Tactics and Generic Proof Procedures

Christian Urban

Munich, 13 August 2009 – p. 1/19

Apply vs ML

```
lemma disj_swap:
 shows "P \vee Q \Longrightarrow Q \vee P"
apply(erule disjE)
apply(rule disjI2)
apply(assumption)
apply(rule disjI1)
apply(assumption)
done
```
Apply vs ML

lemma disj_swap: shows " $P \vee Q \Longrightarrow Q \vee P$ " **apply**(erule disjE) **apply**(rule disjI2) **apply**(assumption) **apply**(rule disjI1) **apply**(assumption) **done**

```
let
 val ctxt = @{context}
 val goal = @{prop "P \vee Q \Longrightarrow Q \vee P"}
 val facts = []
 val schms = ["P", "Q"]
in
 Goal.prove ctxt schms facts goal
  (\text{fn} \Rightarrowetac @{thm disjE} 1
    THEN rtac @{thm disjI2} 1
    THEN atac 1
    THEN rtac @{thm disjI1} 1
    THEN atac 1)
end
```
Tactics and tactic

```
val foo_tac =
   (etac @{thm disjE} 1
    THEN rtac @{thm disjI2} 1
    THEN atac 1
    THEN rtac @{thm disjI1} 1
    THEN atac 1)
```

```
lemma
  shows "P \vee Q \Longrightarrow Q \vee P"
apply(tactic \{\star\} foo_tac \star\})done
```
Tactics and tactic

```
val foo \text{tac} =(etac \mathcal{Q}{thm disjE} 1
    THEN rtac @{thm disjI2} 1
    THEN atac 1
    THEN rtac @{thm disjI1} 1
    THEN atac 1)
```

```
lemma
 shows "P \vee Q \Longrightarrow Q \vee P"
apply(tactic \{\star\} foo tac \star\}))
done
```
THEN just strings tactics together (tactic combinators or tacticals).

Type of Tactics

The type of tactics is

thm -> thm Seq.seq

The lazy sequences are possible successor states. The simplest tactics are:

```
fun no_tac thm = Seq.empty
```

```
fun all_tac thm = Seq.single thm
```
Type of Tactics

The type of tactics is

thm -> thm Seq.seq

The lazy sequences are possible successor states. The simplest tactics are:

```
fun no_tac thm = Seq.empty
```

```
fun all_tac thm = Seq.single thm
```
The possibilities can be explored on the Isabelle level using **back**.

Goal States are Theorems

This might be surprising, since in general there are still subgoals to be proved.

Goal States are Theorems

This might be surprising, since in general there are still subgoals to be proved.

```
fun my_print_tac ctxt thm =
let
 val = tracing (Syntax.string of term ctxt (prop_of thm))
in
 Seq.single thm
end
```
Goal States are Theorems

This might be surprising, since in general there are still subgoals to be proved.

```
fun my print tac ctxt thm =let
 val = tracing (Syntax.string of term ctxt (prop_of thm))
in
 Seq.single thm
end
```
In general a goal state is the theorem

 $S_1 \dots S_n \Longrightarrow \#C$

Tactics for Manipulating the Goal States

lemma shows $P \implies P$ **apply**(tactic {* atac 1 *})

lemma shows "P ∧ Q" **apply**(tactic $\{\star\}$ resolve tac $[@{\text{thm coniI}}] 1 \star\})$

lemma shows " $P \wedge Q \implies False$ " **apply**(tactic $\{\star\}$ eresolve tac $[@{\{\text{thm coniE}}}]$ 1 $\star\})$)

lemma shows "False ∧ True =⇒ False" **apply**(tactic $\{\star\}$ dresolve_tac $[@{\text{thm conjunct2}}] 1 \star\})$

Tactics for Manipulating the Goal States

lemma

shows "True = False" **apply**(tactic {* cut_facts_tac [@{thm True_def}, @{thm False_def}] 1 *})

goal (1 subgoal): 1. [True $\equiv (\lambda x. x) = (\lambda x. x)$; False $\equiv \forall P. P$] \Longrightarrow True = False

Pre-Instatiations

Becuase of schematic variables, theorems need to be often pre-instantiated.

lemma shows " $\forall x \in A$. $P x \Longrightarrow Q x$ " **apply**(tactic $\{\star\}$ dresolve_tac $[\mathcal{Q}\{\star\}$ hm bspec $]\{1 \star\}$) goal (2 subgoals): 1. $?x \in A$ 2. P $?x \implies Qx$

Pre-Instatiations

Becuase of schematic variables, theorems need to be often pre-instantiated.

lemma shows " $\forall x \in A$. $P x \Longrightarrow Q x''$ **apply**(tactic $\{\star\}$ dresolve_tac $[\mathcal{Q}\{\star\}$ hm bspec $\}]$ 1 $\star\})$ goal (2 subgoals): 1. $?x \in A$ 2. P $?x \Longrightarrow Qx$

@{thm disjI1} RS @{thm conjI} > [[?P1; ?Q]] =⇒ (?P1 ∨ ?Q1) ∧ ?Q

 MRS, RL, \ldots

Tacticals

val foo_tac' = EVERY' [etac @{thm disjE}, rtac @{thm disjI2}, atac, rtac @{thm disjI1}, atac]

Tacticals

```
val foo_tac' = EVERY' [etac @{thm disjE},
                       rtac @{thm disjI2},
                       atac,
                       rtac @{thm disjI1},
                       atac]
```
A tactic to analyse the topmost logical connective:

```
val sel_tac = FIRST' [rtac @{thm conjI},
                       rtac @{thm impI},
                       rtac @{thm notI},
                       rtac @{thm allI}, K all_tac]
```
Tacticals

val sel tac = FIRST' [rtac @{thm conjI}, rtac @{thm impI}, rtac @{thm notI}, rtac @{thm allI}, K all_tac]

val sel tac' = TRY o FIRST' [rtac $@$ {thm conjI}, rtac @{thm impI}, rtac @{thm notI}, rtac @{thm allI}]

A Decision Procedure for PIL

A Decision Procedure for PIL

$$
\frac{A \longrightarrow B, \Gamma \vdash A \quad B, \Gamma \vdash C}{A \longrightarrow B, \Gamma \vdash C}
$$

is replaced by

 $A \longrightarrow B \longrightarrow C, \Gamma \vdash D$ $\overline{(A \wedge B)} \longrightarrow C, \Gamma \vdash D$ $A \longrightarrow C, B \longrightarrow C, \Gamma \vdash D$ $(A \vee B) \longrightarrow C, \Gamma \vdash D$ $B \longrightarrow C, \Gamma \vdash A \longrightarrow B \quad B, \Gamma \vdash D$ $(A \rightarrow B) \rightarrow C, \Gamma \vdash D$ $B, A, \Gamma \vdash C$ $\overline{A \rightarrow B, A, \Gamma \vdash C}$

Simple Implementation

```
val apply_tac =
let
 val intros = [@{\text{thm conjI}}$, @{\text{thm disjI1}}$, @{\text{thm disjI2}}@{thm impI}, @{thm iffI}]
 val elims = [@{thm FalseE}, @{thm conjE}, @{thm disjE},
              @{thm iffE}, @{thm impE2}, @{thm impE3},
              @{thm impE4}, @{thm impE5}, @{thm impE1}]
in
 atac
 ORELSE' resolve_tac intros
 ORELSE' eresolve_tac elims
end
```
Simple Implementation

```
val apply_tac =
let
 val intros = [@{\text{thm conjI}}$, @{\text{thm disjI1}}$, @{\text{thm disjI2}}@{thm impI}, @{thm iffI}]
 val elims = [@{thm FalseE}, @{thm conjE}, @{thm disjE},
              @{thm iffE}, @{thm impE2}, @{thm impE3},
              @{thm impE4}, @{thm impE5}, @{thm impE1}]
in
 atac
 ORELSE' resolve_tac intros
 ORELSE' eresolve_tac elims
end
```
lemma

```
shows "(((P \longrightarrow Q) \longrightarrow P) \longrightarrow P) \longrightarrow Q) \longrightarrow Q"apply(tactic {* (DEPTH_SOLVE o apply_tac) 1 *})
done
```
SUBPROOF

See example.

Setting up Goals

$$
(P 2 = P 3 \longrightarrow P 3 \land P 2 \land P 1) \land
$$

\n
$$
(P 1 = P 2 \longrightarrow P 3 \land P 2 \land P 1) \land
$$

\n
$$
(P 1 = P 3 \longrightarrow P 3 \land P 2 \land P 1) \longrightarrow
$$

\n
$$
P 3 \land P 2 \land P 1
$$

rhs n = V i...n. P i lhs n = V i...n. P i = P (i + 1 mod n) −→ rhs n de_bruijn n = lhs (2*n+1) −→ rhs (2*n+1)

Setting up Goals

$$
(P 2 = P 3 \longrightarrow P 3 \land P 2 \land P 1) \land
$$

\n
$$
(P 1 = P 2 \longrightarrow P 3 \land P 2 \land P 1) \land
$$

\n
$$
(P 1 = P 3 \longrightarrow P 3 \land P 2 \land P 1) \longrightarrow
$$

\n
$$
P 3 \land P 2 \land P 1
$$

fun $P_n =$ \mathcal{Q} {term "P::nat \Rightarrow bool"} \$ (mk_number \mathcal{Q} {typ "nat"} n) fun rhs $1 = P$ 1 | rhs $n = mk$ conj (P n, rhs $(n - 1)$) fun lhs 1 n = mk_imp (mk_eq (P 1 , P n), rhs n) | lhs m n = mk_conj (mk_imp (mk_eq (P (m - 1), P m), rhs n), $\ln s$ (m - 1) n)

Setting up Goals

```
fun de_bruijn ctxt n =
let
 val i = 2*n+1
 val goal = mk_Trueprop (mk_imp (lhs i i, rhs i))
in
 Goal.prove ctxt ["P"] [] goal
 (fn _ => (DEPTH_SOLVE o apply_tac) 1)
end
```
de_bruijn @{context} 1

Handling Schematic Variables

$$
(b = c \longrightarrow a \land b \land c) \land (a = b \longrightarrow a \land b \land c) \land (a = c \longrightarrow a \land b \land c) \longrightarrow a \land b \land c
$$

Handling Schematic Variables

$$
(b = c \longrightarrow a \land b \land c) \land (a = b \longrightarrow a \land b \land c) \land (a = c \longrightarrow a \land b \land c) \longrightarrow a \land b \land c
$$

$$
(2b = 2c \longrightarrow 2a \land 2b \land 2c) \land
$$

\n
$$
(2a = 2b \longrightarrow 2a \land 2b \land 2c) \land
$$

\n
$$
(2a = 2c \longrightarrow 2a \land 2b \land 2c) \longrightarrow
$$

\n
$$
2a \land 2b \land 2c
$$

```
fun de bruin ctxt n =let
 val i = 2*n+1
 val bs = replicate (i+1) "b"
 val (nbs, ctxt') = Variable.variant_fixes bs ctxt
 val fbs = map (fn z => Free (z, \mathcal{Q}{typ "bool"})) nbs
 fun P n = nth fbs n
 fun rhs 1 = P 1
   | rhs n = mk conj (P n, rhs (n - 1))
 fun lhs 1 n = mk imp (mk eq (P 1, P n), rhs n)
   | lhs m n = mk_conj (mk_imp
              (mk_eq (P (m - 1), P m), rhs n), lhs (m - 1) n)
 val goal = mk_Trueprop (mk_imp (lhs i i, rhs i))
in
 Goal.prove ctxt' [] [] goal
   (\text{fn} \equiv \Rightarrow (\text{DEPTH}\_\text{SOLVE}\ o\ \text{apply}\_\text{tac})\ 1)end
```

```
fun de_bruije ctxt
let
 val i = 2*n+1
 val bs = r plieste (i+1) "b"
 val (nbs ctxt') variable.variant fixes be ctxt
 val fbs = \lim_{x \to a} (fn z => Free (z, @{typ "bool")) nbs
 fun P n = nth fbs n
 fun rhs 1 = P 1
   | rhs n = mk conj (P n, rhs (n - 1))
 fun lhs 1 n = mk imp (mk eq (P 1, P n), rhs n)
   | lhs m n = mk_conj (mk_imp
             (mk_eq (P (m - 1), P m), rhs n), lhs (m - 1) n)
 val goal = mk_Trueprop (mk_imp (lhs i i, rhs i))
in
 Goal.py ctxt' | [] qoal
   (\text{fn} \equiv \rightarrow \text{QEP1H}\_\text{SOLVE} o apply_tac) 1)
end
```

```
fun de_bruije ctxt
let
 val i = 2*n+1
 val bs = r plieste (i+1) "b"
 val (nbs ctxt') variable.variant fixes be ctxt
 val fbs = \lim_{x \to a} (fn z => Free (z, @{typ "bool")) nbs
 fun P n = nth fbs n
 fun rhs 1 = P 1
   | rhs n = mk conj (P n, rhs (n - 1))
 fun lhs 1 n = mk imp (mk eq (P 1, P n), rhs n)
   | lhs m n = mk_conj (mk_imp
              (mk_eq (P (m - 1), P m), rhs n), lhs (m - 1) n)
 val goal = mk_Trueprop (mk_imp (lhs i i, rhs i))
in
 Goal.prove ctxt' | [] goal
   (\text{fn} \equiv \rightarrow \text{QCP1H}\text{SOLVE} \text{ o apply\_tac}) 1)
 |> singleton (ProofContext.export ctxt' ctxt)
end
```