### How to Write a Definitional Package for Isabelle

### Stefan Berghofer

Institut für Informatik Technische Universität München



### Isabelle Developers Workshop, 14.8.2009





3 The General Construction Principle







3 The General Construction Principle

### Implementation

 $\bullet$  HOL is based on just a few primitives: =, —, THE / SOME

# The Definitional Approach

 HOL is based on just a few primitives: =, →, THE / SOME Properties are described by axioms

# The Definitional Approach

- HOL is based on just a few primitives: =, →, THE / SOME Properties are described by axioms
- More comples concepts must be defined using these constants

- HOL is based on just a few primitives: =, →, THE / SOME Properties are described by axioms
- More comples concepts must be defined using these constants Properties have to be derived from definitions by formal proof

- HOL is based on just a few primitives: =, →, THE / SOME Properties are described by axioms
- More comples concepts must be defined using these constants Properties have to be derived from definitions by formal proof
- Note: reducing everything to primitive concepts "by hand" is tedious!

- HOL is based on just a few primitives: =, →, THE / SOME Properties are described by axioms
- More comples concepts must be defined using these constants Properties have to be derived from definitions by formal proof
- Note: reducing everything to primitive concepts "by hand" is tedious!

The method of 'postulating' what we want has many advantages; they are the same as the advantages of theft over honest toil. Let us leave them to others and proceed with our honest toil.

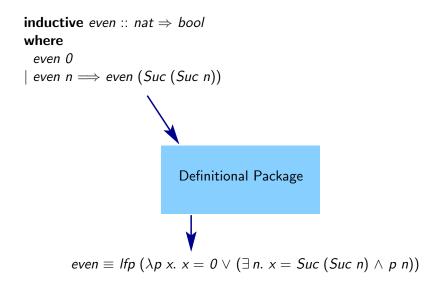
- Bertrand Russell, Introduction to Mathematical Philosophy

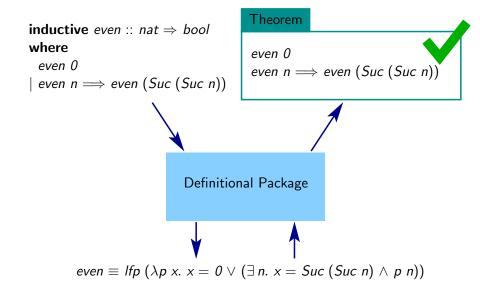
```
inductive even :: nat \Rightarrow bool where
```

even 0

even  $n \Longrightarrow$  even (Suc (Suc n))

**Definitional Package** 





• Does not use the general Knaster-Tarski fixpoint theorem on complete lattices [Paulson, 2000]

- Does not use the general Knaster-Tarski fixpoint theorem on complete lattices [Paulson, 2000]
- Uses a simple impredicative encoding [Melham, 1992]

- Does not use the general Knaster-Tarski fixpoint theorem on complete lattices [Paulson, 2000]
- Uses a simple impredicative encoding [Melham, 1992]
- Limitations

- Does not use the general Knaster-Tarski fixpoint theorem on complete lattices [Paulson, 2000]
- Uses a simple impredicative encoding [Melham, 1992]
- Limitations
  - No support for introduction rules involving arbitrary monotone operators

- Does not use the general Knaster-Tarski fixpoint theorem on complete lattices [Paulson, 2000]
- Uses a simple impredicative encoding [Melham, 1992]
- Limitations
  - No support for introduction rules involving arbitrary monotone operators
  - Does not prove case analysis (inversion) rules

- Does not use the general Knaster-Tarski fixpoint theorem on complete lattices [Paulson, 2000]
- Uses a simple impredicative encoding [Melham, 1992]
- Limitations
  - No support for introduction rules involving arbitrary monotone operators
  - Does not prove case analysis (inversion) rules
  - Only proves a weaker form of the rule induction theorem

- Does not use the general Knaster-Tarski fixpoint theorem on complete lattices [Paulson, 2000]
- Uses a simple impredicative encoding [Melham, 1992]
- Limitations
  - No support for introduction rules involving arbitrary monotone operators
  - Does not prove case analysis (inversion) rules
  - Only proves a weaker form of the rule induction theorem

#### How to tackle the problem?

- Does not use the general Knaster-Tarski fixpoint theorem on complete lattices [Paulson, 2000]
- Uses a simple impredicative encoding [Melham, 1992]
- Limitations
  - No support for introduction rules involving arbitrary monotone operators
  - Does not prove case analysis (inversion) rules
  - Only proves a weaker form of the rule induction theorem

#### How to tackle the problem?

Try out the construction on some examples

- Does not use the general Knaster-Tarski fixpoint theorem on complete lattices [Paulson, 2000]
- Uses a simple impredicative encoding [Melham, 1992]
- Limitations
  - No support for introduction rules involving arbitrary monotone operators
  - Does not prove case analysis (inversion) rules
  - Only proves a weaker form of the rule induction theorem

#### How to tackle the problem?

- Try out the construction on some examples
- Pigure out the general construction principle

- Does not use the general Knaster-Tarski fixpoint theorem on complete lattices [Paulson, 2000]
- Uses a simple impredicative encoding [Melham, 1992]
- Limitations
  - No support for introduction rules involving arbitrary monotone operators
  - Does not prove case analysis (inversion) rules
  - Only proves a weaker form of the rule induction theorem

#### How to tackle the problem?

- Try out the construction on some examples
- Pigure out the general construction principle
- Write code implementing the construction principle





3 The General Construction Principle

### Implementation

### **Reminder: Definition of Basic Logical Operators**

**Reminder: Definition of Basic Logical Operators** 

•  $P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$ 

**Reminder: Definition of Basic Logical Operators** 

• 
$$P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$$
  
•  $P \lor Q \equiv \forall R. (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$ 

**Reminder: Definition of Basic Logical Operators** 

• 
$$P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$$
  
•  $P \lor Q \equiv \forall R. (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$   
•  $Ex P \equiv \forall Q. (\forall x. P x \longrightarrow Q) \longrightarrow Q$ 

### **Reminder: Definition of Basic Logical Operators**

• 
$$P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$$
  
•  $P \lor Q \equiv \forall R. (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$   
•  $Ex P \equiv \forall Q. (\forall x. P x \longrightarrow Q) \longrightarrow Q$ 

### Generalizes to recursive definitions

#### **Reminder: Definition of Basic Logical Operators**

• 
$$P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$$
  
•  $P \lor Q \equiv \forall R. (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$   
•  $Ex P \equiv \forall Q. (\forall x. P x \longrightarrow Q) \longrightarrow Q$ 

### Generalizes to recursive definitions

even' is least predicate closed under above introduction rules

$$even' \equiv \lambda z. \forall even'. even' 0 \longrightarrow (\forall n. even' n \longrightarrow even' (Suc (Suc n))) \longrightarrow even' z$$

#### **Reminder: Definition of Basic Logical Operators**

• 
$$P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$$
  
•  $P \lor Q \equiv \forall R. (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R$   
•  $Ex P \equiv \forall Q. (\forall x. P x \longrightarrow Q) \longrightarrow Q$ 

### Generalizes to recursive definitions

even' is least predicate closed under above introduction rules

$$even' \equiv \lambda z. \forall even'. even' 0 \longrightarrow (\forall n. even' n \longrightarrow even' (Suc (Suc n))) \longrightarrow even' z$$

#### Intuition

even' x holds iff P x holds for every predicate P closed under the above rules.

# Demo





### 3 The General Construction Principle

### 4 Implementation

### Characteristic Rules

### **Introduction Rules**

$$\bigwedge \vec{x}_i. \ \vec{A}_i \Longrightarrow \left(\bigwedge \vec{y}_{ij}. \ \vec{B}_{ij} \Longrightarrow R_{k_{ij}} \ \vec{p} \ \vec{s}_{ij}\right)_{j=1,\dots,m_i} \Longrightarrow R_{l_i} \ \vec{p} \ \vec{t}_i$$

### **Introduction Rules**

$$\bigwedge \vec{x}_i. \ \vec{A}_i \Longrightarrow \left(\bigwedge \vec{y}_{ij}. \ \vec{B}_{ij} \Longrightarrow R_{k_{ij}} \ \vec{p} \ \vec{s}_{ij}\right)_{j=1,\dots,m_i} \Longrightarrow R_{l_i} \ \vec{p} \ \vec{t}_i$$

#### **Definition of Predicates**

$$R_{i} \equiv \lambda \vec{p} \ \vec{z}_{i}. \ \forall \vec{P}. \ K_{1} \longrightarrow \cdots \longrightarrow K_{r} \longrightarrow P_{i} \ \vec{z}_{i}$$
$$K_{i} \equiv \forall \vec{x}_{i}. \ \vec{A}_{i} \longrightarrow \left( \forall \vec{y}_{ij}. \ \vec{B}_{ij} \longrightarrow P_{k_{ij}} \ \vec{s}_{ij} \right)_{j=1,\dots,m_{i}} \longrightarrow P_{l_{i}} \ \vec{t}_{i}$$

### **Introduction Rules**

$$\bigwedge \vec{x}_i. \ \vec{A}_i \Longrightarrow \left(\bigwedge \vec{y}_{ij}. \ \vec{B}_{ij} \Longrightarrow R_{k_{ij}} \ \vec{p} \ \vec{s}_{ij}\right)_{j=1,\dots,m_i} \Longrightarrow R_{l_i} \ \vec{p} \ \vec{t}_i$$

#### **Definition of Predicates**

$$R_{i} \equiv \lambda \vec{p} \ \vec{z}_{i}. \ \forall \vec{P}. \ K_{1} \longrightarrow \cdots \longrightarrow K_{r} \longrightarrow P_{i} \ \vec{z}_{i}$$
$$K_{i} \equiv \forall \vec{x}_{i}. \ \vec{A}_{i} \longrightarrow \left( \forall \vec{y}_{ij}. \ \vec{B}_{ij} \longrightarrow P_{k_{ij}} \ \vec{s}_{ij} \right)_{j=1,\dots,m_{i}} \longrightarrow P_{l_{i}} \ \vec{t}_{i}$$

### Induction rules (weak)

$$\begin{aligned} R_i \ \vec{p} \ \vec{z}_i &\Longrightarrow I_1 \Longrightarrow \cdots \Longrightarrow I_r \Longrightarrow P_i \ \vec{z}_i \\ I_i &\equiv \bigwedge \vec{x}_i. \ \vec{A}_i \Longrightarrow \left(\bigwedge \vec{y}_{ij}. \ \vec{B}_{ij} \Longrightarrow P_{k_{ij}} \ \vec{s}_{ij}\right)_{j=1,\dots,m_i} \Longrightarrow P_{I_i} \ \vec{t}_i \end{aligned}$$

### Proof of Introduction Rules

$$\bigwedge \vec{x}_i. \ \vec{A}_i \Longrightarrow \left(\bigwedge \vec{y}_{ij}. \ \vec{B}_{ij} \Longrightarrow R_{k_{ij}} \ \vec{p} \ \vec{s}_{ij}\right)_{j=1,\dots,m_i} \Longrightarrow R_{l_i} \ \vec{p} \ \vec{t}_i$$

### Proof of Introduction Rules

$$\bigwedge \vec{x}_i. \ \vec{A}_i \Longrightarrow \left(\bigwedge \vec{y}_{ij}. \ \vec{B}_{ij} \Longrightarrow R_{k_{ij}} \ \vec{p} \ \vec{s}_{ij}\right)_{j=1,\dots,m_i} \Longrightarrow R_{l_i} \ \vec{p} \ \vec{t}_i$$

### Unfolding the definition

$$\bigwedge \vec{x}_i. \ \vec{A}_i \Longrightarrow \left( \bigwedge \vec{y}_{ij}. \ \vec{B}_{ij} \Longrightarrow \forall \vec{P}. \ \vec{K} \longrightarrow P_{k_{ij}} \ \vec{s}_{ij} \right)_{j=1,\dots,m_i} \Longrightarrow$$
$$\forall \vec{P}. \ \vec{K} \longrightarrow P_{l_i} \ \vec{t}_i$$

$$K_i \equiv \forall \vec{x}_i. \ \vec{A}_i \longrightarrow \left( \forall \vec{y}_{ij}. \ \vec{B}_{ij} \longrightarrow P_{k_{ij}} \ \vec{s}_{ij} \right)_{j=1,...,m_i} \longrightarrow P_{l_i} \ \vec{t}_i$$

$$\bigwedge \vec{x}_{i}. \ \vec{A}_{i} \Longrightarrow \left(\bigwedge \vec{y}_{ij}. \ \vec{B}_{ij} \Longrightarrow R_{k_{ij}} \ \vec{p} \ \vec{s}_{ij}\right)_{j=1,\dots,m_{i}} \Longrightarrow R_{l_{i}} \ \vec{p} \ \vec{t}_{i}$$

Applying introduction rules for  $\forall$  and  $\longrightarrow$ 

$$\bigwedge \vec{x}_i \ \vec{P}. \ \vec{A}_i \Longrightarrow \left( \bigwedge \vec{y}_{ij}. \ \vec{B}_{ij} \Longrightarrow \forall \vec{P}. \ \vec{K} \longrightarrow P_{k_{ij}} \ \vec{s}_{ij} \right)_{j=1,\dots,m_i} \Longrightarrow$$

$$\vec{K} \Longrightarrow P_{l_i} \ \vec{t}_i$$

$$K_i \equiv \forall \vec{x}_i. \ \vec{A}_i \longrightarrow \left( \forall \vec{y}_{ij}. \ \vec{B}_{ij} \longrightarrow P_{k_{ij}} \ \vec{s}_{ij} \right)_{j=1,...,m_i} \longrightarrow P_{l_i} \ \vec{t}_i$$

### Proof of Introduction Rules

$$\bigwedge \vec{x}_i. \ \vec{A}_i \Longrightarrow \left(\bigwedge \vec{y}_{ij}. \ \vec{B}_{ij} \Longrightarrow R_{k_{ij}} \ \vec{p} \ \vec{s}_{ij}\right)_{j=1,\dots,m_i} \Longrightarrow R_{l_i} \ \vec{p} \ \vec{t}_i$$

### Applying $K_{l_i}$

$$\bigwedge \vec{x}_i \ \vec{P}. \ \vec{A}_i \Longrightarrow \left( \bigwedge \vec{y}_{ij}. \ \vec{B}_{ij} \Longrightarrow \forall \vec{P}. \ \vec{K} \longrightarrow P_{k_{ij}} \ \vec{s}_{ij} \right)_{j=1,\dots,m_i} \Longrightarrow$$

$$\vec{K} \Longrightarrow \left\{ \begin{array}{c} \vec{A}_i \\ \left( \bigwedge \vec{y}_{ij}. \ \vec{B}_{ij} \Longrightarrow P_{k_{ij}} \ \vec{s}_{ij} \right)_{j=1,\dots,m_i} \end{array} \right.$$

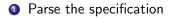
$$K_i \equiv \forall \vec{x}_i. \ \vec{A}_i \longrightarrow \left( \forall \vec{y}_{ij}. \ \vec{B}_{ij} \longrightarrow P_{k_{ij}} \ \vec{s}_{ij} 
ight)_{j=1,...,m_i} \longrightarrow P_{l_i} \ \vec{t}_i$$





3 The General Construction Principle





- Parse the specification
- Ø Make definitions

- Parse the specification
- 2 Make definitions
- O Prove characteristic properties

- Parse the specification
- Ø Make definitions
- O Prove characteristic properties
- Store theorems