
How to Write a Definitional Package for Isabelle

Stefan Berghofer

Institut für Informatik
Technische Universität München

λ →

∀
=

β
α

Isabelle Developers Workshop, 14.8.2009

Stefan Berghofer How to Write a Definitional Package for Isabelle 1/14



Outline

1 Introduction

2 Examples

3 The General Construction Principle

4 Implementation

Stefan Berghofer How to Write a Definitional Package for Isabelle 2/14



Outline

1 Introduction

2 Examples

3 The General Construction Principle

4 Implementation

Stefan Berghofer How to Write a Definitional Package for Isabelle 3/14



The Definitional Approach

HOL is based on just a few primitives: =, −→, THE / SOME

Properties are described by axioms

More comples concepts must be defined using these constants
Properties have to be derived from definitions by formal proof

Note: reducing everything to primitive concepts “by hand” is
tedious!

The method of ‘postulating’ what we want has many advantages;
they are the same as the advantages of theft over honest toil.
Let us leave them to others and proceed with our honest toil.

— Bertrand Russell, Introduction to Mathematical Philosophy

Stefan Berghofer How to Write a Definitional Package for Isabelle 4/14



The Definitional Approach

HOL is based on just a few primitives: =, −→, THE / SOME
Properties are described by axioms

More comples concepts must be defined using these constants
Properties have to be derived from definitions by formal proof

Note: reducing everything to primitive concepts “by hand” is
tedious!

The method of ‘postulating’ what we want has many advantages;
they are the same as the advantages of theft over honest toil.
Let us leave them to others and proceed with our honest toil.

— Bertrand Russell, Introduction to Mathematical Philosophy

Stefan Berghofer How to Write a Definitional Package for Isabelle 4/14



The Definitional Approach

HOL is based on just a few primitives: =, −→, THE / SOME
Properties are described by axioms

More comples concepts must be defined using these constants

Properties have to be derived from definitions by formal proof

Note: reducing everything to primitive concepts “by hand” is
tedious!

The method of ‘postulating’ what we want has many advantages;
they are the same as the advantages of theft over honest toil.
Let us leave them to others and proceed with our honest toil.

— Bertrand Russell, Introduction to Mathematical Philosophy

Stefan Berghofer How to Write a Definitional Package for Isabelle 4/14



The Definitional Approach

HOL is based on just a few primitives: =, −→, THE / SOME
Properties are described by axioms

More comples concepts must be defined using these constants
Properties have to be derived from definitions by formal proof

Note: reducing everything to primitive concepts “by hand” is
tedious!

The method of ‘postulating’ what we want has many advantages;
they are the same as the advantages of theft over honest toil.
Let us leave them to others and proceed with our honest toil.

— Bertrand Russell, Introduction to Mathematical Philosophy

Stefan Berghofer How to Write a Definitional Package for Isabelle 4/14



The Definitional Approach

HOL is based on just a few primitives: =, −→, THE / SOME
Properties are described by axioms

More comples concepts must be defined using these constants
Properties have to be derived from definitions by formal proof

Note: reducing everything to primitive concepts “by hand” is
tedious!

The method of ‘postulating’ what we want has many advantages;
they are the same as the advantages of theft over honest toil.
Let us leave them to others and proceed with our honest toil.

— Bertrand Russell, Introduction to Mathematical Philosophy

Stefan Berghofer How to Write a Definitional Package for Isabelle 4/14



The Definitional Approach

HOL is based on just a few primitives: =, −→, THE / SOME
Properties are described by axioms

More comples concepts must be defined using these constants
Properties have to be derived from definitions by formal proof

Note: reducing everything to primitive concepts “by hand” is
tedious!

The method of ‘postulating’ what we want has many advantages;
they are the same as the advantages of theft over honest toil.
Let us leave them to others and proceed with our honest toil.

— Bertrand Russell, Introduction to Mathematical Philosophy

Stefan Berghofer How to Write a Definitional Package for Isabelle 4/14



Definitional Packages

Definitional Package

even ≡ lfp (λp x. x = 0 ∨ (∃ n. x = Suc (Suc n) ∧ p n))

inductive even :: nat ⇒ bool
where
even 0
| even n =⇒ even (Suc (Suc n))

Stefan Berghofer How to Write a Definitional Package for Isabelle 5/14



Definitional Packages

Definitional Package

even ≡ lfp (λp x. x = 0 ∨ (∃ n. x = Suc (Suc n) ∧ p n))

inductive even :: nat ⇒ bool
where
even 0
| even n =⇒ even (Suc (Suc n))

Stefan Berghofer How to Write a Definitional Package for Isabelle 5/14



Definitional Packages

Definitional Package

even ≡ lfp (λp x. x = 0 ∨ (∃ n. x = Suc (Suc n) ∧ p n))

inductive even :: nat ⇒ bool
where
even 0
| even n =⇒ even (Suc (Suc n))

Theorem

even 0
even n =⇒ even (Suc (Suc n))

Stefan Berghofer How to Write a Definitional Package for Isabelle 5/14



Running Example: Simple Inductive Package

Does not use the general Knaster-Tarski fixpoint theorem on
complete lattices [Paulson, 2000]

Uses a simple impredicative encoding [Melham, 1992]

Limitations
No support for introduction rules involving arbitrary monotone
operators
Does not prove case analysis (inversion) rules
Only proves a weaker form of the rule induction theorem

How to tackle the problem?

1 Try out the construction on some examples

2 Figure out the general construction principle

3 Write code implementing the construction principle

Stefan Berghofer How to Write a Definitional Package for Isabelle 6/14



Running Example: Simple Inductive Package

Does not use the general Knaster-Tarski fixpoint theorem on
complete lattices [Paulson, 2000]

Uses a simple impredicative encoding [Melham, 1992]

Limitations
No support for introduction rules involving arbitrary monotone
operators
Does not prove case analysis (inversion) rules
Only proves a weaker form of the rule induction theorem

How to tackle the problem?

1 Try out the construction on some examples

2 Figure out the general construction principle

3 Write code implementing the construction principle

Stefan Berghofer How to Write a Definitional Package for Isabelle 6/14



Running Example: Simple Inductive Package

Does not use the general Knaster-Tarski fixpoint theorem on
complete lattices [Paulson, 2000]

Uses a simple impredicative encoding [Melham, 1992]

Limitations

No support for introduction rules involving arbitrary monotone
operators
Does not prove case analysis (inversion) rules
Only proves a weaker form of the rule induction theorem

How to tackle the problem?

1 Try out the construction on some examples

2 Figure out the general construction principle

3 Write code implementing the construction principle

Stefan Berghofer How to Write a Definitional Package for Isabelle 6/14



Running Example: Simple Inductive Package

Does not use the general Knaster-Tarski fixpoint theorem on
complete lattices [Paulson, 2000]

Uses a simple impredicative encoding [Melham, 1992]

Limitations
No support for introduction rules involving arbitrary monotone
operators

Does not prove case analysis (inversion) rules
Only proves a weaker form of the rule induction theorem

How to tackle the problem?

1 Try out the construction on some examples

2 Figure out the general construction principle

3 Write code implementing the construction principle

Stefan Berghofer How to Write a Definitional Package for Isabelle 6/14



Running Example: Simple Inductive Package

Does not use the general Knaster-Tarski fixpoint theorem on
complete lattices [Paulson, 2000]

Uses a simple impredicative encoding [Melham, 1992]

Limitations
No support for introduction rules involving arbitrary monotone
operators
Does not prove case analysis (inversion) rules

Only proves a weaker form of the rule induction theorem

How to tackle the problem?

1 Try out the construction on some examples

2 Figure out the general construction principle

3 Write code implementing the construction principle

Stefan Berghofer How to Write a Definitional Package for Isabelle 6/14



Running Example: Simple Inductive Package

Does not use the general Knaster-Tarski fixpoint theorem on
complete lattices [Paulson, 2000]

Uses a simple impredicative encoding [Melham, 1992]

Limitations
No support for introduction rules involving arbitrary monotone
operators
Does not prove case analysis (inversion) rules
Only proves a weaker form of the rule induction theorem

How to tackle the problem?

1 Try out the construction on some examples

2 Figure out the general construction principle

3 Write code implementing the construction principle

Stefan Berghofer How to Write a Definitional Package for Isabelle 6/14



Running Example: Simple Inductive Package

Does not use the general Knaster-Tarski fixpoint theorem on
complete lattices [Paulson, 2000]

Uses a simple impredicative encoding [Melham, 1992]

Limitations
No support for introduction rules involving arbitrary monotone
operators
Does not prove case analysis (inversion) rules
Only proves a weaker form of the rule induction theorem

How to tackle the problem?

1 Try out the construction on some examples

2 Figure out the general construction principle

3 Write code implementing the construction principle

Stefan Berghofer How to Write a Definitional Package for Isabelle 6/14



Running Example: Simple Inductive Package

Does not use the general Knaster-Tarski fixpoint theorem on
complete lattices [Paulson, 2000]

Uses a simple impredicative encoding [Melham, 1992]

Limitations
No support for introduction rules involving arbitrary monotone
operators
Does not prove case analysis (inversion) rules
Only proves a weaker form of the rule induction theorem

How to tackle the problem?

1 Try out the construction on some examples

2 Figure out the general construction principle

3 Write code implementing the construction principle

Stefan Berghofer How to Write a Definitional Package for Isabelle 6/14



Running Example: Simple Inductive Package

Does not use the general Knaster-Tarski fixpoint theorem on
complete lattices [Paulson, 2000]

Uses a simple impredicative encoding [Melham, 1992]

Limitations
No support for introduction rules involving arbitrary monotone
operators
Does not prove case analysis (inversion) rules
Only proves a weaker form of the rule induction theorem

How to tackle the problem?

1 Try out the construction on some examples

2 Figure out the general construction principle

3 Write code implementing the construction principle

Stefan Berghofer How to Write a Definitional Package for Isabelle 6/14



Running Example: Simple Inductive Package

Does not use the general Knaster-Tarski fixpoint theorem on
complete lattices [Paulson, 2000]

Uses a simple impredicative encoding [Melham, 1992]

Limitations
No support for introduction rules involving arbitrary monotone
operators
Does not prove case analysis (inversion) rules
Only proves a weaker form of the rule induction theorem

How to tackle the problem?

1 Try out the construction on some examples

2 Figure out the general construction principle

3 Write code implementing the construction principle

Stefan Berghofer How to Write a Definitional Package for Isabelle 6/14



Outline

1 Introduction

2 Examples

3 The General Construction Principle

4 Implementation

Stefan Berghofer How to Write a Definitional Package for Isabelle 7/14



The Impredicative Encoding

Reminder: Definition of Basic Logical Operators

P ∧ Q ≡ ∀R. (P −→ Q −→ R) −→ R
P ∨ Q ≡ ∀R. (P −→ R) −→ (Q −→ R) −→ R
Ex P ≡ ∀Q. (∀ x. P x −→ Q) −→ Q

Generalizes to recursive definitions

even ′ 0
even ′ n =⇒ even ′ (Suc (Suc n))

even ′ is least predicate closed under above introduction rules

even ′ ≡
λz. ∀ even ′. even ′ 0 −→ (∀ n. even ′ n −→ even ′ (Suc (Suc n)))
−→ even ′ z

Intuition

even ′ x holds iff P x holds for every predicate P closed under the
above rules.

Stefan Berghofer How to Write a Definitional Package for Isabelle 8/14



The Impredicative Encoding

Reminder: Definition of Basic Logical Operators

P ∧ Q ≡ ∀R. (P −→ Q −→ R) −→ R

P ∨ Q ≡ ∀R. (P −→ R) −→ (Q −→ R) −→ R
Ex P ≡ ∀Q. (∀ x. P x −→ Q) −→ Q

Generalizes to recursive definitions

even ′ 0
even ′ n =⇒ even ′ (Suc (Suc n))

even ′ is least predicate closed under above introduction rules

even ′ ≡
λz. ∀ even ′. even ′ 0 −→ (∀ n. even ′ n −→ even ′ (Suc (Suc n)))
−→ even ′ z

Intuition

even ′ x holds iff P x holds for every predicate P closed under the
above rules.

Stefan Berghofer How to Write a Definitional Package for Isabelle 8/14



The Impredicative Encoding

Reminder: Definition of Basic Logical Operators

P ∧ Q ≡ ∀R. (P −→ Q −→ R) −→ R
P ∨ Q ≡ ∀R. (P −→ R) −→ (Q −→ R) −→ R

Ex P ≡ ∀Q. (∀ x. P x −→ Q) −→ Q

Generalizes to recursive definitions

even ′ 0
even ′ n =⇒ even ′ (Suc (Suc n))

even ′ is least predicate closed under above introduction rules

even ′ ≡
λz. ∀ even ′. even ′ 0 −→ (∀ n. even ′ n −→ even ′ (Suc (Suc n)))
−→ even ′ z

Intuition

even ′ x holds iff P x holds for every predicate P closed under the
above rules.

Stefan Berghofer How to Write a Definitional Package for Isabelle 8/14



The Impredicative Encoding

Reminder: Definition of Basic Logical Operators

P ∧ Q ≡ ∀R. (P −→ Q −→ R) −→ R
P ∨ Q ≡ ∀R. (P −→ R) −→ (Q −→ R) −→ R
Ex P ≡ ∀Q. (∀ x. P x −→ Q) −→ Q

Generalizes to recursive definitions

even ′ 0
even ′ n =⇒ even ′ (Suc (Suc n))

even ′ is least predicate closed under above introduction rules

even ′ ≡
λz. ∀ even ′. even ′ 0 −→ (∀ n. even ′ n −→ even ′ (Suc (Suc n)))
−→ even ′ z

Intuition

even ′ x holds iff P x holds for every predicate P closed under the
above rules.

Stefan Berghofer How to Write a Definitional Package for Isabelle 8/14



The Impredicative Encoding

Reminder: Definition of Basic Logical Operators

P ∧ Q ≡ ∀R. (P −→ Q −→ R) −→ R
P ∨ Q ≡ ∀R. (P −→ R) −→ (Q −→ R) −→ R
Ex P ≡ ∀Q. (∀ x. P x −→ Q) −→ Q

Generalizes to recursive definitions

even ′ 0
even ′ n =⇒ even ′ (Suc (Suc n))

even ′ is least predicate closed under above introduction rules

even ′ ≡
λz. ∀ even ′. even ′ 0 −→ (∀ n. even ′ n −→ even ′ (Suc (Suc n)))
−→ even ′ z

Intuition

even ′ x holds iff P x holds for every predicate P closed under the
above rules.

Stefan Berghofer How to Write a Definitional Package for Isabelle 8/14



The Impredicative Encoding

Reminder: Definition of Basic Logical Operators

P ∧ Q ≡ ∀R. (P −→ Q −→ R) −→ R
P ∨ Q ≡ ∀R. (P −→ R) −→ (Q −→ R) −→ R
Ex P ≡ ∀Q. (∀ x. P x −→ Q) −→ Q

Generalizes to recursive definitions

even ′ 0
even ′ n =⇒ even ′ (Suc (Suc n))

even ′ is least predicate closed under above introduction rules

even ′ ≡
λz. ∀ even ′. even ′ 0 −→ (∀ n. even ′ n −→ even ′ (Suc (Suc n)))
−→ even ′ z

Intuition

even ′ x holds iff P x holds for every predicate P closed under the
above rules.

Stefan Berghofer How to Write a Definitional Package for Isabelle 8/14



The Impredicative Encoding

Reminder: Definition of Basic Logical Operators

P ∧ Q ≡ ∀R. (P −→ Q −→ R) −→ R
P ∨ Q ≡ ∀R. (P −→ R) −→ (Q −→ R) −→ R
Ex P ≡ ∀Q. (∀ x. P x −→ Q) −→ Q

Generalizes to recursive definitions

even ′ 0
even ′ n =⇒ even ′ (Suc (Suc n))

even ′ is least predicate closed under above introduction rules

even ′ ≡
λz. ∀ even ′. even ′ 0 −→ (∀ n. even ′ n −→ even ′ (Suc (Suc n)))
−→ even ′ z

Intuition

even ′ x holds iff P x holds for every predicate P closed under the
above rules.

Stefan Berghofer How to Write a Definitional Package for Isabelle 8/14



Deriving the Properties “by hand”

Demo

Stefan Berghofer How to Write a Definitional Package for Isabelle 9/14



Outline

1 Introduction

2 Examples

3 The General Construction Principle

4 Implementation

Stefan Berghofer How to Write a Definitional Package for Isabelle 10/14



Characteristic Rules

Introduction Rules∧
~xi . ~Ai =⇒

(∧
~yij . ~Bij =⇒ Rkij

~p ~sij

)
j=1,...,mi

=⇒ Rli ~p ~ti

Definition of Predicates

Ri ≡ λ~p ~zi . ∀~P. K1 −→ · · · −→ Kr −→ Pi ~zi

Ki ≡ ∀~xi . ~Ai −→
(
∀~yij . ~Bij −→ Pkij

~sij

)
j=1,...,mi

−→ Pli
~ti

Induction rules (weak)

Ri ~p ~zi =⇒ I1 =⇒ · · · =⇒ Ir =⇒ Pi ~zi

Ii ≡
∧
~xi . ~Ai =⇒

(∧
~yij . ~Bij =⇒ Pkij

~sij

)
j=1,...,mi

=⇒ Pli
~ti

Stefan Berghofer How to Write a Definitional Package for Isabelle 11/14



Characteristic Rules

Introduction Rules∧
~xi . ~Ai =⇒

(∧
~yij . ~Bij =⇒ Rkij

~p ~sij

)
j=1,...,mi

=⇒ Rli ~p ~ti

Definition of Predicates

Ri ≡ λ~p ~zi . ∀~P. K1 −→ · · · −→ Kr −→ Pi ~zi

Ki ≡ ∀~xi . ~Ai −→
(
∀~yij . ~Bij −→ Pkij

~sij

)
j=1,...,mi

−→ Pli
~ti

Induction rules (weak)

Ri ~p ~zi =⇒ I1 =⇒ · · · =⇒ Ir =⇒ Pi ~zi

Ii ≡
∧
~xi . ~Ai =⇒

(∧
~yij . ~Bij =⇒ Pkij

~sij

)
j=1,...,mi

=⇒ Pli
~ti

Stefan Berghofer How to Write a Definitional Package for Isabelle 11/14



Characteristic Rules

Introduction Rules∧
~xi . ~Ai =⇒

(∧
~yij . ~Bij =⇒ Rkij

~p ~sij

)
j=1,...,mi

=⇒ Rli ~p ~ti

Definition of Predicates

Ri ≡ λ~p ~zi . ∀~P. K1 −→ · · · −→ Kr −→ Pi ~zi

Ki ≡ ∀~xi . ~Ai −→
(
∀~yij . ~Bij −→ Pkij

~sij

)
j=1,...,mi

−→ Pli
~ti

Induction rules (weak)

Ri ~p ~zi =⇒ I1 =⇒ · · · =⇒ Ir =⇒ Pi ~zi

Ii ≡
∧
~xi . ~Ai =⇒

(∧
~yij . ~Bij =⇒ Pkij

~sij

)
j=1,...,mi

=⇒ Pli
~ti

Stefan Berghofer How to Write a Definitional Package for Isabelle 11/14



Proof of Introduction Rules

∧
~xi . ~Ai =⇒

(∧
~yij . ~Bij =⇒ Rkij

~p ~sij

)
j=1,...,mi

=⇒ Rli ~p ~ti

Ki ≡ ∀~xi . ~Ai −→
(
∀~yij . ~Bij −→ Pkij

~sij

)
j=1,...,mi

−→ Pli
~ti

Stefan Berghofer How to Write a Definitional Package for Isabelle 12/14



Proof of Introduction Rules

∧
~xi . ~Ai =⇒

(∧
~yij . ~Bij =⇒ Rkij

~p ~sij

)
j=1,...,mi

=⇒ Rli ~p ~ti

Unfolding the definition∧
~xi . ~Ai =⇒

(∧
~yij . ~Bij =⇒ ∀~P. ~K −→ Pkij

~sij

)
j=1,...,mi

=⇒

∀~P. ~K −→ Pli
~ti

Ki ≡ ∀~xi . ~Ai −→
(
∀~yij . ~Bij −→ Pkij

~sij

)
j=1,...,mi

−→ Pli
~ti

Stefan Berghofer How to Write a Definitional Package for Isabelle 12/14



Proof of Introduction Rules

∧
~xi . ~Ai =⇒

(∧
~yij . ~Bij =⇒ Rkij

~p ~sij

)
j=1,...,mi

=⇒ Rli ~p ~ti

Applying introduction rules for ∀ and −→∧
~xi
~P. ~Ai =⇒

(∧
~yij . ~Bij =⇒ ∀~P. ~K −→ Pkij

~sij

)
j=1,...,mi

=⇒
~K =⇒ Pli

~ti

Ki ≡ ∀~xi . ~Ai −→
(
∀~yij . ~Bij −→ Pkij

~sij

)
j=1,...,mi

−→ Pli
~ti

Stefan Berghofer How to Write a Definitional Package for Isabelle 12/14



Proof of Introduction Rules

∧
~xi . ~Ai =⇒

(∧
~yij . ~Bij =⇒ Rkij

~p ~sij

)
j=1,...,mi

=⇒ Rli ~p ~ti

Applying Kli∧
~xi
~P. ~Ai =⇒

(∧
~yij . ~Bij =⇒ ∀~P. ~K −→ Pkij

~sij

)
j=1,...,mi

=⇒

~K =⇒

 ~Ai(∧
~yij . ~Bij =⇒ Pkij

~sij

)
j=1,...,mi

Ki ≡ ∀~xi . ~Ai −→
(
∀~yij . ~Bij −→ Pkij

~sij

)
j=1,...,mi

−→ Pli
~ti

Stefan Berghofer How to Write a Definitional Package for Isabelle 12/14



Outline

1 Introduction

2 Examples

3 The General Construction Principle

4 Implementation

Stefan Berghofer How to Write a Definitional Package for Isabelle 13/14



Stages of a Definitional Package

1 Parse the specification

2 Make definitions

3 Prove characteristic properties

4 Store theorems

Stefan Berghofer How to Write a Definitional Package for Isabelle 14/14



Stages of a Definitional Package

1 Parse the specification

2 Make definitions

3 Prove characteristic properties

4 Store theorems

Stefan Berghofer How to Write a Definitional Package for Isabelle 14/14



Stages of a Definitional Package

1 Parse the specification

2 Make definitions

3 Prove characteristic properties

4 Store theorems

Stefan Berghofer How to Write a Definitional Package for Isabelle 14/14



Stages of a Definitional Package

1 Parse the specification

2 Make definitions

3 Prove characteristic properties

4 Store theorems

Stefan Berghofer How to Write a Definitional Package for Isabelle 14/14



Stefan Berghofer How to Write a Definitional Package for Isabelle 14/14


	Introduction
	Examples
	The General Construction Principle
	Implementation

