
Proof Contexts

Makarius Wenzel
TU München

August 2009

Aspects of locality

Locality means . . .

• working relatively to a context
(proof environment or local theory)

• replacing logical encodings by native elements of Isabelle/Isar

• moving results between contexts via morphisms
e.g. from abstract theory to concrete application

Consequences:

• improved flexibility and scalability

• simplified construction and composition of add-on tools

• block-structured operations, instead of fiddling with variables

1

Proof context elements

{
fix x
have B x 〈proof 〉

}
note 〈

V
x . B x 〉

{
assume A
have B 〈proof 〉

}
note 〈A =⇒ B 〉

{
def x ≡ a
have B x 〈proof 〉

}
note 〈B a〉

{
obtain a where B a 〈proof 〉
have C 〈proof 〉

}
note 〈C 〉

2

Examples

See Slides2/Ex1.thy

3

Clausal statements

Universal clauses: fixes x assumes A x shows B x
based on primitive Isar context elements

Existential clauses: obtains a where B a . . . expands to
fixes thesis assumes

∧
a. B a =⇒ thesis and . . . shows thesis

Examples:
theorem

assumes ∃ x . B x
obtains a where B a

theorem
assumes A ∧ B
obtains A and B

theorem
assumes A ∨ B
obtains (left) A | (right) B

theorem
fixes x y :: nat
obtains (lt) x < y | (eq) x = y | (gt) x > y

4

Generic context data

Internally record of data-slots (dynamically typed disjoint sums)

Programming interface recovers strongly static typing

functor ProofDataFun(ARGS): RESULT, where

ARGS = sig type T val init: theory → T end

RESULT = sig val get: context → T val map: (T → T) → context → context end

Example content:

• Logical declarations (variables, assumptions)

• Definitions (terms, theorems)

• Type-inference information

• Syntax annotations (mixfix grammar)

• Hints for proof tools (simpset, claset, arithmetic setup etc.)

5

Examples

See Slides2/Ex2.thy

6

