Correct/Incorrect?

Does the following Prolog program produce for
every lambda-term the correct type?

type Gamma (var X) A :- member (pair X A) Gamma.

type Gamma (app M N) B :- type Gamma M (arrow A B),
type Gamma N A.

type Gamma (lam X M) (arrow A B) :-
type (pair X A)::Gamma M B.

member A A::Tail.

member A B::Tail :—- member A Tail.

Nancy, 18+19. August 2004 - p.1 (1/1)



Nominal Technigues
Course

Wednesday-Lecture

Christian Urban
«» University of Cambridge

Nancy, 18+19 . August 2004 - p.2 (1/1)



Recap from Yesterday

Nominal Logic has the following weak (in the good sense)
induction principle for lambda-terms:

(Va : Var) p(var(a), &)
(Vti,t2 : Trm) p(t1, ©) A p(t2, X)

= ¢(app(ty,t2), T)
(da : Var) a # £ A (Vt : Trm) p(t, T)

= p(lam(a.t), I)

(Vt : Trm) p(t, T)
It asks that for every term there exists a fresh atom.
(Ve : S)(da: A) a # x

Are such principles justified? Answer in today's lecture.
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General Outline

We shall define a ‘big-set’ and then carve out a
'small-set’, A, that is bijective with A /~.

(‘( bijection \).

bad: no (good) \
induction prin- big-set—'fterms’
ciples
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General Outline

We shall define a 'big-set’ and then carve out a
'small-set’, A, that is bijective with A /~.

(Caveat: The lambda-calculus is now more than'
60 years old and people have tried for a long
time to find a simple solution for the problem
with binders. This means what I present next
is necessarily a bit complicated. It get's
simple again on Friday. ;o)

J
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Small Dictionary

M A set of (raw)-lambda-terms

8 A/~ set of a-equated lambda-terms
(not inductively defined)

4l big-set also F'trm
(inductively defined)

1 small-set also A,
(subset of big-set, inductively defined, in

bijection with A /)
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Big-Set
Naive attempt for big-set

Ftrm ::=

am : Atom ‘atoms’
pr : Fitrm X Ftrm 'pairs
se : F'trm Set ‘a-eq-cl
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Big-Set

Naive attempt for big-set

Ftrm ::=
am : Atom ‘atoms’
pr : Fitrm X Ftrm 'pairs
se : Ftrm Set ‘a-eq-cl’

trick: encode the ai-equivalence
class as the set of lambda-terms
tla £ {t' | t = t'}

. J
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Big-Set
Better attempt for big-set

Ftrm ::= er ‘error
am : Atom ‘atoms’
pr : Ftrm X Ftrm 'pairs
se : Atom — Fitrm 'a-eq-cl

'same idea, but encoding with
(partial) functions, along the lines:

“if t' € [t]o then yes else er”

\. J
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You Could Guessed It:
Permutation for Big-Set

Starting from the permutation operation for
atoms, we want to permute all free atoms in

fterms:
def
Teer —
meam(a) def
def
7T°|Dr'(t1, tz) =
def

mwese(fn) =

am(7mwea)
pr'(ﬂ'-tl, 7TOt2)
se(Aa.we(frn(w tea)))
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\ZAass Al v vl 14
Ok, slowly: fn is a function Atom — Ftrm )

fn = Xa.(fn a)
So we should have
e fn = mwela.(fn a)

We want to permute all free atoms in fn
(= Aa.(fn a)—a is clearly not free). Therefore

Aa.e(fn a)

is wrong, as it will also permute a (wherever it ends up).

However, if we substitute ! ea first, then the 7 that
\S too much will go away. Yy

i \ LJ i ) | X7 =Ry

mese(fn) © se()\aﬂ'o(fn(ﬂ' lea)))
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Properties of this
Permutation Operation

def

reer er

meam(a) def am(7mwea)

7T‘pl"(t1, tg) déf pr'(ﬂ'-tl, 7T‘t2)

rese(fn) X se(Aa.we(fn(ntea)))
et =1

.(Wl@ﬂz)‘t S Wl‘(ﬁz‘t)
.dS(ﬂ'l, 71'2) = lmplles ol = oot



Properties of this
Permutation Operation

def

weamla) def am(sr e ) .

If a type (set) satisfies these three

7 * Pl properties, then we call it a permutation
type. So F'trm's are a permutation
type—or short PT'ype.

Wt =t
.(7T1@7T2)‘t S 71'1‘(71'2"[})
.dS(ﬂ'l, 71'2) = lmphes ol = oot

mweer er

T @ S¢€
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Abstract Properties

If a type satisfies

D[]t =t
.(71'1@71'2).12 — 71'1.(71'2.13)
.dS(7T1, 71'2) = |mp||es 1ol = ool

we can prove (independent of what the type looks like)

W (aa)et =1t
Brte(mwet) =t
.7T‘t1 :tz lfftl — 71'_1"[}2

Hte Xiffret € me X def
where Te X = {mwet |t € X}
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BTW: Where Do Atoms
Come From?

We assume a countable infinite set of atoms.
Countable infinite is important!

For example, the natural numbers would
do—just we do not write them as numbers,
rather as

a,b,c,...

The only property we are interested in is that
there are countably infinite many atoms: no
hidden games with de-Bruijn indices.
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SUPPORT!!I

Once we have a permutation operation for a
type, we can define the notion of support (a
set of atoms):

supp : PType — Atom Set
supp(z) & {a | infinite {b | (ab)ex # x}}

In words: all atoms a where the set
{b| (ab)ex £ x}

is infinite (each swapping (a b) needs to change
something “syntactically” in x).
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Digression: A-Calculus

The (raw) lambda-calculus is a ptype.

def (a4 if Tea = Qo
mTea = < as if Tea = aq
_mTea otherwise
7T‘t1 tz déf (W‘tl)(ﬂ’tz)
rodat & A(wea).(mwet)

D[]t =t
.(7T1@7T2)‘t S 71'1‘(71'2"[})
.dS(ﬂ'l, 71'2) = lmphes ol = oot
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Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite {b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by
one:
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Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite {b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by

one:
a: (a?)ec #c
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Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite {b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by
one:

a: (a?)ec# c no
b: (b?7)ec #c
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Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite {b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by
one:

a: (a?)ec# c no
b: (b?)ec#c no
c. (c?)ec#c
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Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite {b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by
one:

a: (a?)ec# c no
b: (b?)ec#c no
c. (c?)ec #c vyes
d: (d?)ec # c
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Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite {b | (ab)ec # c}}

Let's check the (infinitely many) atoms one by
one:
a: (a?)ec# c no
b: (b?)ec#c no
c: (c?)ec# c yes
d: (d?)ec#c no
: no
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Support of an Atom

What is the support of the atom c?

supp(c) def {a | infinite {b | (ab)ec # c}}

Let's check the Linfinitel man:) atamg one by
one: So supp(c) = {c}
(a?)ec #c no
(b?)ec #c no
(c?)ec # c vyes
(d?)ec #c no

no

20 TR
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Support of an Application

supp(t1 t2) % {a | infinite {b | (ab)ety ty £ t; t3}}



Support of an Application
supp(ts t2) % {a | infinite {b | (ab)ety ts & t; t5})
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Support of an Application
supp(ts t2) % {a | infinite {b | (ab)ety ts & t; t5})

ta|inf{b|((ab)et.) ((ab)etz) # tita}}

'We know

L1ty = 8182 iff t1 =81 Nty = 32
hence

ti1ty #£ s1 89 iff t1 #£ 81V ty #£ so
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Support of an Application

{a
{a

supp(t1 t2) % {a | infinite {b | (ab)ety ty £ t; t3}}

inf{b
inf{b

((ab)ets) ((ab)ets) # tit2}}
(ab)et, £tV (ab)ety # ty}}



Support of an Application

supp(ts t2) % {a | infinite {b | (ab)ety ts & t; t5})

{a|inf{b
{a|inf{b

((ab)ets) ((ab)ets) # tit2}}
(ab)et, £tV (ab)ety # ty}}
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Support of an Application

supp(ts t2) % {a | infinite {b | (ab)ety ts & t; t5})

inf{b
inf{b

((ab)eti) ((ab)etz) # tit2}}
(ab)et, £tV (ab)ety # ty}}

inf({b| (ab)et; #t:1}U{b]|(ab)ety # ta})}
inf{b| (ab)ety # t1}Vinf{b|(ab)ets # t2}}



Support of an Application

supp(ts t2) % {a | infinite {b | (ab)ety ts & t; t5})

inf{b
inf{b

inf{b
inf{b

((ab)eti) ((ab)etz) # tit2}}
(ab)et, £tV (ab)ety # ty})}

inf({b| (ab)et; #t,}U{b|(ab)ety #t:})}

(ab)et; £t }Vinf{b|(ab)ety # t;}}
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Support of an Application

supp(ts t2) % {a | infinite {b | (ab)ety ts & t; t5})

inf{b
inf{b

inf{b
inf{b

((ab)eti) ((ab)etz) # tit2}}
(ab)et, £tV (ab)ety # ty})}

inf({b| (ab)et; #t,}U{b|(ab)ety #t:})}

(ab)et; # t,}Vinf{b|(ab)ety # t2}}
(ab)et; # t }}U{a|inf{b| (ab)ety # t,}}
supp(t1) U supp(t2)



Support of an Application

supp(ts t2) % {a | infinite {b | (ab)ety ts & t; t5})

inf{b
inf{b

inf{b
inf{b

So éupp(i{iz):E:subp(tL)LJgﬁpp(tz)

(@b)st; Zt V(ab)et; Z &}}

inf({b| (ab)et; #t,}U{b|(ab)ety #t:})}

(ab)et; # t,}Vinf{b|(ab)ety # t2}}
(ab)et; # t }}U{a|inf{b| (ab)ety # t,}}
supp(t1) U supp(t2)



Support of an Abstraction

supp(Ac.t) % fa | infinite {b | (ab)eAc.t £ Ac.t}}



Support of an Abstraction

supp(Ac.t) % {a | infinite {b | (ab) o)\cj Ac.t}}
'We mean here 'syntactic’
(in)-equality, not a-(in)-equality.
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Support of an Abstraction

supp(Ac.t) % fa | infinite {b | (ab)eAc.t £ Ac.t}}

So supp(Ac.t) = supp(t) U {c}




Support for A-Terms

supp(t) % {a | infinite {b | (a b)st £ t}}

& supp(c) = {c}
& supp(t1t2) = supp(t1) U supp(t1)
&l supp(Ac.t) = supp(t) U {c}



Support for A-Terms

supp(t) % {a | infinite {b | (a b)st £ t}}

& supp(c) = {c}
& supp(t1t2) = supp(t1) U supp(t1)
&l supp(Ac.t) = supp(t) U {c}

supp(t) = occurs(t) (for lambda-terms)

& occurs(c) :éf {c}
& occurs(titz) lef occurs(t,) U occurs(tq)

& occurs(Ac.t) Qef occurs(t) U {c}
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A Variant

supp (t) & {a | infinite {b | (a b)et # t}}
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A Variant

supp’(t) & {a | infinite {b | (ab)et % t}}
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A Variant

supp’(t) & {a | infinite {b | (ab)et % t}}

supp’(Ac.c) = {a | infinite {b | (ab)eAc.c % Ac.c}}
= U
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A Variant

supp’(t) & {a | infinite {b | (ab)et % t}}

supp’(Ac.c) = {a | infinite {b | (ab)eAc.c % Ac.c}}
= U
supp’(t) = free(t)

& free(a) def {a}
B free(tits) def free(t,) U free(t,)
o free(Ac.t) def free(t) — {c}
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Coming Back to F'T'rms

supp(z) & {a | infinite {b | (ab)ex # x}}

Roughly means: the 'free’ atoms affected by
permutations—this cannot be defined
inductively over F'trms.

t::= er

am(a)
pr(tlatZ)
se(fn)

We are stuck with supp...but this isn't so bad.
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Not In the Support

An old friend can be defined in terms of
support:

a#z< adsupp(z)
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Not In the Support

An old friend can be defined in terms of
support:

a#z< adsupp(z)

We can (abstractly) prove for every PT'ype

(that includes lambda-calculus and F'IT'rms)
that:

a#HxANb#H x = (ab)ex ==«
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Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«




Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a = b clear
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Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:
(1) fin{c | (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}

a # x %ef o & supp(x)

supp(e) ' {a|inf{c| (ac)ez #a}}
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Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c | (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}

@) fin({c | (ac)ex #x} U{c| (bc)ex # x}) f. (1)

Nancy, 18+19. August 2004 - p.20 (4/16)



Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c
fin{c
(2) fin{c

(ac)ex # x} from Ass. +Def. of #
(bec)ex # x}
(ac)ex #ZxV (bc)ex # x} f. (1)
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Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| = ((ac)ex #xV (bc)ex #x)} f.(2)

Given a finite set of atoms,
its ‘'co-set’ must be infinite.
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Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)
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Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)
(4) () (ac)ex =x (ii))(bc)ex =ax forac e (3)

If a set is infinite, it must
contain a few elements.
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Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)
(4) () (ac)ex =x (ii))(bc)ex =ax forac e (3)
(B) (ac)ex = x by (4i)

Nancy, 18+19. August 2004 - p.20 (9/16)



Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)
(4) () (ac)ex =x (ii))(bc)ex =ax forac e (3)
(B) (ac)ex = x by (4i)
(6) (bec)e(ac)ex = (be)ex by bij.

bIJ r =1y iff mexr = TeY
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Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)
(4) () (ac)ex =x (ii))(bc)ex =ax forac e (3)
(B) (ac)ex = x by (4i)
(6) (bc)e(ac)ex =« by bij.,(4ii)

Nancy, 18+19. August 2004 - p.20 (11/16)



Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)
(4) () (ac)ex =x (ii))(bc)ex =ax forac e (3)
(B) (ac)ex = x by (4i)
(6) (bc)e(ac)ex =« by bij.,(4ii)
(7) (ac)e(bc)e(ac)ex = (ac)ex by bij.
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Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)
(4) () (ac)ex =x (ii))(bc)ex =ax forac e (3)
(B) (ac)ex = x by (4i)
(6) (bc)e(ac)ex =« by bij.,(4ii)
(7) (ac)e(bc)e(ac)ex = x by bij.,(4i)
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Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)
(4) (Y (ac)ex =x (ii)(bc)ex =x forace (3)

(B) (ac)ex =« by (4i)
(6) (bec)e(ac)ex = x by bij.,(4ii)
(7) (ac)e(bc)e(ac)ex == by bij.,(4i)

(ac)(bc)(ac)ea =0
(ac)(bc)(ac)eb =a
(ac)(bc)(ac)ec =rc
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Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c | (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2')ﬁn{c (aclexr £ N/ (bhelexr £ 2} f. (1)
(3") inf{c || 3rd prop. of permutation types: f.(2)
(4) (i) (a dds(m1,T2) = T = Tex =0T | (3)
(B) (ac)ex =« by (4i)
(6) (bc)e(ac)ex == by bij.,(4ii)
(7) (ac)e(bc)e(ac)ex = x by bij.,(4i)

(8) (ab)ex =« by 3rd. prop.
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Proof of an Old Friend

Lemma: a # x Ab # x = (ab)ex =«

Proof: case a # b:

(1) fin{c| (ac)ex # x} from Ass. +Def. of #
fin{c | (bc)ex # x}
(2) fin{c | (ac)ex # xV (bc)ex # x} f. (1)

(3)inf{c| (ac)ex =x A (bc)ex = x)} f. (2)
(4) (Y (ac)ex =x (ii)(bc)ex =x forace (3)

(B) (ac)ex =« by (4i)
(6) (bec)e(ac)exr =« by bij.,(4ii)
(7) (ac)e(bc)e(ac)ex = x by bij.,(4i)
(8) (ab)ex =« by 3rd. prop.

Done.
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Another Small Proof

Lemma: 7 esupp(x) = supp(mwex)
Proof:




Another Small Proof

Lemma: 7 esupp(x) = supp(mwex)
Proof:

(1) {mea |inf{b| (ab)ex # x}} by Def.
= {a|inf{b]| (ab)emex # mwex}}




Another Small Proof

Lemma: 7 esupp(x) = supp(mwex)

Proof:

(1)

(2)

{mwea |inf{b| (ab)ex # x}}

{a
{a

inf{b
inf{b

(ab)emex £ mwex}}
mwle(ab)emwexr # x}}

by Def.



Another Small Proof

Lemma: 7 esupp(x) = supp(mwex)

Proof:
(1)

(2) =
3) =

{mea |inf{b| (ab)ex # x}} by Def.

inf{b
inf{b
inf{b

(ab)emex £ mwex}}
mwle(ab)emwexr # x}}
(m=tea wleb)ex # x}}



Another Small Proof

Lemma: 7 esupp(x) = supp(mwex)

Proof:
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What About Small-Set?

@( bijection \)‘

(t i— er

am(a)
pr(t19t2)
se(fn)




What About Small-Set?

@( bijection \ .

For A,, we are only interested in some very

specific functions, namely
a].t % se (Ab. if @ = b
then t
else if b # t then (ba)et else er)
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Function |a|.t ‘=" [Aa.t|q

a].t < se (Ab. if a = b

then t
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Function |a|.t ‘=" [Aa.t|q

a].t < se (Ab. if a = b

! then t
else if b # t then (ba) et else er)

‘This is supposed to stand for the |
a-equivalence class of Aa.t.
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Function |a|.t ‘=" [Aa.t|q

a] pr(a, c) <
se (Ab. if a = b
then pr(a, c)
else if b # pr(a,c)
then (ba)epr(a,c) else er)

Let's check this for [a].pr(a, c):
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Function |al.t

def

a)
a

a

la].pr(a,c) =

se (Ab.ifa=1>»

|.pr(a, c) ‘app
|.pr(a, c) ‘app
|-pr(a,c) ‘app

then pr(a, c)

else if b # pr(a,c)

Aa.t|q

then (ba)epr(a,c) else er)

_et's check this for [a].pr(a, c):
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Function [al.t ‘=" [Aa.t|q

def

a

a
a
a

a].pr(a,c) =

se (Ab.ifa=2>
then pr(a, c)

app
app
app
app

else

Let's check this for [a].pp(@, c): XK[Aa.(a et
| :.pr'(a, C) ‘
' ;.pr'(a, c) '
| :.pr'(a,, c) '

J-pr(a,c) ’

ied 1o’
ied 1o’
ied to’

ied to

if b # pr(a, c)
then (ba)epr(a,c) else er)

a 'gives’ pr(a,c)| 'Aa.(ac)
b ‘gives’ pr(b,c) | ‘Ab.(bc)’
c ‘gives’ er
" d ‘gives’ pr(d,c)| ‘Ad.(dc)

\. J
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Properties of |al.t
W e ([a].t) = [wea].(mwet)

'Should be familiar from Monday:

roda.t & A(mwea).(mot)

(a simple calculation for [a].t)

J
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Properties of (a|.t

B e ([a].t) = [real.(mt)
Wt =t, < [a].t; = [a].ts

Wa#b= (t1 = (ab)ets N a # t,
& |al.t; = [b].t2)

'Should also be familiar from Monday:

t1 = 1, a,#btl%(ab)'tz (I#tz
Aa.t1 = \a.ts Aa.t1 = \b.t-
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Wt =t, < [a].t; = [a].ts

Wa#b= (t1 = (ab)ets N a # t,
& |al.t; = [b].t2)

These properties (plus the Ptype properties
and one further restriction on t), will give:

W a # |al.t
BWaAbAa#t< a# bt
W supp([al.t) = supp(t) — {a}
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Definition of Small-Set

@( bijection |

t::= am(a)
pr(t1,t2)
lal.t




Definition of Small-Set

@( bijection | ).

def

F(X) € AMUPR(X)UAS(X)
Aa € Ifp(F) = U, Fy
where Fj def F(2)

F.o ¥ rE)



Definition of Small-Set

AM Y {am(a) | a is an atom}

def

F(X) € AMUPR(X)U AS(X)
Aa € Ifp(F) = U, Fy
where Fj def F(2)

F.o ¥ rE)



Definition of Small-Set

PR(X) Y
- Apr(t, t2) | 1,82 € X'}

def
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Definition of Small-Set

AS(x) ¥

{la].t | a isanatom At € X}
A p— k <o
def

F(X) € AMUPR(X)UAS(X)
Aa € Ifp(F) = U, Fy
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Definition of Small-Set

@( bijection | ).

def

F(X) € AMUPR(X)UAS(X)
Aa € Ifp(F) = U, Fy
where Fj def F(2)

F.o ¥ rE)



Definition of Small-Set

‘'Which means also that
(we have a familiar
induction principle in
place for A, (over n).

def

F(X) = AMUPR(X)UAS(X)
Aa € Ifp(F) = U, Fy
where Fj def F(2)
def

F,.., = F(F,)

Nancy, 18+19. August 2004 - p.25 (7/7)



Finite Support

fsupp(x) det finite(supp(x))

While an F'trm is not necessarily finitely
supported, every element in A, is.

W supp(am(a)) = {a}
W supp(pr(ti,t2)) = supp(t1) U supp(tz)
W supp([al.t) = supp(t) — {a}
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fsupp(x) det finite(supp(x))

While an F'trm is not necessarily finitely
supported, every element in A, is.

W supp(am(a)) = {a}

W supp(pr(t1,t2)) = supp(t1) U supp(t2)

W supp(la].t) = supp(t) — {a}
Whenever an x is finitely supported, then
(da : Atom) a # = |
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Finite Support

,  def .. .,

fsuFrIf a PType is

While an F't

supported, e]
W supp(amyay—= o7

finitely supported,

then we call it an
FSType.

J

Y(@))

y finitely
S.

W supp(pr(ty1, t2)) = supp(t1) U supp(tz)
W supp([a].t) = supp(t) — {a}
Whenever an x is finitely supported, then

(=

a: Atom) a # x |
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Bljection
In order to show that A/~ and A, are
bijective we define a function g from A to A,
g(a) = am(a)
def
g(titz) = pr(g(t),q(t2))

def
g(ra.t) = la].q(t)
with the property

ti =t < q(t1) = q(t2)
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Bijection
/Aside: This is as close to the 'bijection’ as you )
possibly want, but you can get closer: you can
lift' g to A /~. A theorem prover doesn't let

you easily choose one element from a set;

with all elements it is no problem. So g’ can
be defined as

q'(X) = {q(t) [t € X}
If q behaves well with respect to the
a-equivalence class, then we defined a
singleton set. Stripping of the set-brackets
gives you a function from A/~ To A,. Y

def
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Aq 1san FSType

i.e., a finitely supported PType. It inherits
the following properties from F'trm

@ 7e([al.t) = [mea)].(met)
bt =1, < [a].t1 — [a].t2

Wa#b= (t; = (ab)ety N a # t,
& |al.t; = [b].t2)
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Aq 1san FSType

i.e., a finitely supported PType. It inherits
the following properties from F'trm

B e ([a].t) = [real.(mt)

To remind you, the important properties
we have already shown are:

BMa#xANbH# x= (ab)ex ==«
Ba#Hx Tea # Tex

~N

\_
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Freshness 1

Lemma: a ZbAb# t = b # |a].t
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