procs s; valid s\<rbrakk> \<Longrightarrow> \<exists> r fr pt u. cp2sproc s p = Some (r, fr, pt, u)"
apply (frule current_proc_has_role, simp+)
apply (frule current_proc_has_type, simp)
apply (frule current_proc_has_forcedrole, simp)
apply (frule current_proc_has_owner, auto)
done

lemma current_proc_has_sproc':
  "\<lbrakk>p \<in> current_procs s; valid s\<rbrakk> \<Longrightarrow> \<exists> sp. cp2sproc s p = Some sp"
by (auto dest!:current_proc_has_sproc)

lemma current_ipc_has_sipc: 
  "\<lbrakk>i \<in> current_ipcs s; valid s\<rbrakk> \<Longrightarrow> \<exists> t. ci2sipc s i = Some t"
by (drule current_ipc_has_type, auto)

lemma init_file_has_sobj:
  "f \<in> init_files \<Longrightarrow> \<exists> t sd. init_obj2sobj (File f) = SFile (t, sd) (Some f)"
by (frule init_file_has_etype, clarsimp)

lemma init_proc_has_sobj:
  assumes pinit:"p \<in> init_processes"
  shows "\<exists> r fr pt u. init_obj2sobj (Proc p) = SProc (r, fr, pt, u) (Some p)"
proof -
  from pinit obtain r where "init_currentrole p = Some r" 
    using init_proc_has_role by (auto simp:bidirect_in_init_def)
  moreover from pinit obtain fr where "init_proc_forcedrole p = Some fr"
    using init_proc_has_frole by (auto simp:bidirect_in_init_def)
  moreover from pinit obtain pt where "init_process_type p = Some pt"
    using init_proc_has_type by (auto simp:bidirect_in_init_def)
  moreover from pinit obtain u where "init_owner p = Some u"
    using init_proc_has_owner by (auto simp:bidirect_in_init_def)
  ultimately show ?thesis by auto 
qed

lemma init_ipc_has_sobj:
  "i \<in> init_ipcs \<Longrightarrow> \<exists> t. init_obj2sobj (IPC i) = SIPC t (Some i)"
using init_ipc_has_type
by (auto simp:bidirect_in_init_def)

lemma init_obj_has_sobj:
  "exists [] obj \<Longrightarrow> init_obj2sobj obj \<noteq> Unknown"
apply (case_tac obj)
apply (simp_all only:exists.simps current_procs.simps current_ipcs.simps current_files.simps) 
apply (auto dest!:init_proc_has_sobj init_file_has_sobj init_ipc_has_sobj)
done

lemma exists_obj_has_sobj:
  "\<lbrakk>exists s obj; valid s\<rbrakk> \<Longrightarrow> obj2sobj s obj \<noteq> Unknown"
apply (case_tac obj)
apply (auto dest!:current_ipc_has_sipc current_proc_has_sproc' current_file_has_sfile' 
            split:option.splits)
done

lemma current_proc_has_srp:
  "\<lbrakk>p \<in> current_procs s; valid s\<rbrakk> \<Longrightarrow> \<exists> srp. source_proc s p = Some srp"
apply (induct s arbitrary:p, simp)
by (frule valid_cons, frule valid_os, case_tac a, auto)

lemma current_proc_has_sobj:
  "\<lbrakk>p \<in> current_procs s; valid s\<rbrakk> \<Longrightarrow> \<exists> r fr t u srp. obj2sobj s (Proc p) = SProc (r,fr,t,u) (Some srp)"
apply (frule current_proc_has_sproc')
apply (auto dest:current_proc_has_srp)
done

lemma current_file_has_sobj:
  "\<lbrakk>f \<in> current_files s; valid s\<rbrakk> \<Longrightarrow> \<exists> t sd srf. obj2sobj s (File f) = SFile (t, sd) srf"
by (auto dest:current_file_has_sfile)

lemma current_ipc_has_sobj:
  "\<lbrakk>i \<in> current_ipcs s; valid s\<rbrakk> \<Longrightarrow> \<exists> t sri. obj2sobj s (IPC i) = SIPC t sri"
by (auto dest:current_ipc_has_sipc)

lemma sobj_has_proc_role:
  "obj2sobj s (Proc p) = SProc (r, fr, t, u) srp \<Longrightarrow> currentrole s p = Some r"
by (auto split:option.splits)

lemma chown_role_aux_valid:
  "\<lbrakk>currentrole s p = Some r; proc_forcedrole s p = Some fr\<rbrakk>
  \<Longrightarrow> chown_role_aux r fr u = currentrole (ChangeOwner p u # s) p"
by (auto split:t_role.splits simp:chown_role_aux_def dest:proc_forcedrole_valid)

lemma chown_role_aux_valid':
  "cp2sproc s p = Some (r, fr, t, u') \<Longrightarrow> chown_role_aux r fr u = currentrole (ChangeOwner p u # s) p"
by (rule chown_role_aux_valid, auto split:option.splits)

lemma chown_type_aux_valid:
  "\<lbrakk>currentrole s p = Some r; currentrole (ChangeOwner p u # s) p = Some nr; type_of_process s p = Some t\<rbrakk>
  \<Longrightarrow> type_of_process (ChangeOwner p u # s) p = Some (chown_type_aux r nr t)" 
apply (auto split:option.splits t_rc_proc_type.splits 
             dest:default_process_create_type_valid
             simp:chown_type_aux_def pot_def pct_def)
done

lemma chown_type_aux_valid':
  "\<lbrakk>cp2sproc s p = Some (r, fr, t, u'); currentrole (ChangeOwner p u # s) p = Some nr\<rbrakk> 
   \<Longrightarrow> type_of_process (ChangeOwner p u # s) p = Some (chown_type_aux r nr t)"
by (rule chown_type_aux_valid, auto split:option.splits)

lemma exec_type_aux_valid:
  "\<lbrakk>currentrole s p = Some r; type_of_process s p = Some t\<rbrakk>
  \<Longrightarrow> type_of_process (Execute p f # s) p = Some (exec_type_aux r t)" 
apply (auto split:option.splits t_rc_proc_type.splits 
             dest:default_process_execute_type_valid
             simp:exec_type_aux_def pet_def)
done

lemma exec_type_aux_valid':
  "cp2sproc s p = Some (r, fr, t, u') \<Longrightarrow> type_of_process (Execute p f # s) p = Some (exec_type_aux r t)" 
by (rule exec_type_aux_valid, auto split:option.splits)

lemma non_initf_frole_inherit:
  "\<lbrakk>f \<notin> init_files; f \<noteq> []\<rbrakk> \<Longrightarrow> forcedrole s f = Some InheritParentRole"
apply (induct s) defer
apply (case_tac a, auto) 
apply (induct f, auto split:option.splits dest:init_frole_has_file)
done

lemma non_initf_irole_inherit:
  "\<lbrakk>f \<notin> init_files; f \<noteq> []\<rbrakk> \<Longrightarrow> initialrole s f = Some InheritParentRole"
apply (induct s) defer
apply (case_tac a, auto) 
apply (induct f, auto split:option.splits dest:init_irole_has_file)
done

lemma deleted_file_frole_inherit:
  "\<lbrakk>deleted (File f) s; f \<in> current_files s\<rbrakk> \<Longrightarrow> forcedrole s f = Some InheritParentRole"
apply (induct s, simp)
apply (case_tac a, auto) 
done

lemma deleted_file_irole_inherit:
  "\<lbrakk>deleted (File f) s; f \<in> current_files s\<rbrakk> \<Longrightarrow> initialrole s f = Some InheritParentRole"
apply (induct s, simp)
apply (case_tac a, auto) 
done

lemma sd_deter_efrole:
  "\<lbrakk>source_dir s f = Some sd; valid s; f \<in> current_files s\<rbrakk> 
  \<Longrightarrow> effforcedrole s f = effforcedrole s sd"
apply (induct f)
apply (drule source_dir_is_ancient, simp add:no_junior_def)
apply (simp add:source_dir.simps split:if_splits)
apply (frule parent_file_in_current', simp)
apply (case_tac "a # f \<in> init_files", simp)
apply (drule_tac deleted_file_frole_inherit, simp, simp add:effforcedrole_def)
apply (drule_tac s = s in non_initf_frole_inherit, simp, simp add:effforcedrole_def)
done

lemma sd_deter_eirole:
  "\<lbrakk>source_dir s f = Some sd; valid s; f \<in> current_files s\<rbrakk> 
  \<Longrightarrow> effinitialrole s f = effinitialrole s sd"
apply (induct f)
apply (drule source_dir_is_ancient, simp add:no_junior_def)
apply (simp add:source_dir.simps split:if_splits)
apply (frule parent_file_in_current', simp)
apply (case_tac "a # f \<in> init_files", simp)
apply (drule_tac deleted_file_irole_inherit, simp, simp add:effinitialrole_def)
apply (drule_tac s = s in non_initf_irole_inherit, simp, simp add:effinitialrole_def)
done

lemma undel_initf_keeps_frole:
  "\<lbrakk>f \<in> init_files; \<not> deleted (File f) s; valid s\<rbrakk>
   \<Longrightarrow> forcedrole s f = init_file_forcedrole f"
apply (induct s, simp)
apply (frule valid_cons, frule valid_os, case_tac a)
apply (auto dest:init_notin_curf_deleted)
done

lemma undel_initf_keeps_efrole:
  "\<lbrakk>f \<in> init_files; \<not> deleted (File f) s; valid s\<rbrakk>
   \<Longrightarrow> effforcedrole s f = erole_functor init_file_forcedrole InheritUpMixed f"
apply (induct f)
apply (drule undel_initf_keeps_frole, simp, simp)
apply (simp add:effforcedrole_def)
apply (frule parent_file_in_init', frule init_parent_undeleted_I, simp+)
apply (drule undel_initf_keeps_frole, simp, simp)
apply (simp add:effforcedrole_def)
done

lemma undel_initf_keeps_irole:
  "\<lbrakk>f \<in> init_files; \<not> deleted (File f) s; valid s\<rbrakk>
   \<Longrightarrow> initialrole s f = init_file_initialrole f"
apply (induct s, simp)
apply (frule valid_cons, frule valid_os, case_tac a)
apply (auto dest:init_notin_curf_deleted)
done

lemma undel_initf_keeps_eirole:
  "\<lbrakk>f \<in> init_files; \<not> deleted (File f) s; valid s\<rbrakk>
   \<Longrightarrow> effinitialrole s f = erole_functor init_file_initialrole UseForcedRole f"
apply (induct f)
apply (drule undel_initf_keeps_irole, simp, simp)
apply (simp add:effinitialrole_def)
apply (frule parent_file_in_init', frule init_parent_undeleted_I, simp+)
apply (drule undel_initf_keeps_irole, simp, simp)
apply (simp add:effinitialrole_def)
done

lemma source_dir_not_deleted:
  "source_dir s f = Some sd \<Longrightarrow> \<not> deleted (File sd) s"
by (induct f, auto simp:source_dir.simps split:if_splits)

lemma exec_role_aux_valid:
  "\<lbrakk>currentrole s p = Some r; source_dir s f = Some sd; owner s p = Some u; 
  f \<in> current_files s; valid s\<rbrakk>
  \<Longrightarrow> exec_role_aux r sd u = currentrole (Execute p f # s) p"
apply (frule sd_deter_eirole, simp+, frule sd_deter_efrole, simp+)
apply (frule source_dir_in_init, drule source_dir_not_deleted)
apply (simp add:undel_initf_keeps_eirole undel_initf_keeps_efrole)
apply (frule file_has_effinitialrole, simp, frule file_has_effforcedrole, simp)
apply (auto split:option.splits t_role.splits simp:map_comp_def exec_role_aux_def
             dest:effforcedrole_valid effinitialrole_valid)
done

lemma exec_role_aux_valid':
  "\<lbrakk>cp2sproc s p = Some (r, fr, t, u); source_dir s f = Some sd; f \<in> current_files s; valid s\<rbrakk>
  \<Longrightarrow> exec_role_aux r sd u = currentrole (Execute p f # s) p"
by (rule exec_role_aux_valid, auto split:option.splits)

lemma cp2sproc_nil_init:
  "init_obj2sobj (Proc p) = (case (cp2sproc [] p) of 
                               Some sp \<Rightarrow> SProc sp (Some p)
                             | _       \<Rightarrow> Unknown)"
by (auto split:option.splits)

lemma cf2sfile_nil_init:
  "init_obj2sobj (File f) = (case (cf2sfile [] f) of 
                               Some sf \<Rightarrow> SFile sf (Some f)
                             | _       \<Rightarrow> Unknown)"
apply (auto split:option.splits simp:etype_of_file_def)
apply (case_tac "f \<in> init_files", simp add:source_dir_of_init')
apply (induct f, simp+)
apply (case_tac "f \<in> init_files", simp add:source_dir_of_init')
apply (induct f, simp+)
done

lemma ci2sipc_nil_init:
  "init_obj2sobj (IPC i) = (case (ci2sipc [] i) of 
                              Some si \<Rightarrow> SIPC si (Some i)
                            | _       \<Rightarrow> Unknown)"
by simp

lemma obj2sobj_nil_init:
  "exists [] obj \<Longrightarrow> obj2sobj [] obj = init_obj2sobj obj" 
apply (case_tac obj) 
apply (auto simp:cf2sfile_nil_init cp2sproc_nil_init ci2sipc_nil_init 
                 source_dir_of_init' etype_of_file_def
           split:if_splits option.splits)
done

(**** cp2sproc simpset ****)

lemma current_proc_has_role':
  "\<lbrakk>currentrole s p = None; valid s\<rbrakk> \<Longrightarrow> p \<notin> current_procs s"
by (rule notI, auto dest:current_proc_has_role)

lemma cp2sproc_chown:
  assumes vs: "valid (ChangeOwner p u # s)"
  shows "cp2sproc (ChangeOwner p u # s) = (cp2sproc s) 
     (p := (case (cp2sproc s p) of
              Some (r,fr,pt,u') \<Rightarrow> (case (chown_role_aux r fr u) of 
                                      Some nr \<Rightarrow> Some (nr,fr,chown_type_aux r nr pt,u)
                                    | _       \<Rightarrow> None)
            | _                 \<Rightarrow> None)
      )" (is "?lhs = ?rhs")
proof-
  have os: "os_grant s (ChangeOwner p u)" and vs': "valid s" using vs
    by (auto dest:valid_cons valid_os)
  have "\<And> x. x \<noteq> p \<Longrightarrow> ?lhs x = ?rhs x"
    by (auto simp:type_of_process.simps split:option.splits t_role.splits)
  moreover have "?lhs p = ?rhs p"
  proof-
    from os have p_in: "p \<in> current_procs s" by (simp+)
    then obtain r fr t u' where csp: "cp2sproc s p = Some (r, fr, t, u')" using vs'
      by (drule_tac current_proc_has_sproc, auto)  
    from os have "u \<in> init_users" by simp
    hence "defrole u \<noteq> None" using init_user_has_role by (auto simp:bidirect_in_init_def)
    then obtain nr where nrole:"chown_role_aux r fr u = Some nr"
      by (case_tac fr, auto simp:chown_role_aux_def)
    have nr_eq: "currentrole (ChangeOwner p u # s) p = chown_role_aux r fr u" 
      using csp by (auto simp:chown_role_aux_valid'[where u = u])  
    moreover have "type_of_process (ChangeOwner p u # s) p = Some (chown_type_aux r nr t)"
      using csp nrole nr_eq 
      by (rule_tac fr = fr and u' = u' in chown_type_aux_valid', simp+)
    moreover have "proc_forcedrole (ChangeOwner p u # s) p = Some fr"
      using csp by (auto split:option.splits)
    moreover have "owner (ChangeOwner p u # s) p = Some u" by simp
    ultimately have "cp2sproc (ChangeOwner p u # s) p = Some (nr, fr, chown_type_aux r nr t, u)" 
      using nrole by (simp)
    thus ?thesis using csp nrole by simp
  qed
  ultimately show ?thesis by (rule_tac ext, auto)
qed

lemma cp2sproc_crole:
  "valid (ChangeRole p r # s) \<Longrightarrow> cp2sproc (ChangeRole p r # s) = (cp2sproc s) 
     (p := (case (cp2sproc s p) of
              Some (r',fr,pt,u) \<Rightarrow> Some (r,fr,pt,u)
            | _                 \<Rightarrow> None)
      )"
apply (frule valid_cons, frule valid_os, simp)
apply (frule current_proc_has_sproc, simp)
apply (rule ext, auto split:option.splits)
done

lemma cp2sproc_exec:
  assumes vs: "valid (Execute p f # s)"
  shows "cp2sproc (Execute p f # s) = (cp2sproc s) 
     (p := (case (cp2sproc s p, source_dir s f) of 
              (Some (r,fr,pt,u), Some sd) \<Rightarrow> (
     case (exec_role_aux r sd u, erole_functor init_file_forcedrole InheritUpMixed sd) of
       (Some r', Some fr') \<Rightarrow> Some (r', fr', exec_type_aux r pt, u)
     | _                   \<Rightarrow> None           )
            | _                \<Rightarrow> None))" (is "?lhs = ?rhs")
proof-
  have os: "os_grant s (Execute p f)" and vs': "valid s" using vs
    by (auto dest:valid_cons valid_os)
  have "\<And> x. x \<noteq> p \<Longrightarrow> ?lhs x = ?rhs x"
    by (auto simp:type_of_process.simps split:option.splits t_role.splits)
  moreover have "?lhs p = ?rhs p"
  proof-
    from os have p_in: "p \<in> current_procs s" by (simp+)
    then obtain r fr t u where csp: "cp2sproc s p = Some (r, fr, t, u)" using vs'
      by (drule_tac current_proc_has_sproc, auto)  
    from os have f_in: "f \<in> current_files s" by simp
    then obtain sd where sdir: "source_dir s f = Some sd" using vs'
      by (drule_tac current_file_has_sd, auto)
    have "currentrole (Execute p f # s) p \<noteq> None" using vs p_in
      by (rule_tac notI, drule_tac current_proc_has_role', simp+)
    then obtain nr where nrole: "currentrole (Execute p f # s) p = Some nr" by auto
    have "proc_forcedrole (Execute p f # s) p \<noteq> None" using vs p_in
      by (rule_tac notI, drule_tac current_proc_has_forcedrole', simp+)
    then obtain nfr where nfrole: "proc_forcedrole (Execute p f # s) p = Some nfr" by auto
    have nr_eq: "currentrole (Execute p f # s) p = exec_role_aux r sd u" 
      using csp f_in sdir vs' by (simp only:exec_role_aux_valid')
    moreover have "type_of_process (Execute p f # s) p = Some (exec_type_aux r t)"
      using csp by (simp only:exec_type_aux_valid')
    moreover have nfr_eq: "proc_forcedrole (Execute p f # s) p = 
                           erole_functor init_file_forcedrole InheritUpMixed sd" 
      using sdir vs' f_in
      apply (frule_tac source_dir_in_init, drule_tac source_dir_not_deleted)
      by (simp add:undel_initf_keeps_efrole sd_deter_efrole)
    moreover have "owner (Execute p f # s) p = Some u" using csp
      by (auto split:option.splits)
    ultimately have "cp2sproc (Execute p f # s) p = Some (nr, nfr, exec_type_aux r t, u)" 
      using nrole nfrole by (simp)
    moreover have "exec_role_aux r sd u = Some nr" using nrole nr_eq by simp
    moreover have "erole_functor init_file_forcedrole InheritUpMixed sd = Some nfr"
      using nfrole nfr_eq by simp
    ultimately show ?thesis using csp sdir by simp 
  qed
  ultimately show ?thesis by (rule_tac ext, auto)
qed

lemma cp2sproc_clone:
  "valid (Clone p p' # s) \<Longrightarrow> cp2sproc (Clone p p' # s) = (cp2sproc s) (p' := 
      (case (cp2sproc s p) of
         Some (r, fr, pt, u) \<Rightarrow> Some (r, fr, clone_type_aux r pt, u)
       | _                   \<Rightarrow> None))"
apply (frule valid_cons, frule valid_os)
apply (rule ext, auto split:option.splits t_rc_proc_type.splits 
                       simp:pct_def clone_type_aux_def
                       dest:current_proc_has_type default_process_create_type_valid)
done

lemma cp2sproc_other:
  "\<lbrakk>valid (e # s); \<forall> p f. e \<noteq> Execute p f; \<forall> p p'. e \<noteq> Clone p p';
    \<forall> p r. e \<noteq> ChangeRole p r; \<forall> p u. e \<noteq> ChangeOwner p u\<rbrakk> \<Longrightarrow> cp2sproc (e#s) = cp2sproc s"
by (case_tac e, auto)

lemmas cp2sproc_simps = cp2sproc_exec cp2sproc_chown cp2sproc_crole cp2sproc_clone cp2sproc_other

lemma obj2sobj_file: "obj2sobj s obj = SFile sf fopt \<Longrightarrow> \<exists> f. obj = File f"
by (case_tac obj, case_tac [!] s, auto split:option.splits if_splits)

lemma obj2sobj_proc: "obj2sobj s obj = SProc sp popt \<Longrightarrow> \<exists> p. obj = Proc p"
by (case_tac obj, case_tac [!] s, auto split:option.splits if_splits)

lemma obj2sobj_ipc: "obj2sobj s obj = SIPC si iopt \<Longrightarrow> \<exists> i. obj = IPC i"
by (case_tac obj, case_tac [!] s, auto split:option.splits if_splits)

lemma obj2sobj_file': 
  "\<lbrakk>obj2sobj s (File f) = sobj; sobj \<noteq> Unknown\<rbrakk> \<Longrightarrow> \<exists> sf srf. sobj = SFile sf srf"
by (case_tac sobj, case_tac [!] s, auto split:option.splits if_splits)

lemma obj2sobj_proc': 
  "\<lbrakk>obj2sobj s (Proc p) = sobj; sobj \<noteq> Unknown\<rbrakk> \<Longrightarrow> \<exists> sp srp. sobj = SProc sp srp"
by (case_tac sobj, case_tac [!] s, auto split:option.splits if_splits)

lemma obj2sobj_ipc': 
  "\<lbrakk>obj2sobj s (IPC i) = sobj; sobj \<noteq> Unknown\<rbrakk> \<Longrightarrow> \<exists> si sri. sobj =  SIPC si sri"
by (case_tac sobj, case_tac [!] s, auto split:option.splits if_splits)

lemma obj2sobj_file_remains_cons:
  assumes vs: "valid (e#s)" and exf: "f \<in> current_files s"
  and SF: "obj2sobj s (File f) = SFile sf srf" 
  and notdeled: "\<not> deleted (File f) (e#s)"
  shows "obj2sobj (e#s) (File f) = SFile sf srf"
proof-
  from vs have os:"os_grant s e" and vs': "valid s" 
    by (auto dest:valid_cons valid_os)
  from notdeled exf have exf': "f \<in> current_files (e#s)" by (case_tac e, auto)
  have "etype_of_file (e # s) f = etype_of_file s f"
    using os vs vs' exf exf' 
    apply (case_tac e, auto simp:etype_of_file_def split:option.splits) 
    by (auto dest:ancient_file_in_current intro!:etype_aux_prop)
  moreover have "source_dir (e # s) f = source_dir s f"
    using os vs vs' exf exf'
    by (case_tac e, auto simp:source_dir_simps dest:source_dir_prop)
  ultimately show ?thesis using vs SF notdeled 
    by (auto split:if_splits option.splits dest:not_deleted_cons_D)
qed

lemma obj2sobj_file_remains_cons':
  "\<lbrakk>valid (e#s); f \<in> current_files s; obj2sobj s (File f) = SFile sf srf; no_del_event (e#s)\<rbrakk>
   \<Longrightarrow> obj2sobj (e#s) (File f) = SFile sf srf"
by (auto intro!:obj2sobj_file_remains_cons nodel_imp_un_deleted
       simp del:obj2sobj.simps)

lemma obj2sobj_file_remains':
  "\<lbrakk>obj2sobj s (File f) = sobj; sobj \<noteq> Unknown; valid (e#s); f \<in> current_files s;
    no_del_event (e#s)\<rbrakk> \<Longrightarrow> obj2sobj (e#s) (File f) = sobj"
apply (frule obj2sobj_file', simp, (erule exE)+)
apply (simp del:obj2sobj.simps)
apply (erule obj2sobj_file_remains_cons', simp+)
done

lemma obj2sobj_file_remains_app:
  "\<lbrakk>obj2sobj s (File f) = SFile sf srf; valid (s' @ s); f \<in> current_files s;
    \<not> deleted (File f) (s'@s)\<rbrakk> \<Longrightarrow> obj2sobj (s'@s) (File f) = SFile sf srf"
apply (induct s', simp)
apply (simp only:cons_app_simp_aux)
apply (frule valid_cons, frule not_deleted_cons_D)
apply (drule_tac s = "s'@s" in obj2sobj_file_remains_cons, auto simp del:obj2sobj.simps)
apply (drule_tac obj = "File f" in not_deleted_imp_exists', simp+)
done

lemma obj2sobj_file_remains_app':
  "\<lbrakk>obj2sobj s (File f) = SFile sf srf; valid (s' @ s); f \<in> current_files s;
    no_del_event (s'@s)\<rbrakk> \<Longrightarrow> obj2sobj (s'@s) (File f) = SFile sf srf"
by (auto intro!:obj2sobj_file_remains_app nodel_imp_un_deleted
       simp del:obj2sobj.simps)

lemma obj2sobj_file_remains'':
  "\<lbrakk>obj2sobj s (File f) = sobj; sobj \<noteq> Unknown; valid (s'@s); f \<in> current_files s;
    no_del_event (s'@s)\<rbrakk> \<Longrightarrow> obj2sobj (s'@s) (File f) = sobj"
apply (frule obj2sobj_file', simp, (erule exE)+)
apply (simp del:obj2sobj.simps)
apply (erule obj2sobj_file_remains_app', simp+)
done

lemma obj2sobj_file_remains''':
  "\<lbrakk>obj2sobj s (File f) = sobj; sobj \<noteq> Unknown; valid (s'@s); f \<in> current_files s;
    \<not>deleted (File f) (s'@s)\<rbrakk> \<Longrightarrow> obj2sobj (s'@s) (File f) = sobj"
apply (frule obj2sobj_file', simp, (erule exE)+)
apply (simp del:obj2sobj.simps)
by (erule obj2sobj_file_remains_app, simp+)

lemma obj2sobj_ipc_remains_cons:
  "\<lbrakk>valid (e#s); i \<in> current_ipcs s; obj2sobj s (IPC i) = SIPC si sri; \<not> deleted (IPC i) (e#s)\<rbrakk>
  \<Longrightarrow> obj2sobj (e#s) (IPC i) = SIPC si sri"
apply (frule valid_cons, frule valid_os, case_tac e)
by (auto simp:ni_init_deled ni_notin_curi split:option.splits
        dest!:current_proc_has_role')

lemma obj2sobj_ipc_remains_cons':
  "\<lbrakk>valid (e#s); i \<in> current_ipcs s; obj2sobj s (IPC i) = SIPC si sri; no_del_event (e#s)\<rbrakk>
  \<Longrightarrow> obj2sobj (e#s) (IPC i) = SIPC si sri"
by (auto intro!:obj2sobj_ipc_remains_cons nodel_imp_un_deleted
       simp del:obj2sobj.simps)

lemma obj2sobj_ipc_remains':
  "\<lbrakk>obj2sobj s (IPC i) = sobj; sobj \<noteq> Unknown; valid (e#s); i \<in> current_ipcs s; 
    no_del_event (e#s)\<rbrakk> \<Longrightarrow> obj2sobj (e#s) (IPC i) = sobj"
apply (frule obj2sobj_ipc', simp, (erule exE)+)
apply (simp del:obj2sobj.simps)
apply (erule obj2sobj_ipc_remains_cons', simp+)
done

lemma obj2sobj_ipc_remains_app:
  "\<lbrakk>obj2sobj s (IPC i) = SIPC si sri; valid (s'@s); i \<in> current_ipcs s; \<not> deleted (IPC i) (s'@s)\<rbrakk>
  \<Longrightarrow> obj2sobj (s'@s) (IPC i) = SIPC si sri"
apply (induct s', simp)
apply (simp only:cons_app_simp_aux)
apply (frule valid_cons, frule not_deleted_cons_D)
apply (drule_tac s = "s'@s" in obj2sobj_ipc_remains_cons, auto simp del:obj2sobj.simps)
apply (drule_tac obj = "IPC i" in not_deleted_imp_exists', simp+)
done

lemma obj2sobj_ipc_remains_app':
  "\<lbrakk>obj2sobj s (IPC i) = SIPC si sri; valid (s'@s); i \<in> current_ipcs s; no_del_event (s'@s)\<rbrakk>
  \<Longrightarrow> obj2sobj (s'@s) (IPC i) = SIPC si sri"
by (auto intro!:obj2sobj_ipc_remains_app nodel_imp_un_deleted
       simp del:obj2sobj.simps)

lemma obj2sobj_ipc_remains'':
  "\<lbrakk>obj2sobj s (IPC i) = sobj; sobj \<noteq> Unknown; valid (s'@s); i \<in> current_ipcs s; 
    no_del_event (s'@s)\<rbrakk> \<Longrightarrow> obj2sobj (s'@s) (IPC i) = sobj"
apply (frule obj2sobj_ipc', simp, (erule exE)+)
apply (simp del:obj2sobj.simps)
apply (erule obj2sobj_ipc_remains_app', simp+)
done

lemma obj2sobj_ipc_remains''':
  "\<lbrakk>obj2sobj s (IPC i) = sobj; sobj \<noteq> Unknown; valid (s'@s); i \<in> current_ipcs s; 
    \<not> deleted (IPC i) (s'@s)\<rbrakk> \<Longrightarrow> obj2sobj (s'@s) (IPC i) = sobj"
apply (frule obj2sobj_ipc', simp, (erule exE)+)
apply (simp del:obj2sobj.simps)
apply (erule obj2sobj_ipc_remains_app, simp+)
done

end

context tainting_s_sound begin

lemma cp2sproc_clone':
  "valid (Clone p p' # s) \<Longrightarrow> cp2sproc (Clone p p' # s) = (cp2sproc s) (p' := cp2sproc s p)"
by (drule cp2sproc_clone, auto split:option.splits simp:clone_type_unchange clone_type_aux_def)

lemmas cp2sproc_simps' =  cp2sproc_exec cp2sproc_chown cp2sproc_crole cp2sproc_clone' cp2sproc_other

lemma clone_sobj_keeps_same:
  "valid (Clone p p' # s) \<Longrightarrow> obj2sobj (Clone p p' # s) (Proc p') = obj2sobj s (Proc p)"
apply (frule valid_cons, frule valid_os, clarsimp)
apply (auto split:option.splits t_rc_proc_type.splits
             dest:current_proc_has_role current_proc_has_forcedrole 
                  current_proc_has_type current_proc_has_owner default_process_create_type_valid
             simp:pct_def clone_type_unchange)
done

end

end