Nominal Technigues
or, “The Real Thing”

Christian Urban (TU Munich)

http://isabelle.in.tum.de/nominal/

A Formalisation of a CK Machine:
_I_ cK



http://isabelle.in.tum.de/nominal/

Nominal Technigues
or, “The Real Thing”

Christian Urban (TU Munich)

http://isabelle.in.tum.de/nominal/

A Formalisation of a CK Machine:
_{ _ = CK



http://isabelle.in.tum.de/nominal/

Nominal Technigues
or, “The Real Thing”

Christian Urban (TU Munich)

http://isabelle.in.tum.de/nominal/

A Formalisation of a CK Machine:
_{ _ = CK

N

_ ——cbv _



http://isabelle.in.tum.de/nominal/

Lambda-Terms

@ We build on the theory Nominal (which in turn
builds on HOL). Nominal provides an infra-
structure to reason with binders.

atom_decl name

nominal_datatype lam =
Var "name"
| App Illamll Illamll
| Lam "«name»lam" ("Lam [_]._")



Lambda-Terms

@ We build on the theory Nominal (which in turn
builds on HOL). Nominal provides an infra-
structure to reason with binders.

atom_decl name

nominal_datatype lam =
Var "name"
| App Illamll Illamll
| Lam "«name»lam" ("LGm [_]‘_(I)

@ We allow more than one kind of atoms.

@ At the moment we only support single, but nested
binders (future: arbitrary binding structures).



datatype ctx = COnteXtS
Hole ("[1")
| CAppL llc.'.xu |||amu
| CAppR ulamu "CTX"
| CLam "name" "ctx" ("CLam [_]._")

fun
fl“mg . "CTX = Iam = Iam" (n—l[—]ln)
where
llljl[.r]] - 1_||
| "(CAppL E t)[t] = App (E[t]) +"
| "(CAppR 1" E)[t] = App t' (E[t])"
| "(CLam [x].E)[] = Lam [x].(E[t])"

lemma alpha_test:
shows "x2y =—> (CLam [x].0J) # (CLam [y]..1)"
and "(CLam [x].0)[Var x] = (CLam [y].O)[Var y]"
by (simp_all add: ctx.inject lam.inject alpha swap_simps fresh_atm)



Backtrack One Step

@ For our CK machines we actually do not need
contexts for lambdas.

datatype ctx =
Hole ("[1")
| CAppL "ctx" "lam"
| CAppR "lam" "ctx"

fun
filling :: "ctx = lam = lam" ("_[_]")
where
"DI[T]I - Tll
| "(CAppL E t)[t] = App (E[*]) t"
| "(CAppR 1" E)[t] = App t' (E[t])"



Context Composition

fun ctx_compose :: "ctx = ctx = ctx" ("_o _"
where
"o E' =E"
| "(CAppL E t') o E' = CAppL (E o E) t"
| "(CAppR t' E) o E' = CAppR t' (E 0 E')"

lemma ctx_compose:
shows "(E; o E2)[t] = E4[E2[]]"
by (induct E; rule: ctx.induct) (simp_all)

types ctxs = "ctx list"

fun ctx_composes :: "ctxs = ctx" ("_]")
where
ll[]\l/ - |:|ll
| "(E#Es)] = (Esl) o E"



Context Composition

fun ctx_compose :: "ctx = ctx = ctx" ("_o _"
where
"o E' =E"
| "(CAppL E t') o E' = CAppL (E o E') +"
| "(CAppR t' E) o E' = CAppR t' (E 0 E')"

lemma ctx_compose:
shows "(E; o E»)[t] = E4[E2[1]]"
by (induct E; rule: ctx.induct) (simp_all)

Subgoals

1. 0 o Eo[1] = O[E2[1]]

2. \ctx lam. ctx o E[t] = ctx[Ex[t]] = CAppL ctx lam o E;[t] = CAppL ctx
lClPT\I[EzI[T]”]

3. Alam ctx. ctx o E3[t] = ctx[E2[t]] = CAppR lam ctx o E;[t] = CAppR lam
ctx[E2[1]]




Context Composition

fun ctx_compose :: "ctx = ctx = ctx" ("_o _"
where
"o E' =E"
| "(CAppL E t') o E' = CAppL (E o E) t"
| "(CAppR t' E) o E' = CAppR t' (E 0 E')"

lemma ctx_compose:
shows "(E; o E2)[t] = E4[E2[]]"
by (induct E; rule: ctx.induct) (simp_all)

types ctxs = "ctx list"

fun ctx_composes :: "ctxs = ctx" ("_]")
where
ll[]\l/ - |:|ll
| "(E#Es)] = (Esl) o E"



Definition of Types

nominal_datatype ty =
tVar "string"
| TAI"I" ||1.yu u.'.yu (u_ — _n)

types ty_ctx = “(name X ty) list"

abbreviation

"sub_ty_ctx" i: "ty_ctx = ty_ctx = bool" ("_C _")
where

"r'Crl'y=Vx.x€setI'y —> x € set I'y"



Definition of Types

nominal_datatype ty =
tVar "string"
| .'.Ar‘r. "TYU II.‘.yll (II_ % _Il)

types ty_ctx = “(name X ty) list"

abbreviation

"sub_ty_ctx" i: "ty_ctx = ty_ctx = bool" ("_C _")
where

"r'Crl'y=Vx.x€setI'y —> x € set I'y"

@ We can overload C, but this might mean we have
to give explicit type-annotations so that Isabelle
can figure out what is meant.



Typing Judgements

inductive
valid :: "ty_ctx = bool"
where
vi: "valid [1"
| va: "[valid I'; x#I'|=> valid ((x, T)#I")"

inductive
typing :: "ty_ctx = lam = ty = bool" ("_+ _:_")
where
t_Var: "[valid I"; (x,T) € set I'T=> ' Var x: T"
| t_App: "[C 4 :Ti—= T, L'ty Ty = T'- App 1 12 : To"
| f_LGm; "[X#F; (x,Tl)#F 1 T2]| — I - Lam [X]T : Tl - T2"



Tvnina .iidaoements

vaidI' (x,TV€setI' '+: T, =T, TkF+:T

induct

valid I'EVarx: T I'EApptity: T
where x#ETI X T))IE+:T,

Vit " It Lam [X]T . T] — T2
| vo: "[Valid I, XF L |— vaina (X, 1 J#1 )
inductive

typing :: "ty_ctx = lam = ty = bool" ("_F _:_")
where

t_Var:"[valid I'; (x,T) Eset I'| = I' - Var x: T"
| f_App "I[F - 1'1 N T1—>T2,' I 1'2 . Tl]] — I+ App 1-1 1-2 : T2"
| t_Lam: "[x# I (x, T))#T = 1t: To] = I'ELam [x]+: Ty — Tp"



Typing Judgements

inductive
valid :: "ty_ctx = bool"
where
vi: "valid [1"
| va: "[valid I'; x#I'|— valid ((x, T)#T")"

inductive
typing :: "ty_ctx = lam = ty = bool" ("_F _:_")
where
t_Var: "[valid I'; (x,T) € set 'l = ' Var x: T
| t_App: "[C 4 :Ti—= T, L'ty Ty = T'- App 1 12 : To"
| t_Lam: "[x#; (x, T)#TC F+: Ty = ' Lam [x]+: Ty — T,"

declare typing.intros[intro] valid.intros[intro]



Typing Judgements

'"\itl'ﬂ've iy_ctx — We want to have the strong induction
where principle for the typing judgement.

va: "valid 1" 1.) The relation needs to be equivariant.
| va: "[valid I'; x# 1 s=r—rmreoormrr=
inductive

typing :: "ty_ctx = lam = ty = bool" ("_F _:_")
where

t_Var:"[valid I'; (x,T) Eset I'| = I' - Var x: T"
| T_Appl "I[F - 1 Ti— Ty I IR Tl]] — I App t1 1ot T2"
| t_Lam: "[x# I (x, T))#T = +: Ty] = I' = Lam [x].t: Ty — T,"

declare typing.intros[intro] valid.intros[intro]



Typing Judgements

inductive
valid :: "ty_ctx = bool"
where
vi: "valid [1"
| va: "[valid I'; x#I'|— valid ((x, T)#T")"

inductive
typing :: "ty_ctx = lam = ty = bool" ("_F _:_")
where
t_Var: "[valid I'; (x,T) € set 'l = ' Var x: T
| t_App: "[C 4 :Ti—= T, L'ty Ty = T'- App 1 12 : To"
| t_Lam: "[x#; (x, T)#TC F+: Ty = ' Lam [x]+: Ty — T,"

declare typing.intros[intro] valid.intros[intro]

equivariance valid
equivariance typing



Typing Judgements

inductive This proves for us:

valid :: "y_ctx =1 yqlid I' = valid (o I)
where

V1:"V0|id[]" Fl_T:T:>7T'FI_7T'T:7T'T

| vo: "[valid I'; x#I'|—> valid ((x, T)#I")"

inductive
typing :: "ty_ctx = lam = ty = bool" ("_+ _: _")
where
t_Var: "[valid I'; (x,T) € set I'l = ' Var x: T"
| T_APp HI[F = th:Ti—Ty I ~ IR Tl]] — I App t 1y T2"
| t_Lam: "[x#; (x, T)#T F1:Ty] = ' Lam [x].t: Ty — Ty"

declare typing.intros[intro] valid.intros[intro]

equivariance valid
equivariance typing



Typing Judgements (2)

inductive
typing :: "ty_ctx = lam = ty = bool" ("_F _:_")
where
t_Var:"[valid I'; (x,T) €Eset ' = '+ Var x: T"
| 1'_App "I[F ~ 1 Ti—To; I o Tl]] — I - APP t 1y T2"
| t_Lam: "[x#; (x, T)#LC E1:T] = ' Lam [x]+: T, — T"

nominal_inductive typing



Typing Judgements (2)

inductive
typing :: "ty_ctx = lam = ty = bool" ("_F _:_")
where
t_Var:"[valid I'; (x,T) €Eset ' = '+ Var x: T"
| 1'_App "I[F ~ 1 Ti—To; I o Tl]] — I - APP t 1y T2"
| t_Lam: "[x#; (x, T)#T = 1+:T,] = '+ Lam [x].t: T, — T,"

Subgoals

ILAXT Tt To. [x# T (x, 1)l Et: T = x# T

2 ANXT Tyt o [x# T (x, Ty)o:I = 1: Ty] = x # Lam [x].t
BMANXT Tyt To [x# 0 (x, Tl E+: T = x# T — T,

nominal_inductive typing



Typing Judgements (2)

inductive
typing :: "ty_ctx = lam = ty = bool" ("_F _:_")
where
t_Var:"[valid I'; (x,T) €Eset ' = '+ Var x: T"
| 1'_App "I[F ~ 1 Ti—To; I o Tl]] — I - App t 1y T2"
| 1-—Lam: lll[x#l-v: (xlTl)#F =t T2]| — I'  Lam [x]-r : Tl — T2"

lemma ty_fresh:
fixes x::"name"
and T:'ty"
shows "x#T"
by (induct T rule: ty.induct)
(simp_all add: fresh_string)

nominal_inductive typing



Typing Judgements (2)

inductive
typing :: "ty_ctx = lam = ty = bool" ("_F _:_")
where
t_Var:"[valid I'; (x,T) €Eset ' = '+ Var x: T"
| 1'_App “I[F ~ 1 Ti—To; I o Tl]] — I - App t 1y T2"
| t_Lam: "[x# D (x, T)#IT = +: T,] = I' = Lam [x].t: Ty — T,"

lemma ty_fresh:
fixes x::"name"
and T:'ty"
shows "x#T"
by (induct T rule: ty.induct)
(simp_all add: fresh_string)

nominal_inductive typing
by (simp_all add: abs_fresh ty_fresh)



Weakening

lemma weakening:
fixes I'y I'y::"ty_ctx"
assumesa: "I'{ —+: T"
and b: "valid I'y"
and "Il C Ty
shows "I's —+: T"
usingab c
by (nominal_induct I'y t T avoiding: I', rule: typing.strong_induct)
(auto simp add: atomize_all atomize_imp)



Weakening

lemma weakening:
fixes I'y I'y::"ty_ctx"
assumesa: "'t H+: T"
and b: "valid I'y"
and "y CI,"
shows "I's —+: T"
usingab c
by (nominal_induct I'y t T avoiding: I'; rule: typing.strong_induct)
(auto simp add: atomize_all atomize_imp)

@ This proof is can be found automatically, but that
tells us not much...



Lemma / Theorem / Corollary

@ Lemmas / Theorems / Corollary are of the form:

theorem theorem_name:
fixes x::"type"

assumes "assm;"
and "assmy"

shows '"statement"

@ Grey parts are optional.

@ Assumptions and the (goal)statement must be of
type bool.



Lemma / Theorem / Corollary

@ Lemmas / Theorems / Corollary are of the form:

theorem theorem_name:
fixes x::"type"

assumes "assm;"
and "assmy"
lemma weakening:

shows s fixes I'y I'q:i"ty_ctx"
assumesa: "I'y Ht: T"
® Grey parts are optional. and b: "valid I","

o Assumptions and the (g¢ @nd ¢ "'t C I'

type bool.

shows "I'y - 1+: T




lemma weakening:
fixes 'y f’2::"1'9y_c1'x" Struct. of an Ind. Proof

assumesa:"I't —Ht+: T
and b: "valid I'y"
and (o "1"1 g F2"
shows "I'y = 1: T"
usingab ¢
proof(nominal_induct I'y t T avoiding: I', rule: typing.strong_induct)
case (t_Var I'y x T)
show "I's = Var x: T"
next
case (t_App I'y 11 T; Ta t3)
show "I'y = App 11 121 Ty"

next
case (t_Lamx I'y T; t Ty)

show "I'y = Lam [x].t: Ty — TL"
qed



Cases

@ Each case is of the form:

case (Name x...)
have nl: "statmentl" by justification
have n2: "statment2" by justification

show "statment" by justification

® Grey parts are optional.
@ Justifications can also be: using ...by ...



Cases

@ Each case is of the form:

case (Name x...)
have nl: "statmentl" by justification
have n2: "statment2" by justification

show "statment" by justification

® Grey parts are optional.

@ Justifications can also be: using ...by ...
using ih by ...
using nl n2 n3 by ...
using lemma_name...by ...



Cases

@ Each case is of the form:

case (Name x...)
have nl: "statmentl" by justification
have n2: "statment2" by justification

show "statment" by justification

@ Grey parts are optional. s
@ Justifications can also be: using ...by .. e
using ih by ...

using nl n2 n3 by ...
using lemma_name...by ...




Justifications

@ Omitting proofs

sorry

@ Assumptions
by fact

@ Automated proofs
by simp simplification (equations, definitions)
by auto simplification & proof search

(many goals)

by force simplification & proof search
(first goal)

by blast proof search



validI' (x, T) € set I
I'Varx: T

lemma weakening:
fixes I'y I'y:i"ty_ctx"
assumesa:"I'y Ht: T"
and b: "valid I'y"
and c. "1"1 g Fz“
shows "I'y = 1: T"
usingab ¢
proof(nominal_induct I'y t T avoiding: I'y rule: typing.strong_induct)
case (t_Var I'y x T)
have al: "valid I'," by fact
have a2: "I'y C I'y" by fact
have a3: "(x,T) € (set I';)" by fact
have a4: "(x,T) € (set I';)" using a2 a3 by simp
show "I'y = Var x : T" using al a4 by auto
next ...



X#FTL (X, T)l'F1t:T,
I'kLam[x]t: Ty — T,

next
case (t_Lamx I'y T; + T»)
have vc: "x#1I'," by fact
have ih: "[valid ((x, T )#I2); (x, T)#IT C (x, T1)#I ]
—> (x,T1)#I; - +:T," by fact
have al: "I'y C I';y" by fact
have a2: "(x,T1)#I'y C (x,T1)#I';" using al by simp
have bl: "valid I'y" by fact
have b2: "valid ((x,T1)#1I';)" using vc bl by auto
have b3: "(x,T1)#1I'y = 1 : Ty" using ih b2 a2 by simp
show "I'; = Lam [x].t : T;—T," using b3 vc by auto
next ...



X#FTL (X, T)l'F1t:T,
I'kLam[x]t: Ty — T,

next
case (t_Lamx I'y T; + T»)
have vc: "x#1I'," by fact
have ih: "[valid ((x, T )#I2); (x, T)#IT C (x, T1)#I ]
—> (x,T1)#I; - +:T," by fact
have "I'y C I'," by fact
then have a2: "(x, T )#I'y C (x,T1)#I'>" by simp
have "valid I'y" by fact
then have b2: "valid ((x,T1)#1I';)" using vc by auto
have "(x,T{)#I'y = t: T," using ih b2 a2 by simp
then show "I'y = Lam [x].t : T;—T," using vc by auto
next ...



A Seqguence of Facts

have n1: *..."
have n2: "..."

U

have nn: *. . ."
have "..." using n1 n2...nn

n

have ...
moreover have "...

moreover have ...
ultimately have “...

n



X#FTL (X, T)l'F1t:T,
I'kFlam[x]t: Ty — T,

next
case (t_Lamx I'y T; + T»)
have vc: "x#1I'," by fact
have ih: "[valid ((x, T )#I2); (x, T)#IT C (x, T1)#I ]
—> (x,T1)#I; - +:T," by fact
have "I'y C I'," by fact
then have "(x, T{)#I'y C (x, T )#I," by simp
moreover
have "valid I'y" by fact
then have "valid ((x,T1)#1I';)" using vc by auto
ultimately have "(x,T1)#I'y = t: T," using ih by simp
then show "I'y = Lam [x].t : T;—T," using vc by auto
next ...



X#FTL (X, T)l'F1t:T,
I'kFlam[x]t: Ty — T,

next
case (t_Lamx I'y T; + T»)
have vc: "x#1I'," by fact
have ih: "[valid ((x, T )#I2); (x, T)#IT C (x, T1)#I ]
—> (x,T1)#I; - +:T," by fact
have "I'y C I'," by fact
then have "(x, T{)#I'y C (x, T )#I," by simp
moreover
have "valid I'y" by fact
then have "valid ((x,T1)#1I';)" using vc by auto
ultimately have "(x,T1)#I'y = t: T," using ih by simp
then show "I'y = Lam [x].t : T;—T," using vc by auto
qged (auto)



Capture-Avoiding Subst.

@ We next want to intfroduce an evaluation relation
and a CK machine.

@ For this we need the notion of capture-avoiding
substitution.

consts
subst :: "lam = name = lam = lam" ("_[_:=_1")

nominal_primrec
"(Var x)[y::=s] = (if x=y then s else (Var x))"
"(App t1 t2)ly:i=s] = App (T1ly+:=s]) (f2[y+:=s])"
"x#(y.s) = (Lam [x].1)[y::=s] = Lam [x].(+[y::=s])"



Capture-Avoiding Subst.

@ We next want to intfroduce an evaluation relation
and a CK machine.

@ For this we need the notion of capture-avoiding
substitution.

consts
subst :: "lam = name = lam = lam" ("_[_:=_1")

nominal_primrec
"(Var x)[y::=s] = (if x=y then s else (Var x))"
"(App t1 T2)ly::=s] = App (t1ly::=s]) (ta[y::=s])"
"x#(y.s) = (Lam [x].1)[y::=s] = Lam [x].(+[y::=s])"

@ Despite its looks, this is a total function!



Bound Names Function

@ However there is a problem with the bound names
function:

consts
bnds :: "lam = name set"

nominal_primrec
"bnds (Var x) = {}"
"bnds (App t1 T2) = bnds (+;) U bnds (t5)"
"bnds (Lam [x].t) = bnds () U {x}"

lemma
shows "bnds (Lam [x].Var x) = {x}"
and "bnds (Lam [y].Vary) = {y}"
by (simp_all)



Boiind Names Fiinction

Assume X # .
@ Howe

funci

consts
bnds :: "lc

nominal_pr
"bnds (Var x) = {}"
"bnds (App t1 T2) = bnds (+;) U bnds (t5)"
"bnds (Lam [x].t) = bnds () U {x}"

lemma
shows "bnds (Lam [x].Var x) = {x}"
and "bnds (Lam [y].Vary) = {y}"
by (simp_all)




Boiind Names Fiinction

Assume X # .
@ Howe

funci Lam [x].Var x = Lam [y].Vary

consts
bnds :: "lc

nominal_pr
"bnds (Var x) = {}"
"bnds (App t1 T2) = bnds (+;) U bnds (t5)"
"bnds (Lam [x].t) = bnds () U {x}"

lemma
shows "bnds (Lam [x].Var x) = {x}"
and "bnds (Lam [y].Vary) = {y}"
by (simp_all)




Boiind Names Fiinction

Assume X # .
@ Howe

funci Lam [x].Var x = Lam [y].Vary

cm‘f: y, onds (Lam [x].Var x) = bnds (Lam [y].Vary)

nominal_pr
"bnds (Var x) = {}"
"bnds (App t1 T2) = bnds (+;) U bnds (t5)"
"bnds (Lam [x].t) = bnds () U {x}"

lemma
shows "bnds (Lam [x].Var x) = {x}"
and "bnds (Lam [y].Vary) = {y}"
by (simp_all)




Boiind Names Fiinction

Assume X # .
@ Howe

funci Lam [x].Var x = Lam [y].Vary

cm‘f: y, onds (Lam [x].Var x) = bnds (Lam [y].Vary)

nominal_pr {x}={y}
"bnds (Var x) = {}"
“bnds (App t1 T2) = bnds (1) U bnds (t3)"
"bnds (Lam [x].t) = bnds (t) U {x}"

lemma
shows "bnds (Lam [x].Var x) = {x}"
and "bnds (Lam [y].Vary) = {y}"
by (simp_all)




Bound Names Function

@ However there is a problem with the bound names
function:

consts
bnds :: "lam = name set"

nominal_primrec
"bnds (Var x) = {}"
"bnds (App t1 T2) = bnds (+;) U bnds (t5)"
"bnds (Lam [x].t) = bnds () U {x}"

lemma
shows "bnds (Lam [x].Var x) = {x}"
and "bnds (Lam [y].Vary) = {y}"
by (simp_all)



Capture-Avoiding Subst.

consts
subst :: "lam = name = lam = lam" ("_[_:=_1")

nominal_primrec
"(Var x)[y::=s] = (if x=y then s else (Var x))"
"(App t1 t2)ly:=s] = App (t1[y::=s]) (t2[y+:=s])"
"x#(y.s) = (Lam [x].1)[y::=s] = Lam [x].(t[y::=s])"



Capture-Avoiding Subst.

consts
subst :: "lam = name = lam = lam" ("_[_:=_1")

nominal_primrec
"(Var x)[y::=s] = (if x=y then s else (Var x))"
"(App 11 T2)ly:=s] = App (tily::=s]) (ta[y::=s])"
"x#(y.s) = (Lam [x].1)[y::=s] = Lam [x].(t[y+:=s])"

Freshness Condition for Binders (FCB)
Vats.a# f = a # fats




Capture-Avoiding Subst.

consts
subst :: "lam = name = lam = lam" ("_[_:=_1")

nominal_primrec
"(Var x)[y::=s] = (if x=y then s else (Var x))"
"(App 11 T2)ly:=s] = App (tily::=s]) (ta[y::=s])"
"x#(y.s) = (Lam [x].1)[y::=s] = Lam [x].(t[y+:=s])"

Freshness Condition for Binders (FCB)

Vats.a# f=>a# fats
Ax1yl ...... = x1 # Lam [x1].yl




Capture-Avoiding Subst.

consts
subst :: "lam = name = lam = lam" ("_[_:=_1")

nominal_primrec
"(Var x)[y::=s] = (if x=y then s else (Var x))"
“(App t1 t2)ly:i=s] = App (ti[y::=s]) (t2[y::=s])"
"x#(y,s) => (Lam [x].1)[y::=s] = Lam [x].(t[y+:=s])"
apply(finite_guess)+
apply(rule TrueI)+
apply(simp add: abs_fresh)+
apply(fresh_guess)+
done

Freshness Condition for Binders (FCB)

Vats.a# f=>a# fats
Ax1yl ...... = x1 # Lam [x1].yl




Capfum-A\/nidinn Qiihst

FCB for Bound Variable Function:
consts Ax1yl ...... = x1 # (yl U {x1}) J
SUbST " "k-\u- TT7 vAMALIIN 7 anangy 7 A | QI R —

nominal_primrec
"(Var x)[y::=s] = (if x=y then s else (Var x))"
“(App t1 t2)ly:i=s] = App (ti[y::=s]) (t2[y::=s])"
"x#(y.s) = (Lam [x].)[y::=s] = Lam [x].(t[y::=s])"
apply(finite_guess)+
apply(rule TrueI)+
apply(simp add: abs_fresh)+
apply(fresh_guess)+
done

Freshness Condition for Binders (FCB)

Vats.a# f=>a# fats
Ax1yl ...... = x1 # Lam [x1].yl




Evaluation Relation

inductive
eval :: "lam = lam = bool" ("_{ _")
where
e_Lam: "Lam [x].t {} Lam [x].t"
| e_App: "[t1U Lam [x1.t; tod} V) t[xi=vIl v] = App t1 12 U V"

declare eval.intros[intro]



Evaluation Relation

inductive
eval :: "lam = lam = bool" ("_ | _")
where
e_Lam: "Lam [x].t {} Lam [x].t"
| e_App: "[t1U Lam [x1.1; tad} v t[x:=v I} v] = App 11 T2 { V"

declare eval.intros[intro]

Lam [x].t { Lam [x].t

t1 4 Lam [x].t t UV t[xi=v]lv
App 1'1 1'2 ‘U’ \




Values

inductive
val :: "lam = bool"
where
v_Lam[intro]: "val (Lam [x].e)"

lemma eval_to_val:
assumes a: "t |} "
shows "val t"

using a by (induct) (auto)



Values

inductive
val :: "lam = bool"
where
v_Lam[intro]: "val (Lam [x].e)"

lemma eval_to_val:
assumes a: "t | "
shows "val t"

using a by (induct) (auto)

@ If our language contained natural numbers,
booleans, etc., we would expand on this definition.



CK Machine

@ A CK machine works on configurations {_,_)
consisting of a lambda-term and a list of contexts.

inductive
machine :: "lam=>ctxs=-lam=>ctxs=-bool" ("(__) +— (_._)")
where
my: "(App e; es,Es) — (ey,(CAppL U ey)#Es)"
| ma: "val v —=> (v,(CAppL I ey)#Es) — (e,,(CAppR v LI)#Es)"
| ms: "val v —=> (v,(CAppR (Lam [x].e) (I)#Es) > (e[x::=v] Es)"



CK Machine

@ A CK machine works on configurations {_,_)
consisting of a lambda-term and a list of contexts.

inductive
machine :: "lam=>ctxs=-lam=>ctxs=-bool" ("(__) +— (_._)")
where
my: "(App e; es,Es) — (ey,(CAppL U ey)#Es)"
| ma: "val v —=> (v,(CAppL I ey)#Es) — (e,,(CAppR v LI)#Es)"
| ms: "val v —=> (v,(CAppR (Lam [x].e) (I)#Es) > (e[x::=v] Es)"

Initial state of
the CK machine:

(1.[1)




CK Machine

@ A CK machine works on configurations {_,_)
consisting of a lambda-term and a list of contexts.

inductive
machine :: "lam=>ctxs=-lam=>ctxs=-bool" ("(__) +— (_._)")
where
my: "(App e; es,Es) — (ey,(CAppL U ey)#Es)"
| ma: "val v —=> (v,(CAppL I ey)#Es) — (e,,(CAppR v LI)#Es)"
| ms: "val v —=> (v,(CAppR (Lam [x].e) (I)#Es) > (e[x::=v] Es)"

inductive
"machines" :: "lam=>ctxs=>lam=>ctxs=bool" ("{_,_) —* (_._)")
where
ms;: "(e,Es) —* (e,Es)"
| mss: "|[<€1,E51> —> <€2,E52>; (62,ES2> —* <63,E53>]|
— <€1,E51> —* <€3,E53>"



Our Goal

@ Our goal is to show that the result the machine
calculates corresponds to the value the evaluation
relation generates and vice versa. That means:

t v (t[]) —* (v.[])

with v being a value.



Left-to-Right Direction

corollary eval_implies_machines:
assumes a: "t | t"
shows "(t,[1) —* (t'[])"
using a using eval_implies_machines_ctx by simp



Left-to-Right Direction

lemma ms;s:
assumes a: "{ey,Es;) —* (es,Esz)" "(es Ess) —* (e3,Es;3)"
shows "(e; Es1) —* (e3 Es;)"

using a by (induct) (auto)

corollary eval_implies_machines:
assumes a: "t | t"
shows "(t,[]) —* (t'.[])"
using a using eval_implies_machines_ctx by simp



Left-to-Right Direction

lemma ms;s:
assumes a: "{ey,Es;) —* (es,Esz)" "(es Ess) —* (e3,Es;3)"
shows "(e; Es1) —* (e3 Es;)"

using a by (induct) (auto)

theorem eval_implies_machines_ctx:
assumes a: "t | 1"
shows "(t,Es) —* (t'Es)"
using a
by (induct arbitrary: Es)
(metis eval_to_val machine.intros ms; mss msz v_Lam)+

corollary eval_implies_machines:
assumes a: "t | t"
shows "(t,[]) —* (¥ [)"
using a using eval_implies_machines_ctx by simp



Left-to-Right Direction

lemma ms;s:
assumes a: "{ey,Es;) —* (es,Esz)" "(es Ess) —* (e3,Es;3)"
shows "{e;,Es;) —* (e3,Es3)"

u: Sledgehammer:

1l Can be used at any point in the development.

(

u!
b‘

Isabelle
C(

e e



Left-to-Right Direction

lemma ms;s:
assumes a: "{ey,Es;) —* (es,Esz)" "(es Ess) —* (e3,Es;3)"
shows "{e;,Es;) —* (e3,Es3)"

u: Sledgehammer:

1l Can be used at any point in the development.

problem
u N
b Isabelle external
prover
C(

e e



Left-to-Right Direction

lemma ms;s:
assumes a: "{ey,Es;) —* (es,Esz)" "(es Ess) —* (e3,Es;3)"
shows "{e;,Es;) —* (e3,Es3)"

u: Sledgehammer:

1l Can be used at any point in the development.

: problem
u ~
b

external
Isabelle
. prover




Left-to-Right Direction

lemma ms;s:
assumes a: "{ey,Es;) —* (es,Esz)" "(es Ess) —* (e3,Es;3)"
shows "(e; Es1) —* (e3 Es;)"

using a by (induct) (auto)

theorem eval_implies_machines_ctx:
assumes a: "t | 1"
shows "(t,Es) —* (t'Es)"
using a
by (induct arbitrary: Es)
(metis eval_to_val machine.intros ms; mss msz v_Lam)+

corollary eval_implies_machines:
assumes a: "t | t"
shows "(t,[]) —* (¥ [)"
using a using eval_implies_machines_ctx by simp



Right-to-Left Direction

@ The statement for the other direction is as
follows:

lemma machines_implies_eval:
assumes a: "{t,[]) —* (v,[]}"
and b: "val V"
shows "t { v"



Right-to-Left Direction

@ The statement for the other direction is as
follows:

lemma machines_implies_eval:
assumes a: "{t,[]) —* (v,[]}"
and b: "val V"
shows "t { v"
oops



Right-to-Left Direction

@ The statement for the other direction is as
follows:

lemma machines_implies_eval:
assumes a: "{t,[]) —* (v,[]}"

and b: "val v"
shows "t { v"
oops

@ We can prove this direction by introducing a
small-step reduction relation.



CBV Reduction

inductive

cbv :: "lam=>lam=>bool" ("_ —cbv _")
where

cbvy: "val v=> App (Lam [x].t) v —>cbv t[x::=v]"
| cbva: "t —cbv t' => App t T —>cbv App t' 1"
| cbvs: "t —>cbv ' = App t2 t —>cbv App 15 "

@ Later on we like to use the strong induction
principle for this relation.



CBV Reduction

inductive

cbv :: "lam=>lam=>bool" ("_ —cbv _")
where

cbvy: "val v=> App (Lam [x].t) v —>cbv t[x::=v]"
| cbvy: "t —>cbv ' = App t t3 —>cbv App t' 15"
| cbvs: "t —>cbv ' = App t2 t —>cbv App 15 "

@ Later on we like to use the strong induction
principle for this relation.

Conditions:

1. Av x t.val v= x # App Lam [x].t v
2. A\vxt.val v=> x # t[x:=v]




CBV Reduction

inductive

cbv :: "lam=>lam=-bool" ("_ —>cbv _")
where

cbvy: "[val v; x#v] = App (Lam [x].t) v —cbv t[x:i=v]"
| cbvylintrol: "t —cbv t' = App t +5 —>cbv App t' 1,"
| cbvs[intro]: "t —cbv ' = App t» t —>cbv App T, "

@ The conditions that give us automatically the
strong induction principle require us to add the
assumption x # v. This makes this rule less
useful.



Strong Induction Principle

lemma subst_eqvt[eqvt]:
fixes m::"name prm"
shows "7 (t1[x::=13]) = (7 o +1)[(7r * x)::=(7 2 1,)]"
by (hominal_induct t; avoiding: x 12 rule: lam.strong_induct)
(auto simp add: perm_bij fresh_atm fresh_bij)

lemma fresh_fact:
fixes z::"name"
shows "[z#s; (z=y V z#1)] = z#t[y::=s]"
by (nominal_induct 1 avoiding: z y s rule: lam.strong_induct)
(auto simp add: abs_fresh fresh_prod fresh_atm)

equivariance val
equivariance cbv
nominal_inductive cbv
by (simp_all add: abs_fresh fresh_fact)



lemma subst_rename:
assumes a: "y#+1"
shows "t[x::=s] = ([(y,x)]* 1)[y::=s]"
using a
by (nominal_induct t avoiding: x y s rule: lam.strong_induct)
(auto simp add: calc_atm fresh_atm abs_fresh)

lemma better_cbvy[introl:
assumes a: "val v"
shows "App (Lam [x].t) v —cbv t[x::=v]"
proof -
obtain y::"name" where fs: "y#(x,t,v)"
by (rule exists_fresh) (auto simp add: fs_namel)
have "App (Lam [x].t) v = App (Lam [yl.([(y.x)]® 1)) v" using fs
by (auto simp add: lam.inject alpha’ fresh_prod fresh_atm)
also have "... —cbv ([(y,x)]®*)[y::=v]" using fs a
by (auto simp add: cbvy fresh_prod)
also have "... = ¥[x::=v]" using fs
by (simp add: subst_rename[symmetric] fresh_prod)
finally show "App (Lam [x].¥) v —>cbv [x::=v]" by simp
ged



CBV Reduction*

“cbvs" :: "lam = lam = bool" (" _ ——cbv* _")
where
cbvsq[intro]: "e —cbv* e"
| cbvss[introl: "[e;——cbv ey ey —cbv* es] = e; —>cbv* e3"

lemma cbvss[intro]:
assumes a: "e; —>cbv* ey" "es ——cbv* e3"
shows "e; —>cbv* e3"

using a by (induct) (auto)



CBV Reduction*

inductive
“cbvs" :: "lam = lam = bool" (" _ ——cbv* _")
where
cbvsq[intro]: "e —cbv* e"
| cbvss[introl: "[e;——cbv ey ey —cbv* es] = e; —>cbv* e3"
lemma cbvss[intro]:
assumes a: "e; —>cbv* e,
shows "e; —>cbv* e3"
using a by (induct) (auto)

ey —cbv* e3"

lemma cbv_in_ctx:
assumes a: "t —>cbv t"
shows "E[t] —>cbv E[t]"

using a by (induct E) (auto)



CK Machine Implies CBV*

lemma machines_implies_cbvs:
assumes a: "(e,[]) —* (e’ [])"
shows "e —cbv* e
using a by (auto dest: machines_implies_cbvs_ctx)



CK Machine Implies CBV*

lemma machine_implies_cbvs_ctx:
assumes a: "(e,Es) — (&' Es')"
shows "(Esl)[e] —>cbv* (Es'|)[e]"
using a by (induct) (auto simp add: ctx_compose intro: cbv_in_ctx)

lemma machines_implies_cbvs:
assumes a: "{e,[]) —* (&' [])"
shows "e —cbv* e
using a by (auto dest: machines_implies_cbvs_ctx)



CK Machine Implies CBV*

lemma machine_implies_cbvs_ctx:
assumes a: "(e,Es) — (&' Es')"
shows "(Esl)[e] —>cbv* (Es'|)[e]"
using a by (induct) (auto simp add: ctx_compose intro: cbv_in_ctx)

If we had not derived the better
cbv-rule, then we would have to do an
explicit renaming here.

lemma machines_implies_cbvs:
assumes a: "{e,[]) —* (&' [])"
shows "e —cbv* e
using a by (auto dest: machines_implies_cbvs_ctx)



CK Machine Implies CBV*

lemma machine_implies_cbvs_ctx:
assumes a: "(e,Es) — (&' Es')"
shows "(Esl)[e] —>cbv* (Es'|)[e]"
using a by (induct) (auto simp add: ctx_compose intro: cbv_in_ctx)

lemma machines_implies_cbvs_ctx:
assumes a: "(e,Es) —* (e Es’)"
shows "(Esl)[e] —cbv* (Es'])[e]"
using a
by (induct) (auto dest: machine_implies_cbvs_ctx)

lemma machines_implies_cbvs:
assumes a: "{e,[]) —* (&' [])"
shows "e —cbv* e
using a by (auto dest: machines_implies_cbvs_ctx)



CBV™* Implies Evaluation

@ We need the following scaffolding lemmas in
order to show that cbv-reduction implies
evaluation.

lemma eval_val:
assumes a: "val "
shows "t {} t"

using a by (induct) (auto)

lemma e_App_elim:

assumes a: "App 1 t2 4 V"

shows "I x t V. t; { Lam [x]+ A t3 { V' A T[x:=v' ] V"
using a by (cases) (auto simp add: lam.inject)



lemma cbv_eval:
assumes a: "t; —>cbv 1" "t5 13"
shows "1'1 ~U« 1'3"
using a
by (induct arbitrary: t3)
(auto intro: eval_val dest!: e_App_elim)

lemma cbvs_eval:
assumes a: "t; —>cbv* 15" "ty |} 3"
shows "t; | 13"

using a by (induct) (auto simp add: cbv_eval)

lemma cbvs_implies_eval:
assumes a: "t —cbv* v" "val V"
shows "t {} v"
using a
by (induct)
(auto simp add: eval_val cbvs_eval dest: cbvs,)



Right-to-Left Direction

@ Via the the cbv-reduction relation we can finally
show that the CK machine implies the evaluation
relation.

theorem machines_implies_eval:
assumes a: "(t,[]) —* (t2,[])"

and b: "val 15"
shows "1'1 ~U« 1'2"
proof -

from a have "t; —cbv* 1," by (simp add: machines_implies_cbvs)
then show "t |} ;" using b by (simp add: cbvs_implies_eval)
ged



Preservation and Progress

@ Next we like to prove a type preservation and an
progress lemma for the cbv-reduction relation.

theorem cbv_type_preservation:
assumes a: "t —cbv t"
and b:"I'++:T"
shows"I'— ¢t : T"

theorem progress:
assumes a: "[JFt: T"
shows "(3 1. + —>cbv 1) V (val t)"



Preservation and Progress

@ Next we like to prove a type preservation and an
progress lemma for the cbv-reduction relation.

theorem cbv_type_preservation:
assumes a: "t —cbv t"
and b:"I'++:T"
shows "'t : T

theorem progress:
assumes a: "[JFt: T"
shows "(A 1. + —cbv 1) V (val 1)"

@ We need the property of type-substitutivity.



lemma valid_elim: . )
assumes a: "valid ((x, T)#I")" Some Side-Lemmas

shows "x#I" A valid I
using a by (cases) (auto)

lemma valid_insert:
assumes a: "valid (A@[(x,T)]@I')"
shows "valid (A@T)"
using a
by (induct A)
(auto simp add: fresh_list_append fresh_list_cons dest!: valid_elim)

lemma fresh_list:
shows "y#xs = (V x € set xs. y#x)"
by (induct xs) (simp_all add: fresh_list_nil fresh_list_cons)

lemma context_unique:
assumes al: "valid I
and a2:"(x,T) € set I'"
and a3:"(x,U) € set I'"
shows "T = U"
using al a2 a3
by (induct) (auto simp add: fresh_list fresh_prod fresh_atm)



lemma type_substitution_aux:

“52”’" corollary type_substitution:
::ows assumes a: "(X, TY#I'Fe: T"
using a and b:"I'He: T"
proof (1 Shows "I" I- e[x::=e']: T"
avoiaing: x e A rule: typing.strong_induct)

case (t_Var I"'y Tx e A)
then have al: "valid (A@[(x,T)]@I")"
and a2:"(y,T) € set (A@[(x,T)]@I')"
and a3:"I' e’ : T" by simp_all
from al have a4: "valid (A@I")" by (rule valid_insert)
{ assume eq: "x=y"
from al a2 have "T=T" using eq by (auto intro: context_unique)
with a3 have "A@I" I Var y[x::=e'] : T" using eq a4 by (auto intro: weakening) }
moreover
{ assume ineq: "x#y"
from a2 have "(y,T) € set (A@I")" using ineq by simp
then have "A@I |- Var y[x::=e'] : T" using ineq a4 by auto }
ultimately show "A@I" I Var y[x::=e'] : T" by blast
ged (force simp add: fresh_list_append fresh_list_cons)+



lemma type_substitution_aux:
assumes a: "A@[(x, T)@I'+e: T"
and b:"I'Fe:T"
shows "A@I I e[x::i=e']: T"
usinga b
proof (nominal_induct I'="A@[(x,T)]@I"e T
avoiding: x e" A rule: typing.strong_induct)
case (t_Var I"'y Tx e A)
then have al: "valid (A@[(x,T)]@I")"
and a2:"(y,T) € set (A@[(x,T)]@I')"
and a3:"I' e’ : T" by simp_all
from al have a4: "valid (A@I")" by (rule valid_insert)
{ assume eq: "x=y"
from al a2 have "T=T" using eq by (auto intro: context_unique)
with a3 have "A@I" I Var y[x::=e'] : T" using eq a4 by (auto intro: weakening) }
moreover
{ assume ineq: "x#y"
from a2 have "(y,T) € set (A@I")" using ineq by simp
then have "A@I |- Var y[x::=e'] : T" using ineq a4 by auto }
ultimately show "A@I" I Var y[x::=e'] : T" by blast
ged (force simp add: fresh_list_append fresh_list_cons)+



lemma type_substitution_aux:

assumes a: "A@[(x,T) @' Fe: T valid I (x, T) € set I
and b:"I'ke: T" 'Varx: T
shows "A@I |- e[x:i=e']: T"

usingab

proof (nominal_induct I'="A@[(x,T)]@I"e T
avoiding: x e" A rule: typing.strong_induct)
case (t_Var I"'y Tx e A)
then have al: "valid (A@[(x,T)]@I")"
and a2:"(y,T) € set (A@[(x,T)]@I')"
and a3:"I' e’ : T" by simp_all
from al have a4: "valid (A@I")" by (rule valid_insert)
{ assume eq: "x=y"
from al a2 have "T=T" using eq by (auto intro: context_unique)
with a3 have "A@I" I Var y[x::=e'] : T" using eq a4 by (auto intro: weakening) }
moreover
{ assume ineq: "x#y"
from a2 have "(y,T) € set (A@I")" using ineq by simp
then have "A@I |- Var y[x::=e'] : T" using ineq a4 by auto }
ultimately show "A@I" I Var y[x::=e'] : T" by blast
ged (force simp add: fresh_list_append fresh_list_cons)+



Type Substitutivity

lemma type_substitution_aux:
assumes a: "A@R[(x,T)@I'+e: T"
and b:"I'ke': T"
shows "A@TI' I e[x::=e']: T"

corollary type_substitution:
assumes a: "(X,T)#I'Fe: T"
and b:"I'e: T"
shows "I'" - e[x::ze'] : T"
using a b type_substitution_aux[where A="[]"]
by (auto)



Inversion Lemmas

lemma t_App_elim:
assumes a: "I' = App t1t2: T
shows"IT.I't1: T —TATEH2:T"
using a by (cases) (auto simp add: lam.inject)

lemma t_Lam_elim:
assumes ty: "I' = Lam [x].t : T"
and fc: "x#I™
shows "3 T Te. T=Ty > Ty A (X,T])#F 1 T2"
using ty fc
by (cases rule: typing.strong_cases)
(auto simp add: alpha lam.inject abs_fresh ty_fresh)

I‘|_'|'13T1—)T2 F|_T21T1 X#F (X,T1)32F|_1':T2
' Appty ta: T I'Lam [x]+: Ty — T,




Type Preservation

theorem cbv_type_preservation:

assumes a: "t —>cbv "

and b: "I+ T

shows"I' -t : T"
usingab
by (nominal_induct avoiding: I' T rule: cbv.strong_induct)

(auto destl: +_Lam_elim t_App_elim
simp add: type_substitution ty.inject)

corollary cbvs_type_preservation:
assumes a: "t —>cbv* t"
and b:"I'kH+:T"
shows "I" =+ T"
usingab
by (induct) (auto intro: cbv_type_preservation)



Progress Lemma

@ Finally we can establish the progress lemma:

lemma canonical_tArr:
assumes a: "[]Ft: Tl — T2"
and b: "val t"
shows "I x t'. + = Lam [x].t"
using b a by (induct) (auto)

theorem progress:
assumes a: "[]JFt: T"
shows "(3 1.+ —>cbv 1) V (val t)"
using a
by (induct I'="[]::ty_ctx" + T)
(auto introl: cbv.intros dest: canonical_tArr)



Progress Lemma

@ Finally we can establish the progress lemma:

lemma canonical_tArr:
assumes a: "[]Ft: Tl — T2"
and b: "val "
shows "I x t'. + = Lam [x].t"
using b a by (induct) (auto)

@ This lemma is stated with extensions in mind.

theorem progress:
assumes a: "[]JFt: T"
shows "(3 1.+ —cbv 1) V (val t)"
using a
by (induct I'="[]::ty_ctx" + T)
(auto introl: cbv.intros dest: canonical_tArr)



Extensions

@ With only minimal modifications the proofs can be
extended to the language given by:

nominal_datatype lam =

Var "name"
| App "lam" "lam"
| Lam "«name»lam" ("Lam [_]._")
| Num "nat"
| Minus "lam" "lam" ("_ -- _
| Plus "lam" "lam" ("_ ++ _")
| TRUE
| FALSE
| IF Illamll Illamll Illamll
| Fix "«name»lam" ("Fix [_]._")
| Zet "lam"
| Eqi "lam" "lam"



Formalisation of LF

(joint work with Cheney and Berghofer)

| = |(—|Pr'oof |




Formalisation of LF

(joint work with Cheney and Berghofer)

= Pm@ Alg.

Q.



Formalisation of LF

(joint work with Cheney and Berghofer)

LN-@Q—’@ @
1st Solution Proof

(each time one needs to check ~31pp of informal paper proofs)



Formalisation of LF

(joint work with Cheney and Berghofer)

LN-@Q—’@ @
1st Solution Proof

def _
2nd Solution Proof m=p Alg:®

(each time one needs to check ~31pp of informal paper proofs)



Formalisation of LF

(joint work with Cheney and Berghofer)

.(-@Q»m
@
1st Solution Proof

def

2nd Solution Proof m=p Alg:®

3rd Solution | = Proof Alg.

(each time one needs to check ~31pp of informal paper proofs)



Two Health Warnings ;0)

Theorem provers should come with two health
warnings:



Two Health Warnings ;0)

Theorem provers should come with two health
warnings:

@ Theorem provers are addictivel

(Xavier Leroy: "Building [proof] scripts is surprisingly
addictive, in a videogame kind of way...")



Two Health Warnings ;0)

Theorem provers should come with two health
warnings:

@ Theorem provers are addictivel
(Xavier Leroy: "Building [proof] scripts is surprisingly
addictive, in a videogame kind of way...")

@ Theorem provers cause you to lose faith in your
proofs done by hand!

(Michael Norrish, Mike Gordon, me, very possibly others)



Answers to Exercises

@ Given a finite set of atoms. What is the support
of this set?




Answers to Exercises

@ Given a finite set of atoms. What is the support
of this set? If S is finite, then supp(S) = S.




Answers to Exercises

@ Given a finite set of atoms. What is the support
of this set? If S is finite, then supp(S) = S.

@ What is the support of the set of all atoms?



Answers to Exercises

@ Given a finite set of atoms. What is the support
of this set? If S is finite, then supp(S) = S.

@ What is the support of the set of all atoms?
Let A = {ao, a .. .}, then SUPP(A) = J.



Answers to Exercises
@ Given a finite set of atoms. What is the support
of this set? If S is finite, then supp(S) = S.

@ What is the support of the set of all atoms?
Let A = {ao, a .. .}, then SUPP(A) = J.

@ From the set of all atoms take one atom out.
What is the support of the resulting set?



Answers to Exercises

@ Given a finite set of atoms. What is the support
of this set? If S is finite, then supp(S) = S.

@ What is the support of the set of all atoms?
Let A = {ao, a .. .}, then SUPP(A) = J.

@ From the set of all atoms take one atom out.
What is the support of the resulting set?

supp(A — {a}) = {a}.



Answers to Exercises

@ Given a finite set of atoms. What is the support
of this set? If S is finite, then supp(S) = S.

@ What is the support of the set of all atoms?
Let A = {ao, a .. .}, then SUPP(A) = J.

@ From the set of all atoms take one atom out.
What is the support of the resulting set?

supp(A — {a}) = {a}.

@ Are there any sets of atoms that have infinite
support?



Answers to Exercises

@ Given a finite set of atoms. What is the support
of this set? If S is finite, then supp(S) = S.

@ What is the support of the set of all atoms?
Let A = {ao, a .. .}, then SUPP(A) = J.

@ From the set of all atoms take one atom out.
What is the support of the resulting set?

supp(A — {a}) = {a}.
@ Are there any sets of atoms that have infinite

support? If both S and A — S are infinite then
supp(S) = A.



Thank you very much!





