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A FORMALISATION OF THE MYHILL-NERODE THEOREM
BASED ON REGULAR EXPRESSIONS ∗

CHUNHAN WU 1, XINGYUAN ZHANG 1 AND CHRISTIAN URBAN 2, 3

Abstract. There are numerous textbooks on regular languages. Nearly all of
them introduce the subject by describing finite automata and only mentioning
on the side a connection with regular expressions. Unfortunately, automata are
difficult to formalise in HOL-based theorem provers. The reason is that they
need to be represented as graphs, matrices or functions, none of which are in-
ductive datatypes. Also convenient operations for disjoint unions of graphs,
matrices and functions are not easily formalisiable in HOL. In contrast, regular
expressions can be defined conveniently as a datatype and a corresponding rea-
soning infrastructure comes for free. We show in this paper that a central result
from formal language theory—the Myhill-Nerode Theorem—can be recreated
using only regular expressions. From this theorem many closure properties of
regular languages follow.
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1. INTRODUCTION

Regular languages are an important and well-understood subject in Computer Science,
with many beautiful theorems and many useful algorithms. There is a wide range of
textbooks on this subject, many of which are aimed at students and contain very detailed
‘pencil-and-paper’ proofs (e.g. [15, 16]). It seems natural to exercise theorem provers by
formalising the theorems and by verifying formally the algorithms.

A popular choice for a theorem prover would be one based on Higher-Order Logic
(HOL), for example HOL4, HOLlight or Isabelle/HOL. For the development presented in
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this paper we will use the Isabelle/HOL. HOL is a predicate calculus that allows quantifi-
cation over predicate variables. Its type system is based on Church’s Simple Theory of
Types [8]. Although many mathematical concepts can be conveniently expressed in HOL,
there are some limitations that hurt badly when attempting a simple-minded formalisation
of regular languages in it.

The typical approach (for example [15, 16]) to regular languages is to introduce fi-
nite deterministic automata and then define everything in terms of them. For example, a
regular language is normally defined as:

Definition 1.1. A language A is regular, provided there is a finite deterministic automaton
that recognises all strings of A.

This approach has many benefits. Among them is the fact that it is easy to convince one-
self that regular languages are closed under complementation: one just has to exchange
the accepting and non-accepting states in the corresponding automaton to obtain an au-
tomaton for the complement language. The problem, however, lies with formalising such
reasoning in a HOL-based theorem prover. Automata are built up from states and transi-
tions that need to be represented as graphs, matrices or functions, none of which can be
defined as an inductive datatype.

In case of graphs and matrices, this means we have to build our own reasoning infras-
tructure for them, as neither Isabelle/HOL nor HOL4 nor HOLlight support them with
libraries. Even worse, reasoning about graphs and matrices can be a real hassle in HOL-
based theorem provers, because we have to be able to combine automata. Consider for
example the operation of sequencing two automata, say A1 and A2, by connecting the
accepting states of A1 to the initial state of A2:

A1 A2 ⇒ A1 A2

On ‘paper’ we can define the corresponding graph in terms of the disjoint union of the
state nodes. Unfortunately in HOL, the standard definition for disjoint union, namely

A1 ] A2
def
= {(1, x) | x ∈ A1} ∪ {(2, y) | y ∈ A2} (1)

changes the type—the disjoint union is not a set, but a set of pairs. Using this definition
for disjoint union means we do not have a single type for the states of automata. As a
result we will not be able to define a regular language as one for which there exists an
automaton that recognises all its strings (Definition 1.1). This is because we cannot make
a definition in HOL that is only polymorphic in the state type, but not in the predicate
for regularity; and there is no type quantification available in HOL (unlike in Coq, for
example).1

An alternative, which provides us with a single type for states of automata, is to give
every state node an identity, for example a natural number, and then be careful to rename
these identities apart whenever connecting two automata. This results in clunky proofs
establishing that properties are invariant under renaming. Similarly, connecting two au-
tomata represented as matrices results in very adhoc constructions, which are not pleasant
to reason about.

1Slind already pointed out this problem in an email to the HOL4 mailing list on 21st April 2005.
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Functions are much better supported in Isabelle/HOL, but they still lead to similar
problems as with graphs. Composing, for example, two non-deterministic automata in
parallel requires also the formalisation of disjoint unions. Nipkow [18] dismisses for this
the option of using identities, because it leads according to him to “messy proofs”. Since
he does not need to define what regular languages are, Nipkow opts for a variant of (1)
using bit lists, but writes

“All lemmas appear obvious given a picture of the composition of au-
tomata. . . Yet their proofs require a painful amount of detail.”

and

“If the reader finds the above treatment in terms of bit lists revoltingly concrete,
I cannot disagree. A more abstract approach is clearly desirable.”

Moreover, it is not so clear how to conveniently impose a finiteness condition upon func-
tions in order to represent finite automata. The best is probably to resort to more advanced
reasoning frameworks, such as locales or type classes, which are not available in all HOL-
based theorem provers.

Because of these problems to do with representing automata, there seems to be no
substantial formalisation of automata theory and regular languages carried out in HOL-
based theorem provers. Nipkow [18] establishes the link between regular expressions and
automata in the context of lexing. Berghofer and Reiter [5] formalise automata working
over bit strings in the context of Presburger arithmetic. The only larger formalisations of
automata theory are carried out in Nuprl [9] and in Coq, e.g. [1, 11].

Also, one might consider automata as just convenient ‘vehicles’ for establishing prop-
erties about regular languages. However, paper proofs about automata often involve sub-
tle side-conditions which are easily overlooked, but which make formal reasoning rather
painful. For example Kozen’s proof of the Myhill-Nerode Theorem requires that automata
do not have inaccessible states [16]. Another subtle side-condition is completeness of au-
tomata, that is automata need to have total transition functions and at most one ‘sink’
state from which there is no connection to a final state (Brzozowski mentions this side-
condition in the context of state complexity of automata [7]). Such side-conditions mean
that if we define a regular language as one for which there exists a finite automaton that
recognises all its strings (see Definition 1.1), then we need a lemma which ensures that
another equivalent one can be found satisfying the side-condition, and also need to make
sure our operations on automata preserve them. Unfortunately, such ‘little’ and ‘obvious’
lemmas make formalisations of automata theory hair-pulling experiences.

In this paper, we will not attempt to formalise automata theory in Isabelle/HOL nor
will we attempt to formalise automata proofs from the literature, but take a different ap-
proach to regular languages than is usually taken. Instead of defining a regular language
as one where there exists an automaton that recognises all its strings, we define a regular
language as:

Definition 1.2. A language A is regular, provided there is a regular expression that
matches all strings of A.
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And then ‘forget’ automata. The reason is that regular expressions, unlike graphs, matri-
ces and functions, can be easily defined as an inductive datatype. A reasoning infrastruc-
ture (like induction and recursion) comes for free in HOL. Moreover, no side-conditions
will be needed for regular expressions, like we need for automata. This convenience of
regular expressions has recently been exploited in HOL4 with a formalisation of regular
expression matching based on derivatives [21] and with an equivalence checker for reg-
ular expressions in Isabelle/HOL [17]. The main purpose of this paper is to show that
a central result about regular languages—the Myhill-Nerode Theorem—can be recreated
by only using regular expressions. This theorem gives necessary and sufficient conditions
for when a language is regular. As a corollary of this theorem we can easily establish the
usual closure properties, including complementation, for regular languages. We use the
Continuation Lemma [23], which is also a corollary of the Myhill-Nerode Theorem, for
establishing the non-regularity of the language anbn.

Contributions: There is an extensive literature on regular languages. To our best knowl-
edge, our proof of the Myhill-Nerode Theorem is the first that is based on regular expres-
sions, only. The part of this theorem stating that finitely many partitions imply regularity
of the language is proved by an argument about solving equational systems. This argu-
ment appears to be folklore. For the other part, we give two proofs: one direct proof using
certain tagging-functions, and another indirect proof using Antimirov’s partial deriva-
tives [2]. Again to our best knowledge, the tagging-functions have not been used before
for establishing the Myhill-Nerode Theorem. Derivatives of regular expressions have
been used recently quite widely in the literature; partial derivatives, in contrast, attract
much less attention. However, partial derivatives are more suitable in the context of the
Myhill-Nerode Theorem, since it is easier to establish formally their finiteness result. We
are not aware of any proof that uses either of them for proving the Myhill-Nerode Theo-
rem.

2. PRELIMINARIES

Strings in Isabelle/HOL are lists of characters with the empty string being represented
by the empty list, written []. We assume there are only finitely many different charac-
ters. Languages are sets of strings. The language containing all strings is written in Is-
abelle/HOL as UNIV. The concatenation of two languages is written A · B and a language
raised to the power n is written An. They are defined as usual

A · B def
= {s1 @ s2 | s1 ∈ A ∧ s2 ∈ B}

A0 def
= {[]}

An+1 def
= A · An

where @ is the list-append operation. The Kleene-star of a language A is defined as the
union over all powers, namely A? = (

⋃
n An). In the paper we will make use of the

following properties of these constructions.
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Proposition 2.1.
(i) A? = A · A? ∪ {[]}
(ii) If [] /∈ A and s ∈ An+1 then n < length s.
(iii) B · (

⋃
n An) = (

⋃
n B · An)

(iv) If x ∈ A? and x 6= [] then there exists an xp and xs with x = xp @ xs and
xp 6= [] such that xp ∈ A and xs ∈ A?.

In (ii) we use the notation length s for the length of a string; this property states that if
[] /∈ A then the lengths of the strings in An+1 must be longer than n. Property (iv) states
that a non-empty string in A? can always be split up into a non-empty prefix belonging to
A and the rest being in A?. We omit the proofs for these properties, but invite the reader
to consult our formalisation.2

The notation in Isabelle/HOL for the quotient of a language A according to an equiv-
alence relation ≈ is A � ≈. We will write [[x]]≈ for the equivalence class defined as
{y | y ≈ x}, and have x ≈ y if and only if [[x]]≈ = [[y]]≈.

Central to our proof will be the solution of equational systems involving equivalence
classes of languages. For this we will use Arden’s Lemma (see for example [24, Page
100]), which solves equations of the form X = A · X ∪ B provided [] /∈ A. However we
will need the following ‘reversed’ version of Arden’s Lemma (‘reversed’ in the sense of
changing the order of A · X to X · A).

Lemma 2.2 (Reversed Arden’s Lemma).
If [] /∈ A then X = X · A ∪ B if and only if X = B · A?.

Proof. For the right-to-left direction we assume X = B · A? and show that X = X · A ∪ B
holds. From Property 2.1(i) we have A? = A · A? ∪ {[]}, which is equal to A? = A? · A ∪
{[]}. Adding B to both sides gives B · A? = B · (A? · A ∪ {[]}), whose right-hand side is
equal to (B · A?) · A ∪ B. Applying the assumed equation completes this direction.

For the other direction we assume X = X · A ∪ B. By a simple induction on n, we can
establish the property

(∗) X = X · An+1 ∪ (
⋃

m ≤ n B · Am)

Using this property we can show that B · An ⊆ X holds for all n. From this we can infer
B · A? ⊆ X using the definition of ?. For the inclusion in the other direction we assume a
string s with length k is an element in X. Since [] /∈ A we know by Property 2.1(ii) that s
/∈ X · Ak+1 since its length is only k (the strings in X · Ak+1 are all longer). From (∗) it
follows then that s must be an element in

⋃
m ≤ k B · Am. This in turn implies that s is in⋃

n B · An. Using Property 2.1(iii) this is equal to B · A?, as we needed to show. �

Regular expressions are defined as the inductive datatype

2Available in the Archive of Formal Proofs at http://afp.sourceforge.net/devel-entries/Myhill-Nerode.shtml
[27].

http://afp.sourceforge.net/devel-entries/Myhill-Nerode.shtml
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r ::= ZERO
| ONE
| ATOM c
| TIMES r r
| PLUS r r
| STAR r

and the language matched by a regular expression is defined as

L(ZERO)
def
= {}

L(ONE)
def
= {[]}

L(ATOM c)
def
= {[c]}

L(PLUS r1 r2)
def
= L(r1) ∪ L(r2)

L(TIMES r1 r2)
def
= L(r1) · L(r2)

L(STAR r)
def
= L(r)?

Given a finite set of regular expressions rs, we will make use of the operation of gen-
erating a regular expression that matches the union of all languages of rs. We only need
to know the existence of such a regular expression and therefore we use Isabelle/HOL’s
fold graph and Hilbert’s ε to define +rs. This operation, roughly speaking, folds PLUS
over the set rs with ZERO for the empty set. We can prove that for a finite set rs

L(+rs) =
⋃

(L ‘ rs) (2)

holds, whereby L ‘ rs stands for the image of the set rs under function L defined as

L ‘ rs
def
= {L(r) | r ∈ rs}

In what follows we shall use this convenient short-hand notation for images of sets also
with other functions.

3. THE MYHILL-NERODE THEOREM, FIRST PART

The key definition in the Myhill-Nerode Theorem is the Myhill-Nerode Relation, which
states that w.r.t. a language two strings are related, provided there is no distinguishing
extension in this language. This can be defined as a tertiary relation.

Definition 3.1 (Myhill-Nerode Relation). Given a language A, two strings x and y are
Myhill-Nerode related provided

x ≈A y
def
= ∀ z. (x @ z ∈ A) = (y @ z ∈ A)

It is easy to see that ≈A is an equivalence relation, which partitions the set of all strings,
UNIV, into a set of disjoint equivalence classes. To illustrate this quotient construction, let
us give a simple example: consider the regular language containing just the string [c]. The
relation ≈{[c]} partitions UNIV into three equivalence classes X1, X2 and X3 as follows



TITLE WILL BE SET BY THE PUBLISHER 7

X1 = {[]}
X2 = {[c]}
X3 = UNIV − {[], [c]}

One direction of the Myhill-Nerode Theorem establishes that if there are finitely many
equivalence classes, like in the example above, then the language is regular. In our setting
we therefore have to show:

Theorem 3.2. If finite (UNIV�≈A) then regular A.

To prove this theorem, we first define the set finals A as those equivalence classes from
UNIV�≈A that contain strings of A, namely

finals A
def
= {[[s]]≈A | s ∈ A} (3)

In our running example, X2 is the only equivalence class in finals {[c]}. It is straightfor-
ward to show that in general

A =
⋃

finals A finals A ⊆ UNIV�≈A (4)

hold. Therefore if we know that there exists a regular expression for every equivalence
class in finals A (which by assumption must be a finite set), then we can use + to obtain
a regular expression that matches every string in A.

Our proof of Theorem 3.2 relies on a method that can calculate a regular expression
for every equivalence class, not just the ones in finals A. We first define the notion of
one-character-transition between two equivalence classes

Y cZ=⇒ X
def
= Y · {[c]} ⊆ X (5)

which means that if we concatenate the character c to the end of all strings in the equiva-
lence class Y, we obtain a subset of X. Note that we do not define an automaton here, we
merely relate two sets (with the help of a character). In our concrete example we have
X1

cZ=⇒ X2, X1
diZ=⇒ X3 with di being any other character than c, and X3

cjZ=⇒ X3 for any
character cj .

Next we construct an initial equational system that contains an equation for each equiv-
alence class. We first give an informal description of this construction. Suppose we have
the equivalence classes X1,. . . ,Xn, there must be one and only one that contains the empty
string [] (since equivalence classes are disjoint). Let us assume [] ∈ X1. We build the fol-
lowing equational system

X1 = (Y11, ATOM c11) + . . . + (Y1p, ATOM c1p) + λ(ONE)
X2 = (Y21, ATOM c21) + . . . + (Y2o, ATOM c2o)

...
Xn = (Yn1, ATOM cn1) + . . . + (Ynq, ATOM cnq)

where the terms (Yij , ATOM cij) stand for all transitions Yij
cijZ=⇒ Xi. There can only be

finitely many terms of the form (Yij , ATOM cij) in a right-hand side since by assumption
there are only finitely many equivalence classes and only finitely many characters. The
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term λ(ONE) in the first equation acts as a marker for the initial state, that is the equiv-
alence class containing the empty string [].3 In our running example we have the initial
equational system

X1 = λ(ONE)
X2 = (X1, ATOM c)
X3 = (X1, ATOM d1) + . . . + (X1, ATOM dn)

+ (X3, ATOM c1) + . . . + (X3, ATOM cm)

(6)

where d1. . . dn is the sequence of all characters but not containing c, and c1. . . cm is the
sequence of all characters.

Overloading the function L for the two kinds of terms in the equational system, we
have

L(Y, r)
def
= Y · L(r) L(λ(r)) def

= L(r)
and we can prove for X2..n that the following equations

Xi = L(Yi1, ATOM ci1) ∪ . . . ∪ L(Yiq, ATOM ciq). (7)

hold. Similarly for X1 we can show the following equation

X1 = L(Y11, ATOM c11) ∪ . . . ∪ L(Y1p, ATOM c1p) ∪ L(λ(ONE)). (8)

holds. The reason for adding the λ-marker to our initial equational system is to obtain this
equation: it only holds with the marker, since none of the other terms contain the empty
string. The point of the initial equational system is that solving it means we will be able
to extract a regular expression for every equivalence class.

Our representation for the equations in Isabelle/HOL are pairs, where the first com-
ponent is an equivalence class (a set of strings) and the second component is a set of
terms. Given a set of equivalence classes CS, our initial equational system Init CS is thus
formally defined as

Init rhs CS X
def
= if [] ∈ X

then {(Y, ATOM c) | Y ∈ CS ∧ Y cZ=⇒ X} ∪ {λ(ONE)}
else {(Y, ATOM c) | Y ∈ CS ∧ Y cZ=⇒ X}

Init CS
def
= {(X, Init rhs CS X) | X ∈ CS}

(9)

Because we use sets of terms for representing the right-hand sides of equations, we can
prove (7) and (8) more concisely as

Lemma 3.3. If (X, rhs) ∈ Init (UNIV�≈A) then X =
⋃
L ‘ rhs.

3Note that we mark, roughly speaking, the single ‘initial’ state in the equational system, which is different
from the method by Brzozowski [6], where he marks the ‘terminal’ states. We are forced to set up the equa-
tional system in our way, because the Myhill-Nerode Relation determines the ‘direction’ of the transitions—the
successor ‘state’ of an equivalence class Y can be reached by adding a character to the end of Y. This is also the
reason why we have to use our reversed version of Arden’s Lemma.
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Our proof of Theorem 3.2 will proceed by transforming the initial equational system into
one in solved form maintaining the invariant in Lemma 3.3. From the solved form we will
be able to read off the regular expressions.

In order to transform an equational system into solved form, we have two operations:
one that takes an equation of the form X = rhs and removes any recursive occurrences
of X in the rhs using our variant of Arden’s Lemma. The other operation takes an equa-
tion X = rhs and substitutes X throughout the rest of the equational system adjusting
the remaining regular expressions appropriately. To define this adjustment we define the
append-operation taking a term and a regular expression as argument

(Y, r2) / r1
def
= (Y, TIMES r2 r1)

λ(r2) / r1
def
= λ(TIMES r2 r1)

We lift this operation to entire right-hand sides of equations, written as rhs / r. With this
we can define the arden-operation for an equation of the form X = rhs as:

Arden X rhs
def
= let

rhs ′= rhs − {(X, r) | (X, r) ∈ rhs}
r ′= STAR (+{r | (X, r) ∈ rhs})

in rhs ′ / r ′

(10)

In this definition, we first delete all terms of the form (X, r) from rhs; then we calculate
the combined regular expressions for all r coming from the deleted (X, r), and take the
STAR of it; finally we append this regular expression to rhs ′. If we apply this operation to
the right-hand side of X3 in (6), we obtain the equation:

X3 = (X1, TIMES (ATOM d1) (STAR +{ATOM c1,. . . , ATOM cm})) + . . .
. . . + (X1, TIMES (ATOM dn) (STAR +{ATOM c1,. . . , ATOM cm}))

That means we eliminated the recursive occurrence of X3 on the right-hand side. Note we
used the abbreviation +{ATOM c1,. . . , ATOM cm} to stand for a regular expression that
matches with every character. In our algorithm we are only interested in the existence of
such a regular expression and do not specify it any further.

It can be easily seen that the Arden-operation mimics Arden’s Lemma on the level
of equations. To ensure the non-emptiness condition of Arden’s Lemma we say that a
right-hand side is ardenable provided

ardenable rhs
def
= ∀Y r. (Y, r) ∈ rhs −→ [] /∈ L(r)

This allows us to prove a version of Arden’s Lemma on the level of equations.

Lemma 3.4. Given an equation X = rhs. If X =
⋃
L ‘ rhs, ardenable rhs, and finite rhs,

then X =
⋃
L ‘ (Arden X rhs).

Our ardenable condition is slightly stronger than needed for applying Arden’s Lemma,
but we can still ensure that it holds throughout our algorithm of transforming equations
into solved form. The substitution-operation takes an equation of the form X = xrhs and
substitutes it into the right-hand side rhs.
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Subst rhs X xrhs
def
= let

rhs ′= rhs − {(X, r) | (X, r) ∈ rhs}
r ′= +{r | (X, r) ∈ rhs}

in rhs ′∪ (xrhs / r ′)

We again delete first all occurrences of (X, r) in rhs; we then calculate the regular expres-
sion corresponding to the deleted terms; finally we append this regular expression to xrhs
and union it up with rhs ′. When we use the substitution operation we will arrange it so
that xrhs does not contain any occurrence of X. For example substituting the first equation
in (6) into the right-hand side of the second, thus eliminating the equivalence class X1,
gives us the equation

X2 = λ(TIMES ONE (ATOM c)) (11)

With these two operations in place, we can define the operation that removes one equa-
tion from an equational systems ES. The operation Subst all substitutes an equation X =
xrhs throughout an equational system ES; Remove then completely removes such an equa-
tion from ES by substituting it to the rest of the equational system, but first eliminating all
recursive occurrences of X by applying Arden to xrhs.

Subst all ES X xrhs
def
= {(Y, Subst yrhs X xrhs) | (Y, yrhs) ∈ ES}

Remove ES X xrhs
def
= Subst all (ES − {(X, xrhs)}) X (Arden X xrhs)

Finally, we can define how an equational system should be solved. For this we will need
to iterate the process of eliminating equations until only one equation will be left in the
system. However, we do not just want to have any equation as being the last one, but the
one involving the equivalence class for which we want to calculate the regular expression.
Let us suppose this equivalence class is X. Since X is the one to be solved, in every
iteration step we have to pick an equation to be eliminated that is different from X. In this
way X is kept to the final step. The choice is implemented using Hilbert’s choice operator,
written SOME in the definition below.

Iter X ES
def
= let

(Y, yrhs) = SOME (Y, yrhs). (Y, yrhs) ∈ ES ∧ X 6= Y
in Remove ES Y yrhs

The last definition we need applies Iter over and over until a condition Cond is not satis-
fied anymore. This condition states that there are more than one equation left in the equa-
tional system ES. To solve an equational system we use Isabelle/HOL’s while-operator as
follows:

Solve X ES
def
= while Cond (Iter X) ES

We are not concerned here with the definition of this operator (see Berghofer and Nip-
kow [4] for example), but note that we eliminate in each Iter-step a single equation, and
therefore have a well-founded termination order by taking the cardinality of the equa-
tional system ES. This enables us to prove properties about our definition of Solve when
we ‘call’ it with the equivalence class X and the initial equational system Init (UNIV�
≈A) from (9) using the principle:
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invariant (Init (UNIV�≈A))
∀ES. invariant ES ∧ Cond ES −→ invariant (Iter X ES)
∀ES. invariant ES ∧ Cond ES −→ card (Iter X ES) < card ES
∀ES. invariant ES ∧ ¬ Cond ES −→ P ES

P (Solve X (Init (UNIV�≈A)))

(12)

This principle states that given an invariant (which we will specify below) we can prove
a property P involving Solve. For this we have to discharge the following proof obliga-
tions: first the initial equational system satisfies the invariant; second the iteration step Iter
preserves the invariant as long as the condition Cond holds; third Iter decreases the termi-
nation order, and fourth that once the condition does not hold anymore then the property
P must hold.

The property P in our proof will state that Solve X (Init (UNIV�≈A)) returns with a
single equation X = xrhs for some xrhs, and that this equational system still satisfies the
invariant. In order to get the proof through, the invariant is composed of the following six
properties:

invariant ES
def
= finite ES (finiteness)
∧ ∀ (X, rhs)∈ES. finite rhs (finiteness rhs)
∧ ∀ (X, rhs)∈ES. X =

⋃
L ‘ rhs (soundness)

∧ ∀X rhs rhs ′. (X, rhs) ∈ ES ∧ (X, rhs ′) ∈ ES −→ rhs = rhs ′

(distinctness)
∧ ∀ (X, rhs)∈ES. ardenable rhs (ardenable)
∧ ∀ (X, rhs)∈ES. rhss rhs ⊆ lhss ES (validity)

The first two ensure that the equational system is always finite (number of equations and
number of terms in each equation); the third makes sure the ‘meaning’ of the equations
is preserved under our transformations. The other properties are a bit more technical, but
are needed to get our proof through. Distinctness states that every equation in the system
is distinct. Ardenable ensures that we can always apply the Arden operation. The last
property states that every rhs can only contain equivalence classes for which there is an
equation. Therefore lhss is just the set containing the first components of an equational
system, while rhss collects all equivalence classes X in the terms of the form (X, r). That

means formally lhss ES
def
= {X | (X, rhs) ∈ ES} and rhss rhs

def
= {X | (X, r) ∈ rhs}.

It is straightforward to prove that the initial equational system satisfies the invariant.

Lemma 3.5. If finite (UNIV�≈A) then invariant (Init (UNIV�≈A)).

Proof. Finiteness is given by the assumption and the way how we set up the initial equa-
tional system. Soundness is proved in Lemma 3.3. Distinctness follows from the fact that
the equivalence classes are disjoint. The ardenable property also follows from the setup
of the initial equational system, as does validity. �

Next we show that Iter preserves the invariant.

Lemma 3.6. If invariant ES and (X, rhs) ∈ ES and Cond ES then invariant (Iter X
ES).
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Proof. The argument boils down to choosing an equation Y = yrhs to be eliminated and
to show that Subst all (ES − {(Y, yrhs)}) Y (Arden Y yrhs) preserves the invariant. We
prove this as follows:

∀ ES.
invariant (ES ∪ {(Y, yrhs)}) implies invariant (Subst all ES Y (Arden Y yrhs))

Finiteness is straightforward, as the Subst and Arden operations keep the equational sys-
tem finite. These operations also preserve soundness and distinctness (we proved sound-
ness for Arden in Lemma 3.4). The property ardenable is clearly preserved because the
append-operation cannot make a regular expression to match the empty string. Valid-
ity is given because Arden removes an equivalence class from yrhs and then Subst all
removes Y from the equational system. Having proved the implication above, we can in-
stantiate ES with ES− {(Y, yrhs)}which matches with our proof-obligation of Subst all.
Since ES = ES − {(Y, yrhs)} ∪ {(Y, yrhs)}, we can use the assumption to complete the
proof. �

We also need the fact that Iter decreases the termination measure.

Lemma 3.7. If invariant ES and (X, rhs) ∈ ES and Cond ES then card (Iter X ES) <
card ES.

Proof. By assumption we know that ES is finite and has more than one element. Therefore
there must be an element (Y, yrhs) ∈ ES with (Y, yrhs) 6= (X, rhs). Using the distinctness
property we can infer that Y 6= X. We further know that Remove ES Y yrhs removes the
equation Y = yrhs from the system, and therefore the cardinality of Iter strictly decreases.

�

This brings us to our property we want to establish for Solve.

Lemma 3.8. If finite (UNIV�≈A) and X ∈ UNIV�≈A then there exists a rhs such that
Solve X (Init (UNIV�≈A)) = {(X, rhs)} and invariant {(X, rhs)}.

Proof. In order to prove this lemma using (12), we have to use a slightly stronger invariant
since Lemma 3.6 and 3.7 have the precondition that (X, rhs) ∈ ES for some rhs. This
precondition is needed in order to choose in the Iter-step an equation that is not X = rhs.
Therefore our invariant cannot be just invariant ES, but must be invariant ES ∧ (∃ rhs. (X,
rhs) ∈ ES). By assumption X ∈ UNIV�≈A and Lemma 3.5, the more general invariant
holds for the initial equational system. This is premise 1 of (12). Premise 2 is given by
Lemma 3.6 and the fact that Iter might modify the rhs in the equation X = rhs, but does
not remove it. Premise 3 of (12) is by Lemma 3.7. Now in premise 4 we like to show that
there exists a rhs such that ES = {(X, rhs)} and that invariant {(X, rhs)} holds, provided
the condition Cond does not holds. By the stronger invariant we know there exists such
a rhs with (X, rhs) ∈ ES. Because Cond is not true, we know the cardinality of ES is 1.
This means ES must actually be the set {(X, rhs)}, for which the invariant holds. This
allows us to conclude that Solve X (Init (UNIV�≈A)) = {(X, rhs)} and invariant {(X,
rhs)} hold, as needed. �

With this lemma in place we can show that for every equivalence class in UNIV�≈A there
exists a regular expression.
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Lemma 3.9. If finite (UNIV�≈A) and X ∈ UNIV�≈A then regular X.

Proof. By the preceding lemma, we know that there exists a rhs such that Solve X (Init
(UNIV�≈A)) returns the equation X = rhs, and that the invariant holds for this equa-
tion. That means we know X =

⋃
L ‘ rhs. We further know that this is equal to⋃

L ‘ (Arden X rhs) using the properties of the invariant and Lemma 3.4. Using the va-
lidity property for the equation X = rhs, we can infer that rhss rhs ⊆ {X} and because
the Arden operation removes that X from rhs, that rhss (Arden X rhs) = {}. This means
the right-hand side Arden X rhs can only consist of terms of the form λ(r). So we can
collect those (finitely many) regular expressions rs and have X = L(+rs). With this we
can conclude the proof. �

Lemma 3.9 allows us to finally give a proof for the first direction of the Myhill-Nerode
Theorem.

Proof of Theorem 3.2. By Lemma 3.9 we know that there exists a regular expression for
every equivalence class in UNIV �≈A. Since finals A is a subset of UNIV �≈A, we
also know that for every equivalence class in finals A there exists a regular expression.
Moreover by assumption we know that finals A must be finite, and therefore there must
be a finite set of regular expressions rs such that

⋃
finals A = L(+rs). Since the left-

hand side is equal to A, we can use +rs as the regular expression that is needed in the
theorem. �

Note that our algorithm for solving equational systems provides also a method for cal-
culating a regular expression for the complement of a regular language: if we combine
all regular expressions corresponding to equivalence classes not in finals A, then we ob-
tain a regular expression for the complement language A. This is similar to the usual
construction of a ‘complement automaton’.

4. MYHILL-NERODE, SECOND PART

In this section we will give a proof for establishing the second part of the Myhill-Nerode
Theorem. It can be formulated in our setting as follows:

Theorem 4.1. Given r is a regular expression, then finite (UNIV�≈L(r)).

The proof will be by induction on the structure of r. It turns out the base cases are
straightforward.

Base Cases. The cases for ZERO, ONE and ATOM are routine, because we can easily
establish that

UNIV�≈{} = {UNIV}
UNIV�≈{[]} ⊆ {{[]}, UNIV − {[]}}
UNIV�≈{[c]} ⊆ {{[]}, {[c]}, UNIV − {[], [c]}}

hold, which shows that UNIV�≈L(r) must be finite. �
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Much more interesting, however, are the inductive cases. They seem hard to be solved
directly. The reader is invited to try.

In order to see how our proof proceeds consider the following suggestive picture taken
from Constable et al [9]:

a1a2

a3 a4

a1.1

a1.2a2.1
a2.2

a3.1
a3.2a4.1

a4.2

UNIV UNIV�≈L(r) UNIV�R

(13)

The relation ≈L(r) partitions the set of all strings, UNIV, into some equivalence classes.
To show that there are only finitely many of them, it suffices to show in each induction
step that another relation, say R, has finitely many equivalence classes and refines ≈L(r).

Definition 4.2. A relation R1 refines R2 provided R1 ⊆ R2.

For constructing R, we will rely on some tagging-functions defined over strings. Given
the inductive hypothesis, it will be easy to prove that the range of these tagging-functions
is finite. The range of a function f is defined as

range f
def
= f ‘ UNIV

that means we take the image of f w.r.t. all elements in the domain. With this we will
be able to infer that the tagging-functions, seen as relations, give rise to finitely many
equivalence classes. Finally we will show that the tagging-relations are more refined than
≈L(r), which implies that UNIV�≈L(r) must also be finite. We formally define the notion
of a tagging-relation as follows.

Definition 4.3 (Tagging-Relation). Given a tagging-function tag, then two strings x and
y are tag-related provided

x ∼∼∼tag y
def
= tag x = tag y .

In order to establish finiteness of a set A, we shall use the following powerful principle
from Isabelle/HOL’s library.

If finite (f ‘ A) and inj on f A then finite A. (14)

It states that if an image of a set under an injective function f (injective over this set) is
finite, then the set A itself must be finite. We can use it to establish the following two
lemmas.

Lemma 4.4. If finite (range tag) then finite (UNIV�∼∼∼tag).

Proof. We set in (14), f to be X 7→ tag ‘ X. We have range f to be a subset of Pow
(range tag), which we know must be finite by assumption. Now f ‘ UNIV�∼∼∼tag is a
subset of range f, and so also finite. Injectivity amounts to showing that X = Y under
the assumptions that X, Y ∈ UNIV�∼∼∼tag and f X = f Y. From the assumptions we obtain
x ∈ X and y ∈ Y with tag x = tag y. Since x and y are tag-related, this in turn means that
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the equivalence classes X and Y must be equal. Therefore (14) allows us to conclude with
finite (UNIV�∼∼∼tag). �

Lemma 4.5. Given two equivalence relations R1 and R2, whereby R1 refines R2. If finite
(UNIV�R1) then finite (UNIV�R2).

Proof. We prove this lemma again using (14). This time we set f to be X 7→ {[[x]]R1 | x
∈ X}. It is easy to see that finite (f ‘ UNIV�R2) because it is a subset of Pow (UNIV�
R1), which must be finite by assumption. What remains to be shown is that f is injective
on UNIV�R2. This is equivalent to showing that two equivalence classes, say X and Y,
in UNIV�R2 are equal, provided f X = f Y. For X = Y to be equal, we have to find two
elements x ∈ X and y ∈ Y such that they are R2 related. We know there exists a x ∈ X
with X = [[x]]R2 . From the latter fact we can infer that [[x]]R1 ∈ f X and further [[x]]R1 ∈ f
Y. This means we can obtain a y such that [[x]]R1 = [[y]]R1 holds. Consequently x and y are
R1-related. Since by assumption R1 refines R2, they must also be R2-related, as we need
to show. �

Chaining Lemma 4.4 and 4.5 together, means in order to show that UNIV�≈L(r) is finite,
we have to construct a tagging-function whose range can be shown to be finite and whose
tagging-relation refines ≈L(r). Let us attempt the PLUS-case first. We take as tagging-
function

+tag A B x
def
= ([[x]]≈A , [[x]]≈B)

where A and B are some arbitrary languages. The reason for this choice is that we need to
establish that ∼∼∼+tag A B refines ≈A ∪ B. This amounts to showing x ≈A y or x ≈B y under
the assumption x ∼∼∼+tag A B y. As we shall see, this definition will provide us with just the
right assumptions in order to get the proof through.

PLUS-Case. We can show in general, if finite (UNIV�≈A) and finite (UNIV�≈B) then
finite (UNIV �≈A × UNIV �≈B) holds. The range of +tag A B is a subset of this
product set—so finite. For the refinement proof-obligation, we know that ([[x]]≈A , [[x]]≈B)

= ([[y]]≈A , [[y]]≈B) holds by assumption. Then clearly either x ≈A y or x ≈B y, as we
needed to show. Finally we can discharge this case by setting A to L(r1) and B to L(r2).

�

The TIMES-case is slightly more complicated. We first prove the following lemma, which
will aid the proof about refinement.

Lemma 4.6. The relation∼∼∼tag refines≈A, provided for all strings x, y and z we have that
x ∼∼∼tag y and x @ z ∈ A imply y @ z ∈ A.

We therefore can analyse how the strings x @ z are in the language A and then construct
an appropriate tagging-function to infer that y @ z are also in A. For this we will use the
notion of the set of all possible partitions of a string:

Partitions x
def
= {(xp, xs) | xp @ xs = x} (15)

If we know that (xp, xs) ∈ Partitions x, we will refer to xp as the prefix of the string x, and
respectively to xs as the suffix.
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Now assuming x @ z ∈ A · B, there are only two possible ways of how to ‘split’ this
string to be in A · B:

x zp zs

x z

x @ z ∈ A · B

x @ zp ∈ A zs ∈ B

xp xs z

x z

x @ z ∈ A · B

xs @ z ∈ Bxp ∈ A

Either x and a prefix of z is in A and the rest in B (first picture) or there is a prefix of x in
A and the rest is in B (second picture). In both cases we have to show that y @ z ∈ A · B.
The first case we will only go through if we know that x ≈A y holds (∗). Because then
we can infer from x @ zp ∈ A that y @ zp ∈ A holds for all zp. In the second case we only
know that xp and xs is one possible partition of the string x. We have to know that both xp
and the corresponding partition yp are in A, and that xs is ‘B-related’ to ys (∗∗). From the
latter fact we can infer that ys @ z ∈ B. This will solve the second case. Taking the two
requirements, (∗) and (∗∗), together we define the tagging-function in the TIMES-case
as:

×tag A B
def
= ([[x]]≈A, {[[xs]]≈B | xp ∈ A ∧ (xp, xs) ∈ Partitions x})

Note that we have to make the assumption for all suffixes xs, since we do not know
anything about how the string x is partitioned. With this definition in place, let us prove
the TIMES-case.

TIMES-Case. If finite (UNIV�≈A) and finite (UNIV�≈B) then finite (UNIV�≈A × Pow
(UNIV�≈B)) holds. The range of ×tag A B is a subset of this product set, and therefore
finite. For the refinement of ≈A · B and ∼∼∼×tag A B, we have by Lemma 4.6

×tag A B x = ×tag A B y

and x @ z ∈ A · B, and have to establish y @ z ∈ A · B. As shown in the pictures above,
there are two cases to be considered. First, there exists a zp and zs such that x @ zp ∈ A
and zs ∈ B. By the assumption about ×tag A B we have [[x]]≈A = [[y]]≈A and thus x ≈A y.
Hence by the Myhill-Nerode Relation y @ zp ∈ A holds. Using zs ∈ B, we can conclude
in this case with y @ z ∈ A · B (recall zp @ zs = z).

Second there exists a partition xp and xs with xp ∈ A and xs @ z ∈ B. We therefore
have

[[xs]]≈B ∈ {[[xs]]≈B | xp ∈ A ∧ (xp, xs) ∈ Partitions x}

and by the assumption about ×tag A B also
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[[xs]]≈B ∈ {[[ys]]≈B | yp ∈ A ∧ (yp, ys) ∈ Partitions y}

This means there must be a partition yp and ys such that yp ∈ A and [[xs]]≈B = [[ys]]≈B . Un-
folding the Myhill-Nerode Relation and together with the facts that xp ∈ A and xs @ z ∈ B,
we obtain yp ∈ A and ys @ z ∈ B, as needed in this case. We again can complete the
TIMES-case by setting A to L(r1) and B to L(r2). �

The case for STAR is similar to TIMES, but poses a few extra challenges. To deal with
them, we define first the notion of a string prefix and a strict string prefix:

x ≤ y
def
= ∃ z. y = x @ z

x < y
def
= x ≤ y ∧ x 6= y

When analysing the case of x @ z being an element in A? and x is not the empty string,
we have the following picture:

xpmax xs za zb

x z

x @ z ∈ A?

xs @ za ∈ Axpmax ∈ A? zb ∈ A?

xs @ z ∈ A?

We can find a strict prefix xp of x such that xp ∈ A?, xp < x and the rest xs @ z ∈ A?.
For example the empty string [] would do (recall x 6= []). There are potentially many
such prefixes, but there can only be finitely many of them (the string x is finite). Let us
therefore choose the longest one and call it xpmax. Now for the rest of the string xs @ z
we know it is in A? and cannot be the empty string. By Property 2.1(iv), we can separate
this string into two parts, say a and b, such that a 6= [], a ∈ A and b ∈ A?. Now a must be
strictly longer than xs, otherwise xpmax is not the longest prefix. That means a ‘overlaps’
with z, splitting it into two components za and zb. For this we know that xs @ za ∈ A and
zb ∈ A?. To cut a story short, we have divided x @ z ∈ A? such that we have a string a
with a ∈ A that lies just on the ‘border’ of x and z. This string is xs @ za.

In order to show that x @ z ∈ A? implies y @ z ∈ A?, we use the following tagging-
function:

?tag A x
def
= {[[xs]]≈A | xp < x ∧ xp ∈ A? ∧ (xs, xp) ∈ Partitions x}

STAR-Case. If finite (UNIV�≈A) then finite (Pow (UNIV�≈A)) holds. The range of ?tag
A is a subset of this set, and therefore finite. Again we have to show under the assumption
x ∼∼∼?tag A y that x @ z ∈ A? implies y @ z ∈ A?.

We first need to consider the case that x is the empty string. From the assumption about
strict prefixes in ∼∼∼?tag A, we can infer y is the empty string and then clearly have y @ z
∈ A?. In case x is not the empty string, we can divide the string x @ z as shown in the
picture above. By the tagging-function and the facts xpmax ∈ A? and xpmax < x, we have

[[xs]]≈A ∈ {[[xs]]≈A | xpmax < x ∧ xpmax ∈ A? ∧ (xpmax, xs) ∈ Partitions x}

which by assumption is equal to
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[[xs]]≈A ∈ {[[ys]]≈A | yp < y ∧ yp ∈ A? ∧ (yp, ys) ∈ Partitions y}

From this we know there exist a partition yp and ys with yp ∈ A? and also xs ≈A ys.
Unfolding the Myhill-Nerode Relation we know ys @ za ∈ A. We also know that zb ∈ A?.
Therefore yp @ (ys @ za) @ zb ∈ A?, which means y @ z ∈ A?. The last step is to set A to
L(r) and thus complete the proof. �

5. SECOND PART PROVED USING PARTIAL DERIVATIVES

As we have seen in the previous section, in order to establish the second direction of
the Myhill-Nerode Theorem, it is sufficient to find a more refined relation than ≈L(r)
for which we can show that there are only finitely many equivalence classes. So far we
showed this directly by induction on r using tagging-functions. However, there is also an
indirect method to come up with such a refined relation by using derivatives of regular
expressions [6].

Assume the following two definitions for the left-quotient of a language, which we
write as Der c A and Ders s A where c is a character and s a string, respectively:

Der c A
def
= {s | [c] @ s ∈ A}

Ders s A
def
= {s ′ | s @ s ′∈ A}

In order to aid readability, we shall make use of the following abbreviation

Derss s As
def
=

⋃
Ders s ‘ As

where we apply the left-quotient to a set of languages and then combine the results.
Clearly we have the following equivalence between the Myhill-Nerode Relation (Defi-
nition 3.1) and left-quotients

x ≈A y if and only if Ders x A = Ders y A (16)

It is also straightforward to establish the following properties of left-quotients

Der a {} = {}
Der a {[]} = {}
Der a {[b]} = if a = b then {[]} else {}
Der a (A ∪ B) = Der a A ∪ Der a B
Der c (A · B) = (Der c A) · B ∪ (if [] ∈ A then Der c B else {})
Der c (A?) = (Der c A) · A?
Ders [] A = A
Ders (c :: s) A = Ders s (Der c A)

(17)

Note that in the last equation we use the list-cons operator written :: . The only inter-
esting case is the case of A? where we use Property 2.1(i) in order to infer that Der c (A?)
= Der c (A · A?). We can then complete the proof by using the fifth equation and noting
that Der c (A?) ⊆ (Der c A) · A? provided [] ∈ A.
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Brzozowski observed that the left-quotients for languages of regular expressions can
be calculated directly using the notion of derivatives of a regular expression [6]. We
define this notion in Isabelle/HOL as follows:

der c (ZERO)
def
= ZERO

der c (ONE)
def
= ZERO

der c (ATOM d)
def
= if c = d then ONE else ZERO

der c (PLUS r1 r2)
def
= PLUS (der c r1) (der c r2)

der c (TIMES r1 r2)
def
= if δ(r1) then PLUS (TIMES (der c r1) r2) (der c r2)

else TIMES (der c r1) r2
der c (STAR r)

def
= TIMES (der c r) (STAR r)

ders [] r
def
= r

ders (c :: s) r
def
= ders s (der c r)

The last two clauses extend derivatives from characters to strings. The boolean function
δ(r) needed in the TIMES-case tests whether a regular expression can recognise the empty
string. It can be defined as follows.

δ(ZERO)
def
= False

δ(ONE)
def
= True

δ(ATOM c)
def
= False

δ(PLUS r1 r2)
def
= δ(r1) ∨ δ(r2)

δ(TIMES r1 r2)
def
= δ(r1) ∧ δ(r2)

δ(STAR r)
def
= True

By induction on the regular expression r, respectively on the string s, one can easily
show that left-quotients and derivatives of regular expressions relate as follows (see for
example [24]):

Der c (L(r)) = L(der c r)
Ders s (L(r)) = L(ders s r) (18)

The importance of this fact in the context of the Myhill-Nerode Theorem is that we can
use (16) and (18) in order to establish that

x ≈L(r) y if and only if L(ders x r) = L(ders y r).

holds and hence

x ≈L(r) y provided ders x r = ders y r (19)

This means the right-hand side (seen as a relation) refines the Myhill-Nerode Relation.
Consequently, we can use ∼∼∼(λx. ders x r) as a tagging-relation. However, in order to be
useful for the second part of the Myhill-Nerode Theorem, we have to be able to establish
that for the corresponding language there are only finitely many derivatives—thus ensur-
ing that there are only finitely many equivalence classes. Unfortunately, this is not true
in general. Sakarovitch gives an example where a regular expression has infinitely many
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derivatives w.r.t. the language (ab)? ∪ (ab)?a, which is formally written in our notation
as {[a,b]}? ∪ ({[a,b]}? · {[a]}) (see [24, Page 141]).

What Brzozowski [6] established is that for every language there are only finitely ‘dis-
similar’ derivatives for a regular expression. Two regular expressions are said to be similar
provided they can be identified using the using the ACI-identities:

(A) PLUS (PLUS r1 r2) r3 ≡ PLUS r1 (PLUS r2 r3)
(C) PLUS r1 r2 ≡ PLUS r2 r1
(I) PLUS r r ≡ r

(20)

Carrying this idea through, we must not consider the set of all derivatives, but the one
modulo ACI. In principle, this can be done formally, but it is very painful in a theorem
prover (since there is no direct characterisation of the set of dissimilar derivatives).

Fortunately, there is a much simpler approach using partial derivatives. They were
introduced by Antimirov [2] and can be defined in Isabelle/HOL as follows:

pder c (ZERO)
def
= {}

pder c (ONE)
def
= {}

pder c (ATOM d)
def
= if c = d then {ONE} else {}

pder c (PLUS r1 r2)
def
= pder c r1 ∪ pder c r2

pder c (TIMES r1 r2)
def
= if δ(r1) then TIMESS (pder c r1) r2 ∪ pder c r2

else TIMESS (pder c r1) r2
pder c (STAR r)

def
= TIMESS (pder c r) (STAR r)

pders [] r
def
= {r}

pders (c :: s) r
def
=

⋃
(pders s) ‘ (pder c r)

Again the last two clauses extend partial derivatives from characters to strings. Unlike
‘simple’ derivatives, the functions for partial derivatives return sets of regular expressions.
In the TIMES and STAR cases we therefore use the auxiliary definition

TIMESS rs r
def
= {TIMES r ′ r | r ′∈ rs}

in order to ‘sequence’ a regular expression with a set of regular expressions. Note that in
the last clause we first build the set of partial derivatives w.r.t the character c, then build
the image of this set under the function pders s and finally ‘union up’ all resulting sets. It
will be convenient to introduce for this the following abbreviation

pderss s rs
def
=

⋃
pders s ‘ rs

which simplifies the last clause of pders to

pders (c :: s) r
def
= pderss s (pder c r)

Partial derivatives can be seen as having the ACI-identities already built in: taking
the partial derivatives of the regular expressions in (20) gives us in each case equal sets.
Antimirov [2] showed a similar result to (18) for partial derivatives, namely

(i) Der c (L(r)) =
⋃
L ‘ pder c r

(ii) Ders s (L(r)) =
⋃
L ‘ pders s r (21)
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Proof. The first fact is by a simple induction on r. For the second we slightly modify
Antimirov’s proof by performing an induction on s where we generalise over all r. That
means in the cons-case the induction hypothesis is

(IH) ∀ r. Ders s (L(r)) =
⋃
L ‘ pders s r

With this we can establish

Ders (c :: s) (L(r)) = Ders s (Der c (L(r))) by def.
= Ders s (

⋃
L ‘ pder c r) by (21.i)

= Derss s (L ‘ pder c r) by def. of Ders
=

⋃
L ‘ pderss s (pder c r) by IH

=
⋃
L ‘ pders (c :: s) r by def.

Note that in order to apply the induction hypothesis in the fourth equation, we need the
generalisation over all regular expressions r. The case for the empty string is routine and
omitted. �

Taking (18) and (21) together gives the relationship between languages of derivatives and
partial derivatives

(i) L(der c r) =
⋃
L ‘ pder c r

(ii) L(ders s r) =
⋃
L ‘ pders s r (22)

These two properties confirm the observation made earlier that by using sets, partial
derivatives have the ACI-identities of derivatives already built in.

Antimirov also proved that for every language and every regular expression there are
only finitely many partial derivatives, whereby the set of partial derivatives of r w.r.t. a
language A is defined as

pdersl A r
def
=

⋃
x∈A pders x r (23)

Theorem 5.1 (Antimirov [2]). For every language A and every regular expression r,
finite (pdersl A r).

Antimirov’s proof first establishes this theorem for the language UNIV+, which is the set
of all non-empty strings. For this he proves:

pdersl UNIV+ (ZERO) = {}
pdersl UNIV+ (ONE) = {}
pdersl UNIV+ (ATOM c) = {ONE}
pdersl UNIV+ (PLUS r1 r2) = pdersl UNIV+ r1 ∪ pdersl UNIV+ r2
pdersl UNIV+ (TIMES r1 r2) ⊆ TIMESS (pdersl UNIV+ r1) r2 ∪ pdersl UNIV+ r2
pdersl UNIV+ (STAR r) ⊆ TIMESS (pdersl UNIV+ r) (STAR r)

(24)
from which one can deduce by induction on r that

finite (pdersl UNIV+ r)
holds. Now Antimirov’s theorem follows because
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pdersl UNIV r = pders [] r ∪ pdersl UNIV+ r
and for all languages A, pdersl A r is a subset of pdersl UNIV r. Since we follow An-
timirov’s proof quite closely in our formalisation (only the last two cases of (24) involve
some non-routine induction arguments), we omit the details.

Let us now return to our proof for the second direction in the Myhill-Nerode Theorem.
The point of the above calculations is to use ∼∼∼(λx. pders x r) as tagging-relation.

Proof of Theorem 4.1 (second version). Using (16) and (21) we can easily infer that

x ≈L(r) y provided pders x r = pders y r

which means the tagging-relation∼∼∼(λx. pders x r) refines≈L(r). So we know by Lemma 4.5,
finite (UNIV�≈L(r)) holds if finite (UNIV�∼∼∼(λx. pders x r)). In order to establish the lat-
ter, we can use Lemma 4.4 and show that the range of the tagging-function λx. pders x r
is finite. For this recall Definition 23, which gives us that

pdersl UNIV r
def
=

⋃
x pders x r

Now the range of λx. pders x r is a subset of Pow (pdersl UNIV r), which we know is
finite by Theorem 5.1. Consequently there are only finitely many equivalence classes
of ∼∼∼(λx. pders x r). This relation refines ≈L(r), and therefore we can again conclude the
second part of the Myhill-Nerode Theorem. �

6. CLOSURE PROPERTIES OF REGULAR LANGUAGES

The beauty of regular languages is that they are closed under many set operations. Closure
under union, concatenation and Kleene-star are trivial to establish given our definition of
regularity (recall Definition 1.2). More interesting in our setting is the closure under com-
plement, because it seems difficult to construct a regular expression for the complement
language by direct means. However the existence of such a regular expression can now
be easily proved using both parts of the Myhill-Nerode Theorem, since

s1 ≈A s2 if and only if s1 ≈A s2
holds for any strings s1 and s2. Therefore A and the complement language A give rise to
the same partitions. So if one is finite, the other is too, and vice versa. As noted earlier,
our algorithm for solving equational systems actually calculates a regular expression for
the complement language. Calculating such a regular expression via automata using the
standard method would be quite involved. It includes the steps: regular expression ⇒
non-deterministic automaton ⇒ deterministic automaton ⇒ complement automaton ⇒
regular expression. Clearly not something you want to formalise in a theorem prover in
which it is cumbersome to reason about automata.

Once closure under complement is established, closure under intersection and set dif-
ference is also easy, because

A ∩ B = (A ∪ B)
A − B = (A ∪ B)
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Since all finite languages are regular, then by closure under complement also all co-finite
languages. Closure of regular languages under reversal, that is

A−1 def
= {s−1 | s ∈ A}

can be shown with the help of the following operation defined recursively over regular
expressions

Rev (ZERO)
def
= ZERO

Rev (ONE)
def
= ONE

Rev (ATOM c)
def
= ATOM c

Rev (PLUS r1 r2)
def
= PLUS (Rev r1) (Rev r2)

Rev (TIMES r1 r2)
def
= TIMES (Rev r2) (Rev r1)

Rev (STAR r)
def
= STAR (Rev r)

For this operation we can show
(L(r))−1 = L(Rev r)

from which closure under reversal of regular languages follows.
A perhaps surprising fact is that regular languages are closed under any left-quotient.

Define

Dersl B A
def
=

⋃
x∈B Ders x A

and assume B is any language and A is regular, then Dersl B A is regular. To see this
consider the following argument using partial derivatives: From A being regular we know
there exists a regular expression r such that A = L(r). We also know that pdersl B r is
finite for every language B and regular expression r (recall Theorem 5.1). By definition
and (21) we have

Dersl B (L(r)) =
⋃
L ‘ pdersl B r (25)

Since there are only finitely many regular expressions in pdersl B r, we know by (2) that
there exists a regular expression so that the right-hand side of (25) is equal to the language
L(+(pdersl B r)). Thus the regular expression +(pdersl B r) verifies that Dersl B A is
regular.

Even more surprising is the fact that for every language A, the language consisting
of all substrings of A is regular [13] (see also [10, 25]). A substring can be obtained by
striking out zero or more characters from a string. This can be defined inductively in
Isabelle/HOL by the following three rules:

[] � x
x � y

x � c :: y
x � y

c :: x � c :: y
It is straightforward to prove that � is a partial order. Now define the language of sub-
strings and superstrings of a language A respectively as

Sub A
def
= {x | ∃ y∈A. x � y}

Sup A
def
= {x | ∃ y∈A. y � x}

We like to establish
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Theorem 6.1 (Haines [13]). For every language A, the languages (i) Sub A and (ii) Sup
A are regular.

Our proof follows the one given in [25, Pages 92–95], except that we use Higman’s
Lemma, which is already proved in the Isabelle/HOL library [3].4 Higman’s Lemma
allows us to infer that every language A of antichains, satisfying

∀ x, y ∈ A. x 6= y −→ x 6�y ∧ y 6�x (26)

is finite.
The first step in our proof of Theorem 6.1 is to establish the following simple properties

for Sup

Sup {} def
= {}

Sup {[]} def
= UNIV

Sup {[c]} def
= UNIV · {[c]} · UNIV

Sup (A ∪ B)
def
= Sup A ∪ Sup B

Sup (A · B) def
= Sup A · Sup B

Sup (A?)
def
= UNIV

(27)

whereby the last equation follows from the fact that A? contains the empty string. With
these properties at our disposal we can establish the lemma

Lemma 6.2. If A is regular, then also Sup A.

Proof. Since our alphabet is finite, we have a regular expression, written ALL, that matches
every string. Using this regular expression we can inductively define the operation r↑

(ZERO)↑ def
= ZERO

(ONE)↑ def
= ALL

(ATOM c)↑ def
= TIMES ALL (TIMES (ATOM c) ALL)

(PLUS r1 r2)↑
def
= PLUS (r1)↑ (r2)↑

(TIMES r1 r2)↑
def
= TIMES (r1)↑ (r2)↑

(STAR r)↑ def
= ALL

and use (27) to establish that L((r)↑) = Sup (L(r)) holds. This shows that Sup A is
regular, provided A is. �

Now we can prove the main lemma w.r.t. Sup, namely

Lemma 6.3. For every language A, there exists a finite language M such that
Sup M = Sup A .

4Unfortunately, Berghofer’s formalisation of Higman’s Lemma is restricted to 2-letter alphabets, which
means also our formalisation of Theorem 6.1 is ‘tainted’ with this constraint. However our methodology is
applicable to any alphabet of finite size.
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Proof. For M we take the set of all minimal elements of A. An element x is said to be
minimal in A provided

minA x
def
= ∀ y∈A. y � x −→ x � y

By Higman’s Lemma (26) we know that M
def
= {x ∈ A |minA x} is finite, since every mini-

mal element is incomparable, except with itself. It is also straightforward to show that Sup
M ⊆ Sup A. For the other direction we have x ∈ Sup A. From this we obtain a y such that
y ∈ A and y � x. Since we have that the relation {(y, x) | y � x ∧ x 6= y} is well-founded,
there must be a minimal element z such that z ∈ A and z� y, and hence by transitivity also
z � x (here we deviate from the argument given in [25], because Isabelle/HOL provides
already an extensive infrastructure for reasoning about well-foundedness). Since z is min-
imal and an element in A, we also know that z is in M. From this together with z � x, we
can infer that x is in Sup M, as required. �

This lemma allows us to establish the second part of Theorem 6.1.

Proof of the Second Part of Theorem 6.1. Given any language A, by Lemma 6.3 we know
there exists a finite, and thus regular, language M. We further have Sup M = Sup A, which
establishes the second part. �

In order to establish the first part of this theorem, we use the property proved in [25],
namely that

Sub A = Sup (Sub A) (28)

holds. Now the first part of Theorem 6.1 is a simple consequence of the second part.

Proof of the First Part of Theorem 6.1. By the second part, we know the right-hand side
of (28) is regular, which means Sub A is regular. But since we established already that
regularity is preserved under complement, also Sub A must be regular. �

Finally we like to show that the Myhill-Nerode Theorem is also convenient for es-
tablishing the non-regularity of languages. For this we use the following version of the
Continuation Lemma (see for example [23]).

Lemma 6.4 (Continuation Lemma). If a language A is regular and a set B is infinite, then
there exist two distinct strings x and y in B such that x ≈A y.

This lemma can be easily deduced from the Myhill-Nerode Theorem and the Pigeonhole
Principle: Since A is regular, there can be only finitely many equivalence classes. Hence
an infinite set must contain at least two strings that are in the same equivalence class, that
is they need to be related by the Myhill-Nerode Relation.

Using this lemma, it is straightforward to establish that the language A
def
=

⋃
n an @ bn

is not regular (an stands for the strings consisting of n times the character a; similarly for

bn). For this consider the infinite set B
def
=

⋃
n an.

Lemma 6.5. No two distinct strings in set B are Myhill-Nerode related by language A.
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Proof. After unfolding the definition of B, we need to establish that given i 6= j, the
strings ai and aj are not Myhill-Nerode related by A. That means we have to show that
∀ z. ai @ z ∈ A = aj @ z ∈ A leads to a contradiction. Let us take bi for z. Then we know
ai @ bi ∈ A. But since i 6= j, aj @ bi /∈ A. Therefore ai and aj cannot be Myhill-Nerode
related by A, and we are done. �

To conclude the proof of non-regularity for the language A, the Continuation Lemma and
the lemma above lead to a contradiction assuming A is regular. Therefore the language A
is not regular, as we wanted to show.

7. CONCLUSION AND RELATED WORK

In this paper we took the view that a regular language is one where there exists a regular
expression that matches all of its strings. Regular expressions can conveniently be defined
as a datatype in HOL-based theorem provers. For us it was therefore interesting to find
out how far we can push this point of view. We have established in Isabelle/HOL both
directions of the Myhill-Nerode Theorem.

Theorem 7.1 (The Myhill-Nerode Theorem).
A language A is regular if and only if finite (UNIV�≈A).

Having formalised this theorem means we pushed our point of view quite far. Using this
theorem we can obviously prove when a language is not regular—by establishing that it
has infinitely many equivalence classes generated by the Myhill-Nerode Relation (this is
usually the purpose of the Pumping Lemma [16]). We can also use it to establish the
standard textbook results about closure properties of regular languages. Interesting is
the case of closure under complement, because it seems difficult to construct a regular
expression for the complement language by direct means. However the existence of such
a regular expression can be easily proved using the Myhill-Nerode Theorem.

Our insistence on regular expressions for proving the Myhill-Nerode Theorem arose
from the limitations of HOL, which is the logic underlying the popular theorem provers
HOL4, HOLlight and Isabelle/HOL. In order to guarantee consistency, formalisations in
HOL can only extend the logic with definitions that introduce a new concept in terms
of already existing notions. A convenient definition for automata (based on graphs) uses
a polymorphic type for the state nodes. This allows us to use the standard operation for
disjoint union whenever we need to compose two automata. Unfortunately, we cannot use
such a polymorphic definition in HOL as part of the definition for regularity of a language
(a predicate over sets of strings). Consider for example the following attempt:

is regular A
def
= ∃M(α). is dfa (M) ∧ L(M) = A

In this definifion, the definiens is polymorphic in the type of the automata M (indicated
by dependency on the type-variable α), but the definiendum is regular is not. Such defi-
nitions are excluded from HOL, because they can lead easily to inconsistencies (see [22]
for a simple example). Also HOL does not contain type-quantifiers which would allow us
to get rid of the polymorphism by quantifying over the type-variable α. Therefore when
defining regularity in terms of automata, the only natural way out in HOL is to resort
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to state nodes with an identity, for example a natural number. Unfortunatly, the conse-
quence is that we have to be careful when combining two automata so that there is no
clash between two such states. This makes formalisations quite fiddly and rather unpleas-
ant. Regular expressions proved much more convenient for reasoning in HOL since they
can be defined as inductive datatype and a reasoning infrastructure comes for free. The
definition of regularity in terms of regular expressions poses no problem at all for HOL.
We showed in this paper that they can be used for establishing the central result in regular
language theory—the Myhill-Nerode Theorem.

While regular expressions are convenient, they have some limitations. One is that
there seems to be no method of calculating a minimal regular expression (for example
in terms of length) for a regular language, like there is for automata. On the other hand,
efficient regular expression matching, without using automata, poses no problem [20]. For
an implementation of a simple regular expression matcher, whose correctness has been
formally established, we refer the reader to Owens and Slind [21]. In our opinion, their
formalisation is considerably slicker than for example the approach to regular expression
matching taken in [14] and [28].

Our proof of the first direction is very much inspired by Brzozowski’s algebraic method
used to convert a finite automaton to a regular expression [6]. The close connection can be
seen by considering the equivalence classes as the states of the minimal automaton for the
regular language. However there are some subtle differences. Because our equivalence
classes (or correspondingly states) arise from the Myhill-Nerode Relation, the most natu-
ral choice is to characterise each state with the set of strings starting from the initial state
leading up to that state. Usually, however, the states are characterised as the strings start-
ing from that state leading to the terminal states. The first choice has consequences about
how the initial equational system is set up. We have the λ-term on our ‘initial state’, while
Brzozowski has it on the terminal states. This means we also need to reverse the direc-
tion of Arden’s Lemma. We have not found anything in the ‘pencil-and-paper-reasoning’
literature about our way of proving the first direction of the Myhill-Nerode Theorem, but
it appears to be folklore.

We presented two proofs for the second direction of the Myhill-Nerode Theorem. One
direct proof using tagging-functions and another using partial derivatives. This part of our
work is where our method using regular expressions shines, because we can completely
side-step the standard argument [16] where automata need to be composed. However,
it is also the direction where we had to spend most of the ‘conceptual’ time, as our first
proof based on tagging-functions is new for establishing the Myhill-Nerode Theorem. All
standard proofs of this direction proceed by arguments over automata.

The indirect proof for the second direction arose from our interest in Brzozowski’s
derivatives for regular expression matching. While Brzozowski already established that
there are only finitely many dissimilar derivatives for every regular expression, this result
is not as straightforward to formalise in a theorem prover as one might wish. The reason
is that the set of dissimilar derivatives is not defined inductively, but in terms of an ACI-
equivalence relation. This difficulty prevented for example Krauss and Nipkow to prove
termination of their equivalence checker for regular expressions [17]. Their checker is
based on Brzozowski’s derivatives and for their argument the lack of a formal proof of
termination is not crucial (it merely lets them “sleep better” [17]). We expect that their
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development simplifies by using partial derivatives, instead of derivatives, and that the
termination of the algorithm can be formally established (the main ingredient is Theo-
rem 5.1). However, since partial derivatives use sets of regular expressions, one needs to
carefully analyse whether the resulting algorithm is still executable. Given the existing
infrastructure for executable sets in Isabelle/HOL [12], it should.

Our formalisation of the Myhill-Nerode Theorem consists of 780 lines of Isabelle/Isar
code for the first direction and 460 for the second (the one based on tagging-functions),
plus around 300 lines of standard material about regular languages. The formalisation
of derivatives and partial derivatives shown in Section 5 consists of 390 lines of code.
The closure properties in Section 6 (except Theorem 6.1) can be established in 190 lines
of code. The Continuation Lemma and the non-regularity of an bn require 70 lines of
code. The algorithm for solving equational systems, which we used in the first direction,
is conceptually relatively simple. Still the use of sets over which the algorithm operates
means it is not as easy to formalise as one might hope. However, it seems sets cannot be
avoided since the ‘input’ of the algorithm consists of equivalence classes and we cannot
see how to reformulate the theory so that we can use lists or matrices. Lists would be
much easier to reason about, since we can define functions over them by recursion. For
sets we have to use set-comprehensions, which is slightly unwieldy. Matrices would allow
us to use the slick formalisation by Nipkow of the Gauss-Jordan algorithm [19].

While our formalisation might appear large, it should be seen in the context of the
work done by Constable at al [9] who formalised the Myhill-Nerode Theorem in Nuprl
using automata. They write that their four-member team needed something on the mag-
nitude of 18 months for their formalisation. It is hard to gauge the size of a formalisation
in Nurpl, but from what is shown in the Nuprl Math Library about their development
it seems substantially larger than ours. We attribute this to our use of regular expres-
sions, which meant we did not need to ‘fight’ the theorem prover. Also, Filliâtre re-
ports that his formalisation in Coq of automata theory and Kleene’s theorem is “rather
big” [11]. More recently, Almeida et al reported about another formalisation of regu-
lar languages in Coq [1]. Their main result is the correctness of Mirkin’s construction
of an automaton from a regular expression using partial derivatives. This took approx-
imately 10600 lines of code. In terms of time, the estimate for our formalisation is
that we needed approximately 3 months and this included the time to find our proof
arguments. Unlike Constable et al, who were able to follow the Myhill-Nerode proof
from [15], we had to find our own arguments. So for us the formalisation was not the
bottleneck. The code of our formalisation can be found in the Archive of Formal Proofs
at http://afp.sourceforge.net/devel-entries/Myhill-Nerode.shtml [27].
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