Correct/Incorrect?

Does the following Prolog program produce for
every lambda-term the correct type?

type Gamma (var X) A :- member (pair X A) Gamma.

type Gamma (app M N) B :- type Gamma M (arrow A B),
type Gamma N A.

type Gamma (lam X M) (arrow A B) :-
type (pair X A)::Gamma M B.

member A A::Tail.

member A B::Tail :—- member A Tail.

Nancy, 18+19. August 2004 - p.1 (1/1)

Nominal Technigues
Course

Wednesday-Lecture

Christian Urban
«» University of Cambridge

Nancy, 18+19 . August 2004 - p.2 (1/1)

Recap from Yesterday

Nominal Logic has the following weak (in the good sense)
induction principle for lambda-terms:

(Va : Var) p(var(a), &)
(Vti,t2 : Trm) p(t1, ©) A p(t2, X)

= ¢(app(ty,t2), T)
(da : Var) a # £ A (Vt : Trm) p(t, T)

= p(lam(a.t), I)

(Vt : Trm) p(t, T)
It asks that for every term there exists a fresh atom.
(Ve : S)(da: A) a # x

Are such principles justified? Answer in today's lecture.

Nancy, 18+19. August 2004 - p.3 (1/1)

General Outline

We shall define a ‘big-set’ and then carve out a
'small-set’, A, that is bijective with A /~.

(‘(bijection \).

bad: no (good) \
induction prin- big-set—'fterms’
ciples

Nancy, 18+19. August 2004 - p.4 (1/2)

General Outline

We shall define a 'big-set’ and then carve out a
'small-set’, A, that is bijective with A /~.

(Caveat: The lambda-calculus is now more than'
60 years old and people have tried for a long
time to find a simple solution for the problem
with binders. This means what I present next
is necessarily a bit complicated. It get's
simple again on Friday. ;o)

J

Nancy, 18+19. August 2004 - p.4 (2/2)

Small Dictionary

M A set of (raw)-lambda-terms

8 A/~ set of a-equated lambda-terms
(not inductively defined)

4l big-set also F'trm
(inductively defined)

1 small-set also A,
(subset of big-set, inductively defined, in

bijection with A /)

Nancy, 18+19. August 2004 - p.5 (1/1)

Big-Set
Naive attempt for big-set

Ftrm ::=

am : Atom ‘atoms’
pr : Fitrm X Ftrm 'pairs
se : F'trm Set ‘a-eq-cl

Nancy, 18+19. August 2004 - p.6 (1/3)

Big-Set

Naive attempt for big-set

Ftrm ::=
am : Atom ‘atoms’
pr : Fitrm X Ftrm 'pairs
se : Ftrm Set ‘a-eq-cl’

trick: encode the ai-equivalence
class as the set of lambda-terms
tla £ {t' | t = t'}

. J

Nancy, 18+19. August 2004 - p.6 (2/3)

Big-Set
Better attempt for big-set

Ftrm ::= er ‘error
am : Atom ‘atoms’
pr : Ftrm X Ftrm 'pairs
se : Atom — Fitrm 'a-eq-cl

'same idea, but encoding with
(partial) functions, along the lines:

“if t' € [t]o then yes else er”

\. J

Nancy, 18+19. August 2004 - p.6 (3/3)

You Could Guessed It:
Permutation for Big-Set

Starting from the permutation operation for
atoms, we want to permute all free atoms in

fterms:
def
Teer —
meam(a) def
def
7T°|Dr'(t1, tz) =
def

mwese(fn) =

am(7mwea)
pr'(ﬂ'-tl, 7TOt2)
se(Aa.we(frn(w tea)))

Nancy, 18+19. August 2004 - p.7 (1/2)

\ZAass Al v vl 14
Ok, slowly: fn is a function Atom — Ftrm)

fn = Xa.(fn a)
So we should have
e fn = mwela.(fn a)

We want to permute all free atoms in fn
(= Aa.(fn a)—a is clearly not free). Therefore

Aa.e(fn a)

is wrong, as it will also permute a (wherever it ends up).

However, if we substitute ! ea first, then the 7 that
\S too much will go away. Yy

i \ LJ i) | X7 =Ry

mese(fn) © se()\aﬂ'o(fn(ﬂ' lea)))

Nancy, 18+19. August 2004 - p.7 (2/2)

Properties of this
Permutation Operation

def

reer er

meam(a) def am(7mwea)

7T‘pl"(t1, tg) déf pr'(ﬂ'-tl, 7T‘t2)

rese(fn) X se(Aa.we(fn(ntea)))
et =1

.(Wl@ﬂz)‘t S Wl‘(ﬁz‘t)
.dS(ﬂ'l, 71'2) = lmplles ol = oot

Properties of this
Permutation Operation

def

weamla) def am(sr e) .

If a type (set) satisfies these three

7 * Pl properties, then we call it a permutation
type. So F'trm's are a permutation
type—or short PT'ype.

Wt =t
.(7T1@7T2)‘t S 71'1‘(71'2"[})
.dS(ﬂ'l, 71'2) = lmphes ol = oot

mweer er

T @ S¢€

Nancy, 18+19. August 2004 - p.8 (2/2)

Abstract Properties

If a type satisfies

D[]t =t
.(71'1@71'2).12 — 71'1.(71'2.13)
.dS(7T1, 71'2) = |mp||es 1ol = ool

we can prove (independent of what the type looks like)

W (aa)et =1t
Brte(mwet) =t
.7T‘t1 :tz lfftl — 71'_1"[}2

Hte Xiffret € me X def
where Te X = {mwet |t € X}

Nancy, 18+19. August 2004 - p.9 (1/1)

BTW: Where Do Atoms
Come From?

We assume a countable infinite set of atoms.
Countable infinite is important!

For example, the natural numbers would
do—just we do not write them as numbers,
rather as

a,b,c,...

The only property we are interested in is that
there are countably infinite many atoms: no
hidden games with de-Bruijn indices.

Nancy, 18+19. August 2004 - p.10 (1/1)

SUPPORT!!I

Once we have a permutation operation for a
type, we can define the notion of support (a
set of atoms):

supp : PType — Atom Set
supp(z) & {a | infinite {b | (ab)ex # x}}

In words: all atoms a where the set
{b| (ab)ex £ x}

is infinite (each swapping (a b) needs to change
something “syntactically” in x).

Nancy, 18+19. August 2004 - p.11 (1/1)

Digression: A-Calculus

The (raw) lambda-calculus is a ptype.

def (a4 if Tea = Qo
mTea = < as if Tea = aq
_mTea otherwise
7T‘t1 tz déf (W‘tl)(ﬂ’tz)
rodat & A(wea).(mwet)

D[]t =t
.(7T1@7T2)‘t S 71'1‘(71'2"[})
.dS(ﬂ'l, 71'2) = lmphes ol = oot

Nancy, 18+19. August 2004 - p.12 (1/1)

Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite {b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by
one:

Nancy, 18+19. August 2004 - p.13 (1/7)

Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite {b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by

one:
a: (a?)ec #c

Nancy, 18+19. August 2004 - p.13 (2/7)

Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite {b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by
one:

a: (a?)ec# c no
b: (b?7)ec #c

Nancy, 18+19. August 2004 - p.13 (3/7)

Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite {b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by
one:

a: (a?)ec# c no
b: (b?)ec#c no
c. (c?)ec#c

Nancy, 18+19. August 2004 - p.13 (4/7)

Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite {b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by
one:

a: (a?)ec# c no
b: (b?)ec#c no
c. (c?)ec #c vyes
d: (d?)ec # c

Nancy, 18+19. August 2004 - p.13 (5/7)

Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite {b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by
one:
a: (a?)ec# c no
b: (b?)ec#c no
c: (c?)ec# c yes
d: (d?)ec#c no
: no

Nancy, 18+19. August 2004 - p.13 (6/7)

Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite {b | (ab)ec # c}}

Let's check the Linfinitel man:) atamg one by
one: So supp(c) = {c}
(a?)ec #c no
(b?)ec #c no
(c?)ec # c vyes
(d?)ec #c no

no

20 TR

Nancy, 18+19. August 2004 - p.13 (7/7)

Support of an Application

supp(t1 t2) % {a | infinite {b | (ab)ety ty £ t; t3}}

Support of an Application
supp(ts t2) % {a | infinite {b | (ab)ety ts & t; t5})

ta|inf{b|((ab)et.) ((ab)etz) # tita}}

Support of an Application
supp(ts t2) % {a | infinite {b | (ab)ety ts & t; t5})

ta|inf{b|((ab)et.) ((ab)etz) # tita}}

'We know

L1ty = 8182 iff t1 =81 Nty = 32
hence

ti1ty #£ s1 89 iff t1 #£ 81V ty #£ so

Nancy, 18+19. August 2004 - p.14 (3/9)

Support of an Application

{a
{a

supp(t1 t2) % {a | infinite {b | (ab)ety ty £ t; t3}}

inf{b
inf{b

((ab)ets) ((ab)ets) # tit2}}
(ab)et, £tV (ab)ety # ty}}

Support of an Application

supp(ts t2) % {a | infinite {b | (ab)ety ts & t; t5})

{a|inf{b
{a|inf{b

((ab)ets) ((ab)ets) # tit2}}
(ab)et, £tV (ab)ety # ty}}

{a|inf({b|(ab)ets #t1}U{b|(ab)ety # t2})}

Support of an Application

supp(ts t2) % {a | infinite {b | (ab)ety ts & t; t5})

inf{b
inf{b

((ab)eti) ((ab)etz) # tit2}}
(ab)et, £tV (ab)ety # ty}}

inf({b| (ab)et; #t:1}U{b]|(ab)ety # ta})}
inf{b| (ab)ety # t1}Vinf{b|(ab)ets # t2}}

Support of an Application

supp(ts t2) % {a | infinite {b | (ab)ety ts & t; t5})

inf{b
inf{b

inf{b
inf{b

((ab)eti) ((ab)etz) # tit2}}
(ab)et, £tV (ab)ety # ty})}

inf({b| (ab)et; #t,}U{b|(ab)ety #t:})}

(ab)et; £t }Vinf{b|(ab)ety # t;}}
(ab)et; # t }}U{a|inf{b| (ab)ety # t,}}

Support of an Application

supp(ts t2) % {a | infinite {b | (ab)ety ts & t; t5})

inf{b
inf{b

inf{b
inf{b

((ab)eti) ((ab)etz) # tit2}}
(ab)et, £tV (ab)ety # ty})}

inf({b| (ab)et; #t,}U{b|(ab)ety #t:})}

(ab)et; # t,}Vinf{b|(ab)ety # t2}}
(ab)et; # t }}U{a|inf{b| (ab)ety # t,}}
supp(t1) U supp(t2)

Support of an Application

supp(ts t2) % {a | infinite {b | (ab)ety ts & t; t5})

inf{b
inf{b

inf{b
inf{b

So éupp(i{iz):E:subp(tL)LJgﬁpp(tz)

(@b)st; Zt V(ab)et; Z &}}

inf({b| (ab)et; #t,}U{b|(ab)ety #t:})}

(ab)et; # t,}Vinf{b|(ab)ety # t2}}
(ab)et; # t }}U{a|inf{b| (ab)ety # t,}}
supp(t1) U supp(t2)

Support of an Abstraction

supp(Ac.t) % fa | infinite {b | (ab)eAc.t £ Ac.t}}

Support of an Abstraction

supp(Ac.t) % {a | infinite {b | (ab) o)\cj Ac.t}}
'We mean here 'syntactic’
(in)-equality, not a-(in)-equality.

Nancy, 18+19. August 2004 - p.15 (2/3)

Support of an Abstraction

supp(Ac.t) % fa | infinite {b | (ab)eAc.t £ Ac.t}}

So supp(Ac.t) = supp(t) U {c}

Support for A-Terms

supp(t) % {a | infinite {b | (a b)st £ t}}

& supp(c) = {c}
& supp(t1t2) = supp(t1) U supp(t1)
&l supp(Ac.t) = supp(t) U {c}

Support for A-Terms

supp(t) % {a | infinite {b | (a b)st £ t}}

& supp(c) = {c}
& supp(t1t2) = supp(t1) U supp(t1)
&l supp(Ac.t) = supp(t) U {c}

supp(t) = occurs(t) (for lambda-terms)

& occurs(c) :éf {c}
& occurs(titz) lef occurs(t,) U occurs(tq)

& occurs(Ac.t) Qef occurs(t) U {c}

Nancy, 18+19 . August 2004 - p.16 (2/2)

A Variant

supp (t) & {a | infinite {b | (a b)et # t}}

Nancy, 18+19. August 2004 - p.17 (1/4)

A Variant

supp’(t) & {a | infinite {b | (ab)et % t}}

Nancy, 18+19. August 2004 - p.17 (2/4)

A Variant

supp’(t) & {a | infinite {b | (ab)et % t}}

supp’(Ac.c) = {a | infinite {b | (ab)eAc.c % Ac.c}}
= U

Nancy, 18+19. August 2004 - p.17 (3/4)

A Variant

supp’(t) & {a | infinite {b | (ab)et % t}}

supp’(Ac.c) = {a | infinite {b | (ab)eAc.c % Ac.c}}
= U
supp’(t) = free(t)

& free(a) def {a}
B free(tits) def free(t,) U free(t,)
o free(Ac.t) def free(t) — {c}

Nancy, 18+19. August 2004 - p.17 (4/4)

Coming Back to F'T'rms

supp(z) & {a | infinite {b | (ab)ex # x}}

Roughly means: the 'free’ atoms affected by
permutations—this cannot be defined
inductively over F'trms.

t::= er

am(a)
pr(tlatZ)
se(fn)

We are stuck with supp...but this isn't so bad.

Nancy, 18+19. August 2004 - p.18 (1/1)

Not In the Support

An old friend can be defined in terms of
support:

a#z< adsupp(z)

Nancy, 18+19. August 2004 - p.19 (1/2)

Not In the Support

An old friend can be defined in terms of
support:

a#z< adsupp(z)

We can (abstractly) prove for every PT'ype

(that includes lambda-calculus and F'IT'rms)
that:

a#HxANb#H x = (ab)ex ==«

Nancy, 18+19. August 2004 - p.19 (2/2)

Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a = b clear

t 2004 - p.20 (2/16

)

Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:
(1) fin{c | (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}

a # x %ef o & supp(x)

supp(e) ' {a|inf{c| (ac)ez #a}}

Nancy, 18+19. August 2004 - p.20 (3/16)

Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c | (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}

@) fin({c | (ac)ex #x} U{c| (bc)ex # x}) f. (1)

Nancy, 18+19. August 2004 - p.20 (4/16)

Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c
fin{c
(2) fin{c

(ac)ex # x} from Ass. +Def. of #
(bec)ex # x}
(ac)ex #ZxV (bc)ex # x} f. (1)

Nancy, 18+19. August 2004 - p.20 (5/16)

Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| = ((ac)ex #xV (bc)ex #x)} f.(2)

Given a finite set of atoms,
its ‘'co-set’ must be infinite.

Nancy, 18+19. August 2004 - p.20 (6/16)

Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)

Nancy, 18+19. August 2004 - p.20 (7/16)

Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)
(4) () (ac)ex =x (ii))(bc)ex =ax forac e (3)

If a set is infinite, it must
contain a few elements.

Nancy, 18+19. August 2004 - p.20 (8/16)

Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)
(4) () (ac)ex =x (ii))(bc)ex =ax forac e (3)
(B) (ac)ex = x by (4i)

Nancy, 18+19. August 2004 - p.20 (9/16)

Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)
(4) () (ac)ex =x (ii))(bc)ex =ax forac e (3)
(B) (ac)ex = x by (4i)
(6) (bec)e(ac)ex = (be)ex by bij.

bIJ r =1y iff mexr = TeY

Nancy, 18+19. August 2004 - p.20 (10/16)

Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)
(4) () (ac)ex =x (ii))(bc)ex =ax forac e (3)
(B) (ac)ex = x by (4i)
(6) (bc)e(ac)ex =« by bij.,(4ii)

Nancy, 18+19. August 2004 - p.20 (11/16)

Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)
(4) () (ac)ex =x (ii))(bc)ex =ax forac e (3)
(B) (ac)ex = x by (4i)
(6) (bc)e(ac)ex =« by bij.,(4ii)
(7) (ac)e(bc)e(ac)ex = (ac)ex by bij.

Nancy, 18+19. August 2004 - p.20 (12/16)

Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)
(4) () (ac)ex =x (ii))(bc)ex =ax forac e (3)
(B) (ac)ex = x by (4i)
(6) (bc)e(ac)ex =« by bij.,(4ii)
(7) (ac)e(bc)e(ac)ex = x by bij.,(4i)

Nancy, 18+19. August 2004 - p.20 (13/16)

Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)
(4) (Y (ac)ex =x (ii)(bc)ex =x forace (3)

(B) (ac)ex =« by (4i)
(6) (bec)e(ac)ex = x by bij.,(4ii)
(7) (ac)e(bc)e(ac)ex == by bij.,(4i)

(ac)(bc)(ac)ea =0
(ac)(bc)(ac)eb =a
(ac)(bc)(ac)ec =rc

Nancy, 18+19. August 2004 - p.20 (14/16)

Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c | (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2')ﬁn{c (aclexr £ N/ (bhelexr £ 2} f. (1)
(3") inf{c || 3rd prop. of permutation types: f.(2)
(4) (i) (a dds(m1,T2) = T = Tex =0T | (3)
(B) (ac)ex =« by (4i)
(6) (bc)e(ac)ex == by bij.,(4ii)
(7) (ac)e(bc)e(ac)ex = x by bij.,(4i)

(8) (ab)ex =« by 3rd. prop.

Nancy, 18+19. August 2004 - p.20 (15/16)

Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)
(4) (Y (ac)ex =x (ii)(bc)ex =x forace (3)

(B) (ac)ex =« by (4i)
(6) (bec)e(ac)exr =« by bij.,(4ii)
(7) (ac)e(bc)e(ac)ex = x by bij.,(4i)
(8) (ab)ex =« by 3rd. prop.

Done.

Nancy, 18+19. August 2004 - p.20 (16/16)

Another Small Proof

Lemma: 7 esupp(x) = supp(mwex)

Another Small Proof

Lemma: 7 esupp(x) = supp(mwex)
Proof:

Another Small Proof

Lemma: 7 esupp(x) = supp(mwex)
Proof:

(1) {mea |inf{b| (ab)ex # x}} by Def.
= {a|inf{b]| (ab)emex # mwex}}

Another Small Proof

Lemma: 7 esupp(x) = supp(mwex)

Proof:

(1)

(2)

{mwea |inf{b| (ab)ex # x}}

{a
{a

inf{b
inf{b

(ab)emex £ mwex}}
mwle(ab)emwexr # x}}

by Def.

Another Small Proof

Lemma: 7 esupp(x) = supp(mwex)

Proof:
(1)

(2) =
3) =

{mea |inf{b| (ab)ex # x}} by Def.

inf{b
inf{b
inf{b

(ab)emex £ mwex}}
mwle(ab)emwexr # x}}
(m=tea wleb)ex # x}}

Another Small Proof

Lemma: 7 esupp(x) = supp(mwex)

Proof:
(1)

(2) =
3) =
(4) =

{mea |inf{b| (ab)ex # x}} by Def.
{a | inf{b| (ab)emwexr #~ wex}}

{a | inf{b|m te(ab)emex # x}}
{a |inf{b| (w lea wleb)ex # x}}
{mwea | inf{mweb| (ab)ex # x}}

Another Small Proof

Lemma: 7 esupp(x) = supp(mwex)
Proof:

(1) {mea |inf{b| (ab)ex # x}} by Def.
= {a|inf{b| (ab)emex # mwex}}

2) = {a|inf{b|mte(ab)emex # x}}
3) = {a|inf{b]| (v tea wteb)ex # x}}
(4) = {mea|inf{mwedb | (ab)ex # x}}

(5) theset {b| (ab)ex # x} is infinite, (1)+(4)
whenever {web | (ab)ex # x} is and v-v.

Nancy, 18+19. August 2004 - p.21 (7/8)

Another Small Proof

Lemma: 7 esupp(x) = supp(mwex)
Proof:

(1) {mea |inf{b| (ab)ex # x}} by Def.
= {a|inf{b| (ab)emex # mwex}}

2) = {a|inf{b|mte(ab)emex # x}}
3) = {a|inf{b]| (v tea wteb)ex # x}}
(4) = {mea|inf{mwedb | (ab)ex # x}}

(5) theset {b| (ab)ex # x} is infinite, (1)+(4)
whenever {web | (ab)ex # x} is and v-v.

Done.

Nancy, 18+19. August 2004 - p.21 (8/8)

What About Small-Set?

@(bijection \)‘

(t i— er

am(a)
pr(t19t2)
se(fn)

What About Small-Set?

@(bijection \ .

For A,, we are only interested in some very

specific functions, namely
a].t % se (Ab. if @ = b
then t
else if b # t then (ba)et else er)

Nancy, 18+19. August 2004 - p.22 (2/2)

Function |a|.t ‘=" [Aa.t|q

a].t < se (Ab. if a = b

then t
else if b # t then (ba) et else er)

Nancy, 18+19. August 2004 - p.23 (1/9)

Function |a|.t ‘=" [Aa.t|q

a].t < se (Ab. if a = b

! then t
else if b # t then (ba) et else er)

‘This is supposed to stand for the |
a-equivalence class of Aa.t.

Nancy, 18+19. August 2004 - p.23 (2/9)

Function |a|.t ‘=" [Aa.t|q

a] pr(a, c) <
se (Ab. if a = b
then pr(a, c)
else if b # pr(a,c)
then (ba)epr(a,c) else er)

Let's check this for [a].pr(a, c):

Nancy, 18+19. August 2004 - p.23 (3/9)

Function |a|.t ‘=" [Aa.t|q

a] pr(a, c) <
se (Ab. if a = b
then pr(a, c)
else if b # pr(a,c)
then (ba)epr(a,c) else er)

Let's check this for [a].pr(a, c):
la].pr(a, c) ‘applied to' a 'gives’ pr(a, c)

Nancy, 18+19. August 2004 - p.23 (4/9)

Function [al.t ‘=" [Aa.t|q

a] pr(a, c) <
se (Ab. if a = b
then pr(a, c)
else if b # pr(a,c)
then (ba)epr(a,c) else er)

_et's check this for [a].pr(a, c):
al.pr(a,c) 'applied to' a ‘gives’ pr(a,c)
al.pr(a,c) 'applied to' b 'gives' pr(b, c)

Nancy, 18+19. August 2004 - p.23 (5/9)

Function |al.t

def

a)
a

a

la].pr(a,c) =

se (Ab.ifa=1>»

|.pr(a, c) ‘app
|.pr(a, c) ‘app
|-pr(a,c) ‘app

then pr(a, c)

else if b # pr(a,c)

Aa.t|q

then (ba)epr(a,c) else er)

_et's check this for [a].pr(a, c):

ied to' a 'gives’ pr(a, c)
ied to' b 'gives’ pr(b,c)

ied to' ¢ 'gives’ er

Nancy, 18+19. August 2004 - p.23 (6/9)

Function [al.t ‘=" [Aa.t|q

def

a

a
a
a

a].pr(a,c) =

se (Ab. if a = b
then pr(a, c)
else if b # pr(a,c)

then (ba)epr(a,c) else er)

app
app
app
app

ied 1o’
ied 1o’
ied to’

ied to

_et's check this for [a].pr(a, c):
al.pr(a,c)
al.pr(a,c)
|-pr(a;c)
al.pr(a,c)

a ‘gives
b ‘gives

" d 'gives

c ‘gives’

" pr(a,c)
" pr(b, c)

er
" pr(d, c)

Nancy, 18+19. August 2004 - p.23 (7/9)

Function [al.t ‘=" [Aa.t|q

def

a

a
a
a

a].pr(a,c) =

se (Ab. if a = b
then pr(a, c)
else if b # pr(a,c)

then (ba)epr(a,c) else er)

J-pr(a,c)
al.pr(a,c)
J-pr(a,c)
al.pr(a,c)

app
app
app
app

_et's check this for [a].pr(a, c):

ied to' a 'gives’ pr(a,c) 'Aa.(ac)

ied 1o’
ied to’

ied to

b ‘gives

" d 'gives

c ‘gives’

" pr(b,c) ‘Ab.(bc)
"pr(d,c) ‘'Ad.(dc)

Nancy, 18+19. August 2004 - p.23 (8/9)

Function [al.t ‘=" [Aa.t|q

def

a

a
a
a

a].pr(a,c) =

se (Ab.ifa=2>
then pr(a, c)

app
app
app
app

else

Let's check this for [a].pp(@, c): XK[Aa.(a et
| :.pr'(a, C) ‘
' ;.pr'(a, c) '
| :.pr'(a,, c) '

J-pr(a,c) ’

ied 1o’
ied 1o’
ied to’

ied to

if b # pr(a, c)
then (ba)epr(a,c) else er)

a 'gives’ pr(a,c)| 'Aa.(ac)
b ‘gives’ pr(b,c) | ‘Ab.(bc)’
c ‘gives’ er
" d ‘gives’ pr(d,c)| ‘Ad.(dc)

\. J
Nancy, 18+19. August 2004 - p.23 (9/9)

Properties of |al.t
W e ([a].t) = [wea].(mwet)

'Should be familiar from Monday:

roda.t & A(mwea).(mot)

(a simple calculation for [a].t)

J

Nancy, 18+19 . August 2004 - p.24 (1/4)

Properties of (a|.t

B e ([a].t) = [real.(mt)
Wt =t, < [a].t; = [a].ts

Wa#b= (t1 = (ab)ets N a # t,
& |al.t; = [b].t2)

'Should also be familiar from Monday:

t1 = 1, a,#btl%(ab)'tz (I#tz
Aa.t1 = \a.ts Aa.t1 = \b.t-

Nancy, 18+19. August 2004 - p.24 (2/4)

Properties of (a|.t

B e ([a].t) = [real.(mt)
Wt =t, < [a].t; = [a].ts

Wa#b= (t1 = (ab)ets N a # t,
& |al.t; = [b].t2)

These properties (plus the Ptype properties
and one further restriction on t), will give:

W a # |al.t
BWaAbAa#t< a# bt
W supp([al.t) = supp(t) — {a}

Nancy, 18+19 . August 2004 - p.24 (3/4)

Properties of (a|.t

B e ([a].t) = [real.(mt)
Wt =t, < [a].t; = [a].ts

Ba 7 bg, (a].t behaves very afé 22
much like what we 1 = [b].t2)
These prop wWould expect froma | properties
and one furlambda-abstraction. jjill give:

W a # |al.t
BWaAbAa#t< a# bt
W supp([al.t) = supp(t) — {a}

Nancy, 18+19. August 2004 - p.24 (4/4)

Definition of Small-Set

@(bijection |

t::= am(a)
pr(t1,t2)
lal.t

Definition of Small-Set

@(bijection |).

def

F(X) € AMUPR(X)UAS(X)
Aa € Ifp(F) = U, Fy
where Fj def F(2)

F.o ¥ rE)

Definition of Small-Set

AM Y {am(a) | a is an atom}

def

F(X) € AMUPR(X)U AS(X)
Aa € Ifp(F) = U, Fy
where Fj def F(2)

F.o ¥ rE)

Definition of Small-Set

PR(X) Y
- Apr(t, t2) | 1,82 € X'}

def

F(X) € AMUPR(X)UAS(X)
Aa € Ifp(F) = U, Fy
where Fj def F(2)

F.o ¥ rE)

Definition of Small-Set

AS(x) ¥

{la].t | a isanatom At € X}
A p— k <o
def

F(X) € AMUPR(X)UAS(X)
Aa € Ifp(F) = U, Fy

where Fj def F(2)

F.o ¥ rE)

Definition of Small-Set

@(bijection |).

def

F(X) € AMUPR(X)UAS(X)
Aa € Ifp(F) = U, Fy
where Fj def F(2)

F.o ¥ rE)

Definition of Small-Set

‘'Which means also that
(we have a familiar
induction principle in
place for A, (over n).

def

F(X) = AMUPR(X)UAS(X)
Aa € Ifp(F) = U, Fy
where Fj def F(2)
def

F,.., = F(F,)

Nancy, 18+19. August 2004 - p.25 (7/7)

Finite Support

fsupp(x) det finite(supp(x))

While an F'trm is not necessarily finitely
supported, every element in A, is.

W supp(am(a)) = {a}
W supp(pr(ti,t2)) = supp(t1) U supp(tz)
W supp([al.t) = supp(t) — {a}

Nancy, 18+19. August 2004 - p.26 (1/3)

Finite Support

fsupp(x) det finite(supp(x))

While an F'trm is not necessarily finitely
supported, every element in A, is.

W supp(am(a)) = {a}

W supp(pr(t1,t2)) = supp(t1) U supp(t2)

W supp(la].t) = supp(t) — {a}
Whenever an x is finitely supported, then
(da : Atom) a # = |

Nancy, 18+19. August 2004 - p.26 (2/3)

Finite Support

, def .. .,

fsuFrIf a PType is

While an F't

supported, e]
W supp(amyay—= o7

finitely supported,

then we call it an
FSType.

J

Y(@))

y finitely
S.

W supp(pr(ty1, t2)) = supp(t1) U supp(tz)
W supp([a].t) = supp(t) — {a}
Whenever an x is finitely supported, then

(=

a: Atom) a # x |

Nancy, 18+19. August 2004 - p.26 (3/3)

Bljection
In order to show that A/~ and A, are
bijective we define a function g from A to A,
g(a) = am(a)
def
g(titz) = pr(g(t),q(t2))

def
g(ra.t) = la].q(t)
with the property

ti =t < q(t1) = q(t2)

Nancy, 18+19. August 2004 - p.27 (1/2)

Bijection
/Aside: This is as close to the 'bijection’ as you)
possibly want, but you can get closer: you can
lift' g to A /~. A theorem prover doesn't let

you easily choose one element from a set;

with all elements it is no problem. So g’ can
be defined as

q'(X) = {q(t) [t € X}
If q behaves well with respect to the
a-equivalence class, then we defined a
singleton set. Stripping of the set-brackets
gives you a function from A/~ To A,. Y

def

Nancy, 18+19. August 2004 - p.27 (2/2)

Aq 1san FSType

i.e., a finitely supported PType. It inherits
the following properties from F'trm

@ 7e([al.t) = [mea)].(met)
bt =1, < [a].t1 — [a].t2

Wa#b= (t; = (ab)ety N a # t,
& |al.t; = [b].t2)

Nancy, 18+19. August 2004 - p.28 (1/2)

Aq 1san FSType

i.e., a finitely supported PType. It inherits
the following properties from F'trm

B e ([a].t) = [real.(mt)

To remind you, the important properties
we have already shown are:

BMa#xANbH# x= (ab)ex ==«
Ba#Hx Tea # Tex

~N

_

Nancy, 18+19. August 2004 - p.28 (2/2)

Freshness 1

Lemma: a ZbAb# t = b # |a].t

+19. August 2004 - p.29 (1/7)

Freshness 1

Lemma: a ZbAb# t = b # |a].t

Proof:
(1) (3e¢)c # (a, b, t,[a].t) “finitely supported”

Nancy, 18+19. August 2004 - p.29 (2/7)

Freshness 1

Lemma: a ZbAb# t = b # |a].t

Proof:

(1) (3e¢)c # (a, b, t,[a].t) “finitely supported”
(2) (be)et =1t from (1) + ass.

Nancy, 18+19. August 2004 - p.29 (3/7)

Freshness 1

Lemma: a ZbAb# t = b # |a].t

Proof:
(1) (3e¢)c # (a, b, t,[a].t) “finitely supported”
(2) (bc)et =t from (1) + ass.

(3) (bc)ec # (bc)e|al.t from c # |al.t

Nancy, 18+19. August 2004 - p.29 (4/7)

Freshness 1

Lemma: a ZbAb# t = b # |a].t

Proof:
(1) (3e¢)c # (a, b, t,[a].t) “finitely supported”
(2) (bc)et =t from (1) + ass.

(3)b # [a].((bc)et) from c # |al.t

Nancy, 18+19. August 2004 - p.29 (5/7)

Freshness 1

Lemma: a ZbAb# t = b # |a].t

Proof:

(1) (3e¢)c # (a, b, t,[a].t) “finitely supported”
(2) (be)et =1t from (1) + ass.
(3)b # [a].((bc)et) from c # |al.t

(4) b # |a].t (2)+(3)

Nancy, 18+19. August 2004 - p.29 (6/7)

Freshness 1

Lemma: a ZbAb# t = b # |a].t

Proof:

(1) (3e¢)c # (a, b, t,[a].t) “finitely supported”
(2) (be)et =1t from (1) + ass.
(3)b # [a].((bc)et) from c # |al.t
(4)b # [a].t (2)+(3)

Done.

Nancy, 18+19. August 2004 - p.29 (7/7)

	Correct/Incorrect?
	Nominal Techniques\[0mm] Course
	Recap from Yesterday
	General Outline
	Small Dictionary
	Big-Set
	You Could Guessed It:\[1mm] Permutation for Big-Set
	Properties of this Permutation Operation
	Abstract Properties
	BTW: Where Do Atoms\[1mm] Come From?
	SUPPORT!!!
	Digression: �oldmath $lambda $-Calculus
	Support of an Atom
	Support of an Application
	Support of an Abstraction
	Support for �oldmath $lambda $-Terms
	A Variant
	Coming Back to $FTrm$s
	Not in the Support
	Proof of an Old Friend
	Another Small Proof
	What About Small-Set?
	mbox {Function $[a].t$ `$=$' $[lambda a.t]_{alpha }$}
	Properties of $[a].t$
	Definition of Small-Set
	Finite Support
	Bijection
	$Lambda _alpha $ is an $FSType$
	Freshness 1

