
Tactics and Generic
Proof Procedures

Christian Urban

Munich, 13 August 2009 – p. 1/19



Apply vs ML
lemma disj_swap:
shows "P ∨ Q =⇒ Q ∨ P"

apply(erule disjE)
apply(rule disjI2)
apply(assumption)
apply(rule disjI1)
apply(assumption)
done

let
val ctxt = @{context}
val goal = @{prop "P ∨ Q =⇒ Q ∨ P"}
val facts = []
val schms = ["P", "Q"]

in
Goal.prove ctxt schms facts goal
(fn _ =>

etac @{thm disjE} 1
THEN rtac @{thm disjI2} 1
THEN atac 1
THEN rtac @{thm disjI1} 1
THEN atac 1)

end

Munich, 13 August 2009 – p. 2/19



Apply vs ML
lemma disj_swap:
shows "P ∨ Q =⇒ Q ∨ P"

apply(erule disjE)
apply(rule disjI2)
apply(assumption)
apply(rule disjI1)
apply(assumption)
done

let
val ctxt = @{context}
val goal = @{prop "P ∨ Q =⇒ Q ∨ P"}
val facts = []
val schms = ["P", "Q"]

in
Goal.prove ctxt schms facts goal
(fn _ =>

etac @{thm disjE} 1
THEN rtac @{thm disjI2} 1
THEN atac 1
THEN rtac @{thm disjI1} 1
THEN atac 1)

end

Munich, 13 August 2009 – p. 2/19



Tactics and tactic
val foo_tac =

(etac @{thm disjE} 1
THEN rtac @{thm disjI2} 1
THEN atac 1
THEN rtac @{thm disjI1} 1
THEN atac 1)

lemma
shows "P ∨ Q =⇒ Q ∨ P"

apply(tactic {* foo_tac *})
done

THEN just strings tactics together (tactic combinators or tacticals).

Munich, 13 August 2009 – p. 3/19



Tactics and tactic
val foo_tac =

(etac @{thm disjE} 1
THEN rtac @{thm disjI2} 1
THEN atac 1
THEN rtac @{thm disjI1} 1
THEN atac 1)

lemma
shows "P ∨ Q =⇒ Q ∨ P"

apply(tactic {* foo_tac *})
done

THEN just strings tactics together (tactic combinators or tacticals).

Munich, 13 August 2009 – p. 3/19



Type of Tactics
The type of tactics is

thm -> thm Seq.seq

The lazy sequences are possible successor states. The
simplest tactics are:

fun no_tac thm = Seq.empty

fun all_tac thm = Seq.single thm

The possibilities can be explored on the Isabelle level using
back.

Munich, 13 August 2009 – p. 4/19



Type of Tactics
The type of tactics is

thm -> thm Seq.seq

The lazy sequences are possible successor states. The
simplest tactics are:

fun no_tac thm = Seq.empty

fun all_tac thm = Seq.single thm

The possibilities can be explored on the Isabelle level using
back.

Munich, 13 August 2009 – p. 4/19



Goal States are Theorems
This might be surprising, since in general there are still
subgoals to be proved.

fun my_print_tac ctxt thm =
let

val _ = tracing (Syntax.string_of_term ctxt (prop_of thm))
in

Seq.single thm
end

In general a goal state is the theorem

S1 ... Sn =⇒ #C

Munich, 13 August 2009 – p. 5/19



Goal States are Theorems
This might be surprising, since in general there are still
subgoals to be proved.

fun my_print_tac ctxt thm =
let

val _ = tracing (Syntax.string_of_term ctxt (prop_of thm))
in

Seq.single thm
end

In general a goal state is the theorem

S1 ... Sn =⇒ #C

Munich, 13 August 2009 – p. 5/19



Goal States are Theorems
This might be surprising, since in general there are still
subgoals to be proved.

fun my_print_tac ctxt thm =
let

val _ = tracing (Syntax.string_of_term ctxt (prop_of thm))
in

Seq.single thm
end

In general a goal state is the theorem

S1 ... Sn =⇒ #C

Munich, 13 August 2009 – p. 5/19



Tactics for Manipulating
the Goal States

lemma shows "P =⇒ P"
apply(tactic {* atac 1 *})

lemma shows "P ∧ Q"
apply(tactic {* resolve_tac [@{thm conjI}] 1 *})

lemma shows "P ∧ Q =⇒ False"
apply(tactic {* eresolve_tac [@{thm conjE}] 1 *})

lemma shows "False ∧ True =⇒ False"
apply(tactic {* dresolve_tac [@{thm conjunct2}] 1 *})

Munich, 13 August 2009 – p. 6/19



Tactics for Manipulating
the Goal States

lemma
shows "True = False"

apply(tactic {* cut_facts_tac [@{thm True_def}, @{thm False_def}] 1 *})

goal (1 subgoal):
1. [[True≡ (λx. x) = (λx. x); False≡ ∀ P. P]] =⇒ True = False

Munich, 13 August 2009 – p. 7/19



Pre-Instatiations
Becuase of schematic variables, theorems need to be often
pre-instantiated.

lemma
shows "∀ x ∈ A. P x =⇒ Q x"

apply(tactic {* dresolve_tac [@{thm bspec}] 1 *})

goal (2 subgoals):
1. ?x ∈ A
2. P ?x =⇒ Q x

@{thm disjI1} RS @{thm conjI}
> [[?P1; ?Q]] =⇒ (?P1 ∨ ?Q1) ∧ ?Q

MRS, RL,. . .

Munich, 13 August 2009 – p. 8/19



Pre-Instatiations
Becuase of schematic variables, theorems need to be often
pre-instantiated.

lemma
shows "∀ x ∈ A. P x =⇒ Q x"

apply(tactic {* dresolve_tac [@{thm bspec}] 1 *})

goal (2 subgoals):
1. ?x ∈ A
2. P ?x =⇒ Q x

@{thm disjI1} RS @{thm conjI}
> [[?P1; ?Q]] =⇒ (?P1 ∨ ?Q1) ∧ ?Q

MRS, RL,. . .
Munich, 13 August 2009 – p. 8/19



Tacticals

val foo_tac’ = EVERY’ [etac @{thm disjE},
rtac @{thm disjI2},
atac,
rtac @{thm disjI1},
atac]

A tactic to analyse the topmost logical connective:

val sel_tac = FIRST’ [rtac @{thm conjI},
rtac @{thm impI},
rtac @{thm notI},
rtac @{thm allI}, K all_tac]

Munich, 13 August 2009 – p. 9/19



Tacticals

val foo_tac’ = EVERY’ [etac @{thm disjE},
rtac @{thm disjI2},
atac,
rtac @{thm disjI1},
atac]

A tactic to analyse the topmost logical connective:

val sel_tac = FIRST’ [rtac @{thm conjI},
rtac @{thm impI},
rtac @{thm notI},
rtac @{thm allI}, K all_tac]

Munich, 13 August 2009 – p. 9/19



Tacticals

val sel_tac = FIRST’ [rtac @{thm conjI},
rtac @{thm impI},
rtac @{thm notI},
rtac @{thm allI}, K all_tac]

val sel_tac’ = TRY o FIRST’ [rtac @{thm conjI},
rtac @{thm impI},
rtac @{thm notI},
rtac @{thm allI}]

Munich, 13 August 2009 – p. 10/19



A Decision Procedure for PIL

A, Γ ` A f, Γ ` C

A,B, Γ ` C
A ∧B, Γ ` C

Γ ` A Γ ` B
Γ ` A ∧B

A, Γ ` C B, Γ ` C
A ∨B, Γ ` C

Γ ` A
Γ ` A ∨B

Γ ` B
Γ ` A ∨B

A −→ B, Γ ` A B, Γ ` C
A −→ B, Γ ` C

A, Γ ` B
Γ ` A −→ B

Munich, 13 August 2009 – p. 11/19



A Decision Procedure for PIL
A −→ B, Γ ` A B, Γ ` C

A −→ B, Γ ` C

is replaced by

A −→ B −→ C, Γ ` D
(A ∧B) −→ C, Γ ` D

A −→ C,B −→ C, Γ ` D
(A ∨B) −→ C, Γ ` D

B −→ C, Γ ` A −→ B B, Γ ` D
(A −→ B) −→ C, Γ ` D

B,A, Γ ` C
A −→ B,A, Γ ` C

Munich, 13 August 2009 – p. 12/19



Simple Implementation
val apply_tac =
let

val intros = [@{thm conjI}, @{thm disjI1}, @{thm disjI2},
@{thm impI}, @{thm iffI}]

val elims = [@{thm FalseE}, @{thm conjE}, @{thm disjE},
@{thm iffE}, @{thm impE2}, @{thm impE3},
@{thm impE4}, @{thm impE5}, @{thm impE1}]

in
atac
ORELSE’ resolve_tac intros
ORELSE’ eresolve_tac elims

end

lemma
shows "((((P−→ Q)−→ P)−→ P)−→ Q)−→ Q"

apply(tactic {* (DEPTH_SOLVE o apply_tac) 1 *})
done

Munich, 13 August 2009 – p. 13/19



Simple Implementation
val apply_tac =
let

val intros = [@{thm conjI}, @{thm disjI1}, @{thm disjI2},
@{thm impI}, @{thm iffI}]

val elims = [@{thm FalseE}, @{thm conjE}, @{thm disjE},
@{thm iffE}, @{thm impE2}, @{thm impE3},
@{thm impE4}, @{thm impE5}, @{thm impE1}]

in
atac
ORELSE’ resolve_tac intros
ORELSE’ eresolve_tac elims

end

lemma
shows "((((P−→ Q)−→ P)−→ P)−→ Q)−→ Q"

apply(tactic {* (DEPTH_SOLVE o apply_tac) 1 *})
done

Munich, 13 August 2009 – p. 13/19



SUBPROOF

See example.

Munich, 13 August 2009 – p. 14/19



Setting up Goals
(P 2 = P 3−→ P 3 ∧ P 2 ∧ P 1) ∧
(P 1 = P 2−→ P 3 ∧ P 2 ∧ P 1) ∧
(P 1 = P 3−→ P 3 ∧ P 2 ∧ P 1)−→

P 3 ∧ P 2 ∧ P 1

rhs n =
∧

i...n. P i
lhs n =

∧
i...n. P i = P (i + 1 mod n)−→ rhs n

de_bruijn n = lhs (2*n+1)−→ rhs (2*n+1)

fun P n =
@{term "P::nat⇒ bool"} $ (mk_number @{typ "nat"} n)

fun rhs 1 = P 1
| rhs n = mk_conj (P n, rhs (n - 1))

fun lhs 1 n = mk_imp (mk_eq (P 1, P n), rhs n)
| lhs m n = mk_conj

(mk_imp (mk_eq (P (m - 1), P m), rhs n),
lhs (m - 1) n)

Munich, 13 August 2009 – p. 15/19



Setting up Goals
(P 2 = P 3−→ P 3 ∧ P 2 ∧ P 1) ∧
(P 1 = P 2−→ P 3 ∧ P 2 ∧ P 1) ∧
(P 1 = P 3−→ P 3 ∧ P 2 ∧ P 1)−→

P 3 ∧ P 2 ∧ P 1

fun P n =
@{term "P::nat⇒ bool"} $ (mk_number @{typ "nat"} n)

fun rhs 1 = P 1
| rhs n = mk_conj (P n, rhs (n - 1))

fun lhs 1 n = mk_imp (mk_eq (P 1, P n), rhs n)
| lhs m n = mk_conj

(mk_imp (mk_eq (P (m - 1), P m), rhs n),
lhs (m - 1) n)

Munich, 13 August 2009 – p. 15/19



Setting up Goals

fun de_bruijn ctxt n =
let

val i = 2*n+1
val goal = mk_Trueprop (mk_imp (lhs i i, rhs i))

in
Goal.prove ctxt ["P"] [] goal
(fn _ => (DEPTH_SOLVE o apply_tac) 1)

end

de_bruijn @{context} 1

Munich, 13 August 2009 – p. 16/19



Handling Schematic Variables

(b = c−→ a ∧ b ∧ c) ∧
(a = b−→ a ∧ b ∧ c) ∧
(a = c−→ a ∧ b ∧ c)−→

a ∧ b ∧ c

(?b = ?c−→ ?a ∧ ?b ∧ ?c) ∧
(?a = ?b−→ ?a ∧ ?b ∧ ?c) ∧
(?a = ?c−→ ?a ∧ ?b ∧ ?c)−→

?a ∧ ?b ∧ ?c

Munich, 13 August 2009 – p. 17/19



Handling Schematic Variables

(b = c−→ a ∧ b ∧ c) ∧
(a = b−→ a ∧ b ∧ c) ∧
(a = c−→ a ∧ b ∧ c)−→

a ∧ b ∧ c

(?b = ?c−→ ?a ∧ ?b ∧ ?c) ∧
(?a = ?b−→ ?a ∧ ?b ∧ ?c) ∧
(?a = ?c−→ ?a ∧ ?b ∧ ?c)−→

?a ∧ ?b ∧ ?c

Munich, 13 August 2009 – p. 17/19



fun de_bruijn ctxt n =
let

val i = 2*n+1
val bs = replicate (i+1) "b"
val (nbs, ctxt’) = Variable.variant_fixes bs ctxt
val fbs = map (fn z => Free (z, @{typ "bool"})) nbs
fun P n = nth fbs n

fun rhs 1 = P 1
| rhs n = mk_conj (P n, rhs (n - 1))

fun lhs 1 n = mk_imp (mk_eq (P 1, P n), rhs n)
| lhs m n = mk_conj (mk_imp

(mk_eq (P (m - 1), P m), rhs n), lhs (m - 1) n)

val goal = mk_Trueprop (mk_imp (lhs i i, rhs i))
in
Goal.prove ctxt’ [] [] goal

(fn _ => (DEPTH_SOLVE o apply_tac) 1)
end

Munich, 13 August 2009 – p. 18/19



fun de_bruijn ctxt n =
let

val i = 2*n+1
val bs = replicate (i+1) "b"
val (nbs, ctxt’) = Variable.variant_fixes bs ctxt
val fbs = map (fn z => Free (z, @{typ "bool"})) nbs
fun P n = nth fbs n

fun rhs 1 = P 1
| rhs n = mk_conj (P n, rhs (n - 1))

fun lhs 1 n = mk_imp (mk_eq (P 1, P n), rhs n)
| lhs m n = mk_conj (mk_imp

(mk_eq (P (m - 1), P m), rhs n), lhs (m - 1) n)

val goal = mk_Trueprop (mk_imp (lhs i i, rhs i))
in
Goal.prove ctxt’ [] [] goal

(fn _ => (DEPTH_SOLVE o apply_tac) 1)
end

Munich, 13 August 2009 – p. 18/19



fun de_bruijn ctxt n =
let

val i = 2*n+1
val bs = replicate (i+1) "b"
val (nbs, ctxt’) = Variable.variant_fixes bs ctxt
val fbs = map (fn z => Free (z, @{typ "bool"})) nbs
fun P n = nth fbs n

fun rhs 1 = P 1
| rhs n = mk_conj (P n, rhs (n - 1))

fun lhs 1 n = mk_imp (mk_eq (P 1, P n), rhs n)
| lhs m n = mk_conj (mk_imp

(mk_eq (P (m - 1), P m), rhs n), lhs (m - 1) n)

val goal = mk_Trueprop (mk_imp (lhs i i, rhs i))
in
Goal.prove ctxt’ [] [] goal

(fn _ => (DEPTH_SOLVE o apply_tac) 1)
|> singleton (ProofContext.export ctxt’ ctxt)

end
Munich, 13 August 2009 – p. 19/19




