Proof Methods

Makarius Wenzel TU München

August 2009

Structured proof texts

Structured proofs:

from facts1 have props using facts2
proof (initial-method)
 body
qed (terminal-method)

Abbreviations:

by $m_1 m_2 \equiv \text{proof } m_1 \text{ qed } m_2$ $\dots \equiv \text{by rule succeed}$ $\dots \equiv \text{by this succeed}$ then $\equiv \text{from this}$

with *facts* \equiv from *facts* and *this*

Unstructured proof scripts

Unstructured proofs:

have props
apply method1
apply method2
apply method3
apply method4
done

ML tactics:

have props
by (tactic my-tactic)

Examples

See Slides1/Ex1.thy

Structured proof state

Isar proof state:

- proof context: *Proof.context*
- chained facts: *thm list*
- primitive goal state: *thm*

 \vdash subgoals \implies main-goal

Interactive ML access:

```
Proof.get_goal (Toplevel.proof_of (Isar.state ())) :
    Proof.context * (thm list * thm)
```

Isar.goal () : thm

Simple methods

Common case:

- Facts: inserted into goal state (emulating tactical encoding of local facts)
- Goal addressing: either all goals or head goal
- Plain arguments (context, additional theorems)

Note: Isar methods are supposed to make progress (might require CHANGED tactical internally)

See $\S6.3.5$ in isar-ref manual

See Slides1/Ex2.thy

More method categories

- 1. structured method with cases, e.g. *induct*
- 2. structured method: strong emphasis on facts, e.g. rule
- 3. simple method (see above)
- 4. tactic emulation, e.g. *rule-tac*
 - naming convention *foo-tac*
 - numeric goal addressing
 - explicit references to internal goal state (invisible from text!)