
Welcome!
Files and Programme at:
http://isabelle.in.tum.de/nominal/activities/cas09/

Have you already installed Isabelle?

Can you step through Example.thy without getting
an error message?

If yes, then very good.
If not, then please ask now!

Beijing, 27. May 2009 – p. 1/49

http://isabelle.in.tum.de/nominal/activities/cas09/


Nick Benton in “Machine Obstructed Proof”:

Automated proving is not just a slightly more fussy
version of paper proving. . . It’s a strange new skill,
much harder to learn than a new programming lan-
guage or application, or even many bits of mathe-
matics. . . Coq is worth the bother and it, or some-
thing like it, is the future, if only we could make
the initial learning experience a few thousand times
less painful.

Same applies to Isabelle. So be prepared.

Beijing, 27. May 2009 – p. 2/49



A Six-Slides
Crash-Course on How

to Use Isabelle

Beijing, 27. May 2009 – p. 3/49



Proof General
Important buttons:

Next and Undo advance /
retract the processed part
Goto jumps to the current
cursor position, same as
ctrl-c/ctrl-return

Feedback:
warning messages are given in
yellow

error messages in red

Beijing, 27. May 2009 – p. 4/49



X-Symbols
. . . provide a nice way to input non-ascii
characters; for example:

∀ , ∃ , ⇓, #,
∧

, Γ ,×, 6=, ∈, . . .

they need to be input via the combination
\<name-of-x-symbol>

short-cuts for often used symbols

[| . . . [[
|] . . . ]]

==> . . . =⇒
=> . . . ⇒

/\ . . . ∧
\/ . . . ∨

Beijing, 27. May 2009 – p. 5/49



X-Symbols
. . . provide a nice way to input non-ascii
characters; for example:

∀ , ∃ , ⇓, #,
∧

, Γ ,×, 6=, ∈, . . .

they need to be input via the combination
\<name-of-x-symbol>

short-cuts for often used symbols

[| . . . [[
|] . . . ]]

==> . . . =⇒
=> . . . ⇒

/\ . . . ∧
\/ . . . ∨

Beijing, 27. May 2009 – p. 5/49



Isabelle Proof-Scripts

Every proof-script (theory) is of the form

theory Name
imports T1...Tn

begin
...
end

Normally, one T will be the theory Main.

Beijing, 27. May 2009 – p. 6/49



Isabelle Proof-Scripts

Every proof-script (theory) is of the form

theory Name
imports T1...Tn

begin
...
end

Normally, one T will be the theory Main.

Beijing, 27. May 2009 – p. 6/49



Types
Isabelle is typed, has polymorphism and
overloading.

Base types: nat, bool, string, . . .
Type-formers: ’a list, ’a× ’b, ’c set, ’a⇒ ’b. . .
Type-variables: ’a, ’b, ’c, . . .

Types can be queried in Isabelle using:
typ nat
typ bool
typ string
typ "(’a× ’b)"
typ "’c set"
typ "’a list"
typ "nat⇒ bool"

Beijing, 27. May 2009 – p. 7/49



Types
Isabelle is typed, has polymorphism and
overloading.

Base types: nat, bool, string, . . .
Type-formers: ’a list, ’a× ’b, ’c set, ’a⇒ ’b. . .
Type-variables: ’a, ’b, ’c, . . .

Types can be queried in Isabelle using:
typ nat
typ bool
typ string
typ "(’a× ’b)"
typ "’c set"
typ "’a list"
typ "nat⇒ bool"

Beijing, 27. May 2009 – p. 7/49



Terms
The well-formedness of terms can be queried
using:

term c
term "1::nat"
term 1
term "{1, 2, 3::nat}"
term "[1, 2, 3]"
term "(True, ’’c’’)"
term "Suc 0"

Isabelle provides some useful colour feedback
term "True" gives "True" :: "bool"
term "true" gives "true" :: "’a"
term "∀ x. P x" gives "∀ x. P x" :: "bool"

Beijing, 27. May 2009 – p. 8/49



Terms
The well-formedness of terms can be queried
using:

term c
term "1::nat"
term 1
term "{1, 2, 3::nat}"
term "[1, 2, 3]"
term "(True, ’’c’’)"
term "Suc 0"

Isabelle provides some useful colour feedback
term "True" gives "True" :: "bool"
term "true" gives "true" :: "’a"
term "∀ x. P x" gives "∀ x. P x" :: "bool"

Beijing, 27. May 2009 – p. 8/49



Formulae
Every formula in Isabelle needs to be of type bool

term "True"
term "True ∧ False"
term "{1,2,3} = {3,2,1}"
term "∀ x. P x"
term "A−→ B"

When working with Isabelle, you are confronted
with an objet logic (HOL) and a meta-logic (Pure)

term "A−→ B" ’=’ term "A =⇒ B"
term "∀ x. P x" ’=’ term "

∧
x. P x"

term "A =⇒ B =⇒ C" = term "[[A; B]] =⇒ C"

Beijing, 27. May 2009 – p. 9/49



Formulae
Every formula in Isabelle needs to be of type bool

term "True"
term "True ∧ False"
term "{1,2,3} = {3,2,1}"
term "∀ x. P x"
term "A−→ B"

When working with Isabelle, you are confronted
with an objet logic (HOL) and a meta-logic (Pure)

term "A−→ B" ’=’ term "A =⇒ B"
term "∀ x. P x" ’=’ term "

∧
x. P x"

term "A =⇒ B =⇒ C" = term "[[A; B]] =⇒ C"

Beijing, 27. May 2009 – p. 9/49



Formulae
Every formula in Isabelle needs to be of type bool

term "True"
term "True ∧ False"
term "{1,2,3} = {3,2,1}"
term "∀ x. P x"
term "A−→ B"

When working with Isabelle, you are confronted
with an objet logic (HOL) and a meta-logic (Pure)

term "A−→ B" ’=’ term "A =⇒ B"
term "∀ x. P x" ’=’ term "

∧
x. P x"

term "A =⇒ B =⇒ C" = term "[[A; B]] =⇒ C"

Beijing, 27. May 2009 – p. 9/49



Inductive Predicates
and Theorems

Beijing, 27. May 2009 – p. 10/49



inductive
even :: "nat⇒ bool"
where

eZ[intro]: "even 0"
| eSS[intro]: "even n =⇒ even (Suc (Suc n))"

The type of the predicate is always something to
bool.
The attribute [intro] adds the corresponding
clause to the hint-theorem base (later more).
The clauses correspond to the rules

even 0
even n

even (Suc (Suc n))

Beijing, 27. May 2009 – p. 11/49



inductive
even :: "nat⇒ bool"
where

eZ[intro]: "even 0"
| eSS[intro]: "even n =⇒ even (Suc (Suc n))"

The type of the predicate is always something to
bool.
The attribute [intro] adds the corresponding
clause to the hint-theorem base (later more).
The clauses correspond to the rules

even 0
even n

even (Suc (Suc n))
Beijing, 27. May 2009 – p. 11/49



Theorems
Isabelle’s theorem database can be querried using
thm eZ
thm eSS
thm conjI
thm conjunct1

Beijing, 27. May 2009 – p. 12/49

eZ: even 0
eSS: even ?n =⇒ even (Suc (Suc ?n))

conjI: [[?P; ?Q]] =⇒ ?P ∧ ?Q
conjunct1: ?P ∧ ?Q =⇒ ?P



Theorems
Isabelle’s theorem database can be querried using
thm eZ
thm eSS
thm conjI
thm conjunct1

Beijing, 27. May 2009 – p. 12/49

eZ: even 0
eSS: even ?n =⇒ even (Suc (Suc ?n))

conjI: [[?P; ?Q]] =⇒ ?P ∧ ?Q
conjunct1: ?P ∧ ?Q =⇒ ?P



Theorems
Isabelle’s theorem database can be querried using
thm eZ
thm eSS
thm conjI
thm conjunct1

Beijing, 27. May 2009 – p. 12/49

eZ: even 0
eSS: even ?n =⇒ even (Suc (Suc ?n))

conjI: [[?P; ?Q]] =⇒ ?P ∧ ?Q
conjunct1: ?P ∧ ?Q =⇒ ?P

schematic variables



Theorems
Isabelle’s theorem database can be querried using
thm eZ[no_vars]
thm eSS[no_vars]
thm conjI[no_vars]
thm conjunct1[no_vars]

Beijing, 27. May 2009 – p. 13/49

attributes

eZ: even 0
eSS: even n =⇒ even (Suc (Suc n))

conjI: [[P; Q]] =⇒ P ∧ Q
conjunct1: P ∧ Q =⇒ P



Generated Theorems
Most definitions result in automatically generated
theorems; for example

thm even.intros[no_vars]
thm even.induct[no_vars]

Beijing, 27. May 2009 – p. 14/49

intr’s: even 0
even n =⇒ even (Suc (Suc n))

ind’ct: [[even x; P 0;∧
n. [[even n; P n]] =⇒ P (Suc (Suc n))]]

=⇒P x



Generated Theorems
Most definitions result in automatically generated
theorems; for example

thm even.intros[no_vars]
thm even.induct[no_vars]

Beijing, 27. May 2009 – p. 14/49

intr’s: even 0
even n =⇒ even (Suc (Suc n))

ind’ct: [[even x; P 0;∧
n. [[even n; P n]] =⇒ P (Suc (Suc n))]]

=⇒P x



Theorem / Lemma / Corollary
. . . they are of the form:

theorem theorem_name:
fixes x::"type"
. . .
assumes "assm1"
and "assm2"
. . .
shows "statement"
. . .

Grey parts are optional.
Assumptions and the (goal)statement must be of
type bool. Assumptions can have labels.

Beijing, 27. May 2009 – p. 15/49



Theorem / Lemma / Corollary
. . . they are of the form:

theorem theorem_name:
fixes x::"type"
. . .
assumes "assm1"
and "assm2"
. . .
shows "statement"
. . .

Grey parts are optional.
Assumptions and the (goal)statement must be of
type bool. Assumptions can have labels.

Beijing, 27. May 2009 – p. 15/49

lemma even_double:
shows "even (2 * n)"

. . .

lemma even_add:
assumes a: "even n"
and b: "even m"
shows "even (n + m)"

. . .

lemma neutral_element:
fixes x::"nat"
shows "x + 0 = x"

. . .



Isar Proofs
about Even

Beijing, 27. May 2009 – p. 16/49



An Isar Proof . . .

Beijing, 27. May 2009 – p. 17/49

The Isar proof language has been conceived by Markus
Wenzel, the main developer behind Isabelle.



An Isar Proof . . .

Beijing, 27. May 2009 – p. 17/49

The Isar proof language has been conceived by Markus
Wenzel, the main developer behind Isabelle.

goal

stepping stones

...

stepping stones

assumptions



An Isar Proof . . .
A Rough Schema of an Isar Proof:

have

n1:

"assumption"

by justification

have

n2:

"assumption"

by justification

. . .
have

n:

"statement"

by justification

have

m:

"statement"

by justification

. . .
show "statement"

by justification

qed

each have-statement can be given a label
obviously, everything needs to have a justifiation

Beijing, 27. May 2009 – p. 18/49



An Isar Proof . . .
A Rough Schema of an Isar Proof:

have n1: "assumption"

by justification

have n2: "assumption"

by justification

. . .
have n: "statement"

by justification

have m: "statement"

by justification

. . .
show "statement"

by justification

qed

each have-statement can be given a label

obviously, everything needs to have a justifiation

Beijing, 27. May 2009 – p. 18/49



An Isar Proof . . .
A Rough Schema of an Isar Proof:

have n1: "assumption" by justification
have n2: "assumption" by justification
. . .
have n: "statement" by justification
have m: "statement" by justification
. . .
show "statement" by justification
qed

each have-statement can be given a label
obviously, everything needs to have a justifiation

Beijing, 27. May 2009 – p. 18/49



Justifications
Omitting proofs
sorry

Assumptions
by fact

Automated proofs
by simp simplification (equations, definitions)
by auto simplification & proof search

(many goals)
by force simplification & proof search

(first goal)
by blast proof search
. . .

Beijing, 27. May 2009 – p. 19/49



Justifications
Omitting proofs
sorry

Assumptions
by fact

Automated proofs
by simp simplification (equations, definitions)
by auto simplification & proof search

(many goals)
by force simplification & proof search

(first goal)
by blast proof search
. . .

Beijing, 27. May 2009 – p. 19/49

Automatic justifications can also be:
using . . . by . . .

using ih by . . .
using n1 n2 n3 by . . .
using lemma_name. . .by . . .



First Exercise
Lets try to prove a simple lemma. Remember we
defined

Eveness of a number:

even 0
eZ

even n
even (Suc (Suc n))

eSS

lemma evan_double:
shows "even (2 * n)"

proof (induct n)

Beijing, 27. May 2009 – p. 20/49



First Exercise
Lets try to prove a simple lemma. Remember we
defined

Eveness of a number:

even 0
eZ

even n
even (Suc (Suc n))

eSS

lemma evan_double:
shows "even (2 * n)"

proof (induct n)

Beijing, 27. May 2009 – p. 20/49



Proofs by Induction
Proofs by induction involve cases, which are of
the form:

proof (induct)
case (Case-Name x. . . )
have "assumption" by justification
. . .
have "statment" by justification
. . .
show "statment" by justification

next
case (Another-Case-Name y. . . )
. . .

Beijing, 27. May 2009 – p. 21/49



Your Turn

lemma even_double:
shows "even (2 * n)"

proof (induct n)
case 0
show "even (2 * 0)" sorry

next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" sorry
have a: "even (Suc (Suc (2 * n)))" sorry
show "even (2 * (Suc n))" sorry

qed

Beijing, 27. May 2009 – p. 22/49

even 0
eZ

even n
even (Suc (Suc n))

eSS



Your Turn

lemma even_double:
shows "even (2 * n)"

proof (induct n)
case 0
show "even (2 * 0)" sorry

next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" sorry
have a: "even (Suc (Suc (2 * n)))" sorry
show "even (2 * (Suc n))" sorry

qed

Beijing, 27. May 2009 – p. 22/49

a
a
a

a

even 0
eZ

even n
even (Suc (Suc n))

eSS



Your Turn

lemma even_double:
shows "even (2 * n)"

proof (induct n)
case 0
show "even (2 * 0)" by auto

next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" sorry
have a: "even (Suc (Suc (2 * n)))" sorry
show "even (2 * (Suc n))" sorry

qed

Beijing, 27. May 2009 – p. 22/49

a
a
a

even 0
eZ

even n
even (Suc (Suc n))

eSS



Your Turn

lemma even_double:
shows "even (2 * n)"

proof (induct n)
case 0
show "even (2 * 0)" by auto

next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" sorry
have a: "even (Suc (Suc (2 * n)))" sorry
show "even (2 * (Suc n))" sorry

qed

Beijing, 27. May 2009 – p. 22/49

a
a
a

even 0
eZ

even n
even (Suc (Suc n))

eSS



Your Turn

lemma even_double:
shows "even (2 * n)"

proof (induct n)
case 0
show "even (2 * 0)" by auto

next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" by simp
have a: "even (Suc (Suc (2 * n)))" sorry
show "even (2 * (Suc n))" sorry

qed

Beijing, 27. May 2009 – p. 22/49

a
a

even 0
eZ

even n
even (Suc (Suc n))

eSS



Your Turn

lemma even_double:
shows "even (2 * n)"

proof (induct n)
case 0
show "even (2 * 0)" by auto

next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" by simp
have a: "even (Suc (Suc (2 * n)))" sorry
show "even (2 * (Suc n))" sorry

qed

Beijing, 27. May 2009 – p. 22/49

a
a

even 0
eZ

even n
even (Suc (Suc n))

eSS



Your Turn

lemma even_double:
shows "even (2 * n)"

proof (induct n)
case 0
show "even (2 * 0)" by auto

next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" by simp
have a: "even (Suc (Suc (2 * n)))" using ih by auto
show "even (2 * (Suc n))" sorry

qed

Beijing, 27. May 2009 – p. 22/49

a

even 0
eZ

even n
even (Suc (Suc n))

eSS



Your Turn

lemma even_double:
shows "even (2 * n)"

proof (induct n)
case 0
show "even (2 * 0)" by auto

next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" by simp
have a: "even (Suc (Suc (2 * n)))" using ih by auto
show "even (2 * (Suc n))" sorry

qed

Beijing, 27. May 2009 – p. 22/49

a

even 0
eZ

even n
even (Suc (Suc n))

eSS



Your Turn

lemma even_double:
shows "even (2 * n)"

proof (induct n)
case 0
show "even (2 * 0)" by auto

next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" by simp
have a: "even (Suc (Suc (2 * n)))" using ih by auto
show "even (2 * (Suc n))" using eq a by simp

qed

Beijing, 27. May 2009 – p. 22/49

even 0
eZ

even n
even (Suc (Suc n))

eSS



Your Turn

lemma even_twice:
shows "even (n + n)"

proof (induct n)
case 0
show "even (0 + 0)" sorry

next
case (Suc n)
have ih: "even (n + n)" by fact
have eq: "(Suc n) + (Suc n) = Suc (Suc (n + n))" sorry
have a: "even (Suc (Suc (n + n)))" sorry
show "even ((Suc n) + (Suc n))" sorry

qed

Beijing, 27. May 2009 – p. 23/49

even 0
eZ

even n
even (Suc (Suc n))

eSS



Your Turn

lemma even_twice:
shows "even (n + n)"

proof (induct n)
case 0
show "even (0 + 0)" sorry

next
case (Suc n)
have ih: "even (n + n)" by fact
have eq: "(Suc n) + (Suc n) = Suc (Suc (n + n))" sorry
have a: "even (Suc (Suc (n + n)))" sorry
show "even ((Suc n) + (Suc n))" sorry

qed

Beijing, 27. May 2009 – p. 23/49

a
a
a

a

even 0
eZ

even n
even (Suc (Suc n))

eSS



Your Turn

lemma even_twice:
shows "even (n + n)"

proof (induct n)
case 0
show "even (0 + 0)" by auto

next
case (Suc n)
have ih: "even (n + n)" by fact
have eq: "(Suc n) + (Suc n) = Suc (Suc (n + n))" by simp
have a: "even (Suc (Suc (n + n)))" using ih by auto
show "even ((Suc n) + (Suc n))" using eq a by simp

qed

Beijing, 27. May 2009 – p. 23/49

even 0
eZ

even n
even (Suc (Suc n))

eSS



Your Turn

lemma even_twice:
shows "even (n + n)"

proof (induct n)
case 0
show "even (0 + 0)" by auto

next
case (Suc n)
have ih: "even (n + n)" by fact
have eq: "(Suc n) + (Suc n) = Suc (Suc (n + n))" by simp
have "even (Suc (Suc (n + n)))" using ih by auto
then show "even ((Suc n) + (Suc n))" using eq by simp

qed

Beijing, 27. May 2009 – p. 24/49

even 0
eZ

even n
even (Suc (Suc n))

eSS



A Chain of Facts
Isar allows you to build a chain of facts as
follows:

have n1: “. . . ”
have n2: “. . . ”

. . .

have ni: “. . . ”
have “. . . ” using n1 n2 . . . ni

have “. . . ”
moreover have “. . . ”

. . .

moreover have “. . . ”
ultimately have “. . . ”

also works for show

Beijing, 27. May 2009 – p. 25/49



Your Turn

lemma even_twice:
shows "even (n + n)"

proof (induct n)
case 0
show "even (0 + 0)" by auto

next
case (Suc n)
have ih: "even (n + n)" by fact
have "(Suc n) + (Suc n) = Suc (Suc (n + n))" by simp
moreover
have "even (Suc (Suc (n + n)))" using ih by auto
ultimately show "even ((Suc n) + (Suc n))" by simp

qed

Beijing, 27. May 2009 – p. 26/49



Automatic Proofs
Do not expect Isabelle to be able to solve
automatically show "P=NP", but. . .

lemma
shows "even (2 * n)"

by (induct n) (auto)

lemma
shows "even (n + n)"

by (induct n) (auto)

Beijing, 27. May 2009 – p. 27/49



Rule Inductions

Beijing, 27. May 2009 – p. 28/49



Rule Inductions
Remember we defined

Eveness of a number:

even 0
eZ

even n
even (Suc (Suc n))

eSS

Rule Inductions:
1.) Assume the property for the premises.

Assume the side-conditions.
2.) Show the property for the conclusion.

Beijing, 27. May 2009 – p. 29/49



Your Turn Again
lemma even_add:
assumes a: "even n"
and b: "even m"
shows "even (n + m)"

using a b
proof (induct)
case eZ
have as: "even m" by fact
show "even (0 + m)" sorry

next
case (eSS n)
have ih: "even m =⇒ even (n + m)" by fact
have as: "even m" by fact

show "even (Suc (Suc n) + m)" sorry
qed

Beijing, 27. May 2009 – p. 30/49

a

a



Your Turn Again
lemma even_add:
assumes a: "even n"
and b: "even m"
shows "even (n + m)"

using a b
proof (induct)
case eZ
have "even m" by fact
then show "even (0 + m)" by simp

next
case (eSS n)
have ih: "even m =⇒ even (n + m)" by fact
have as: "even m" by fact
have "even (n + m)" using ih as by simp
then have "even (Suc (Suc (n + m)))" by auto
then show "even (Suc (Suc n) + m)" by simp

qed
Beijing, 27. May 2009 – p. 31/49



Rule Inductions
Whenever a lemma is of the form

lemma
assumes a: "pred"
and b: "somthing"
shows "something_else"

with pred being an inductively defined predicate,
then generally rule inductions are appropriate.

Beijing, 27. May 2009 – p. 32/49



Does Not Work
lemma even_add_does_not_work:
assumes a: "even n"
and b: "even m"
shows "even (n + m)"

using a b
proof (induct n rule: nat_induct)
case 0
have "even m" by fact
then show "even (0 + m)" by simp

next
case (Suc n)
have ih: "[[even n; even m]] =⇒ even (n + m)" by fact
have as1: "even (Suc n)" by fact
have as2: "even m" by fact

show "even ((Suc n) + m)"

Beijing, 27. May 2009 – p. 33/49



Last Lemma about Even?
lemma even_mul:
assumes a: "even n"
shows "even (n * m)"

using a
proof (induct)
case eZ
show "even (0 * m)" by auto

next
case (eSS n)
have as: "even n" by fact
have ih: "even (n * m)" by fact

show "even ((Suc (Suc n)) * m)" sorry
qed

Beijing, 27. May 2009 – p. 34/49

even_twice: even (n + n)
even_add: [[even n; even m]] =⇒ even (n + m)

a



Last Lemma about Even?
lemma even_mul:
assumes a: "even n"
shows "even (n * m)"

using a
proof (induct)
case eZ
show "even (0 * m)" by auto

next
case (eSS n)
have as: "even n" by fact
have ih: "even (n * m)" by fact

show "even ((Suc (Suc n)) * m)" sorry
qed

Beijing, 27. May 2009 – p. 34/49

even_twice: even (?n + ?n)
even_add: [[even ?n; even ?m]] =⇒ even (?n + ?m)

a



Last Lemma about Even?
lemma even_mul:
assumes a: "even n"
shows "even (n * m)"

using a
proof (induct)
case eZ
show "even (0 * m)" by auto

next
case (eSS n)
have ih: "even (n * m)" by fact
have eq: "(m + m) + (n * m) = (Suc (Suc n)) * m" by simp
have "even (m + m)" using even_twice by simp
then have "even ((m + m) + (n * m))" using even_add ih by simp
then show "even ((Suc (Suc n)) * m)" using eq by simp

qed

Beijing, 27. May 2009 – p. 35/49

even_twice: even (n + n)
even_add: [[even n; even m]] =⇒ even (n + m)



Definitions

Beijing, 27. May 2009 – p. 36/49



Definitions
Often it is useful to define concepts in terms of
existsing concepts. For example

definition
divide :: "nat⇒ nat⇒ bool" ("_ DVD _" [100,100] 100)

where
"m DVD n = (∃ k. n = m * k)"

The annotation after the type introduces some
more memorable syntax. The numbers are
precedences.
Once this definition is done, you can access it with
thm divide_def
m DVD n = (∃ k. n = m * k)

Beijing, 27. May 2009 – p. 37/49



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Beijing, 27. May 2009 – p. 38/49



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Beijing, 27. May 2009 – p. 38/49



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Beijing, 27. May 2009 – p. 38/49



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Beijing, 27. May 2009 – p. 38/49



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Beijing, 27. May 2009 – p. 38/49



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Beijing, 27. May 2009 – p. 38/49



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Beijing, 27. May 2009 – p. 38/49



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a
proof (induct)
case eZ
have "0 = 2 * (0::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

next
case (eSS n)
have "2 DVD n" by fact
then have "∃ k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "∃ k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)

qed
Beijing, 27. May 2009 – p. 38/49



Function Definitions
and the Simplifier

Beijing, 27. May 2009 – p. 39/49



Function Definitions
Iterating a function n times can be defined by

fun
iter :: "(’a⇒ ’a)⇒ nat⇒ (’a⇒ ’a)" ("_ !! _")

where
"f !! 0 = (λx. x)"
| "f !! (Suc n) = (f !! n) o f"

Once a function is defined, the simplifier will be
able to solve equations like

Beijing, 27. May 2009 – p. 40/49



Function Definitions
Iterating a function n times can be defined by

fun
iter :: "(’a⇒ ’a)⇒ nat⇒ (’a⇒ ’a)" ("_ !! _")

where
"f !! 0 = (λx. x)"
| "f !! (Suc n) = (f !! n) o f"

Once a function is defined, the simplifier will be
able to solve equations like

Beijing, 27. May 2009 – p. 40/49

a name



Function Definitions
Iterating a function n times can be defined by

fun
iter :: "(’a⇒ ’a)⇒ nat⇒ (’a⇒ ’a)" ("_ !! _")

where
"f !! 0 = (λx. x)"
| "f !! (Suc n) = (f !! n) o f"

Once a function is defined, the simplifier will be
able to solve equations like

Beijing, 27. May 2009 – p. 40/49

a type



Function Definitions
Iterating a function n times can be defined by

fun
iter :: "(’a⇒ ’a)⇒ nat⇒ (’a⇒ ’a)" ("_ !! _")

where
"f !! 0 = (λx. x)"
| "f !! (Suc n) = (f !! n) o f"

Once a function is defined, the simplifier will be
able to solve equations like

Beijing, 27. May 2009 – p. 40/49

pretty syntax



Function Definitions
Iterating a function n times can be defined by

fun
iter :: "(’a⇒ ’a)⇒ nat⇒ (’a⇒ ’a)" ("_ !! _")

where
"f !! 0 = (λx. x)"
| "f !! (Suc n) = (f !! n) o f"

Once a function is defined, the simplifier will be
able to solve equations like

Beijing, 27. May 2009 – p. 40/49

char. eqs



Function Definitions
Iterating a function n times can be defined by

fun
iter :: "(’a⇒ ’a)⇒ nat⇒ (’a⇒ ’a)" ("_ !! _")

where
"f !! 0 = (λx. x)"
| "f !! (Suc n) = (f !! n) o f"

Once a function is defined, the simplifier will be
able to solve equations like

lemma
shows "f !! (Suc (Suc 0)) = f o f"
by (simp add: comp_def)

Beijing, 27. May 2009 – p. 40/49



Your Turn
lemma shows "f !! (m + n) = (f !! m) o (f !! n)" sorry
A textbook proof: By induction on n:
Case 0: Trivial.

Case (Suc n): We have to show

f !! (m + (Suc n)) = f !! m o (f !! (Suc n))

The induction hypothesis is

f !! (m + n) = (f !! m) o (f !! n)

The justification

f !! (m + (Suc n)) = f !! (Suc (m + n))
= f !! (m + n) o f
= (f !! m) o (f !! n) o f (by ih)
= (f !! m) o ((f !! n) o f) (by o_assoc)
= (f !! m) o (f !! (Suc n))

Beijing, 27. May 2009 – p. 41/49



Your Turn

lemma
shows "f !! (m + n) = (f !! m) o (f !! n)"

proof (induct n)
case 0
show "f !! (m + 0) = (f !! m) o (f !! 0)" sorry

next
case (Suc n)
have ih: "f !! (m + n) = (f !! m) o (f !! n)" by fact

show "f !! (m + (Suc n)) = f !! m o (f !! (Suc n))" sorry
qed

Beijing, 27. May 2009 – p. 42/49



Your Turn
lemma
shows "f !! (m + n) = (f !! m) o (f !! n)"

proof (induct n)
case 0
show "f !! (m + 0) = (f !! m) o (f !! 0)" by (simp add: comp_def)

next
case (Suc n)
have ih: "f !! (m + n) = (f !! m) o (f !! n)" by fact
have eq1: "f !! (m + (Suc n)) = f !! (Suc (m + n))" by simp
have eq2: "f !! (Suc (m + n)) = f !! (m + n) o f" by simp
have eq3: "f !! (m + n) o f = (f !! m) o (f !! n) o f" using ih by simp
have eq4: "(f !! m) o (f !! n) o f = (f !! m) o ((f !! n) o f)"
by (simp add: o_assoc)

have eq5: "(f !! m) o ((f !! n) o f) = (f !! m) o (f !! (Suc n))" by simp
show "f !! (m + (Suc n)) = f !! m o (f !! (Suc n))"
using eq1 eq2 eq3 eq4 eq5 by (simp only:)

qed
Beijing, 27. May 2009 – p. 43/49



Equational Reasoning in Isar
One frequently wants to prove an equation
t1 = tn by means of a chain of equations, like

t1 = t2 = t3 = t4 = . . . = tn

This kind of reasoning is supported in Isar as:

have "t1 = t2" by just.
also have "... = t3" by just.
also have "... = t4" by just.
. . .
also have "... = tn" by just.
finally have "t1 = tn" by simp

Beijing, 27. May 2009 – p. 44/49



Equational Reasoning in Isar
One frequently wants to prove an equation
t1 = tn by means of a chain of equations, like

t1 = t2 = t3 = t4 = . . . = tn

This kind of reasoning is supported in Isar as:

have "t1 = t2" by just.
also have "... = t3" by just.
also have "... = t4" by just.
. . .
also have "... = tn" by just.
finally have "t1 = tn" by simp

Beijing, 27. May 2009 – p. 44/49



Chains of Equations
lemma
shows "f !! (m + n) = (f !! m) o (f !! n)"

proof (induct n)
case 0
show "f !! (m + 0) = (f !! m) o (f !! 0)" by (simp add: comp_def)

next
case (Suc n)
have ih: "f !! (m + n) = (f !! m) o (f !! n)" by fact
have "f !! (m + (Suc n)) = f !! (Suc (m + n))" by simp
also have "... = f !! (m + n) o f" by simp
also have "... = (f !! m) o (f !! n) o f" using ih by simp
also have "... = (f !! m) o ((f !! n) o f)" by (simp add: o_assoc)
also have "... = (f !! m) o (f !! (Suc n))" by simp
finally show "f !! (m + (Suc n)) = f !! m o (f !! (Suc n))" by simp

qed

Beijing, 27. May 2009 – p. 45/49



Chains Involving Relations

This type of reasoning also extends to relations.
fun
pow :: "nat⇒ nat⇒ nat" ("_ ↑ _")

where
"m ↑ 0 = 1"
| "m ↑ (Suc n) = m * (m ↑ n)"

lemma aux:
fixes a b c::"nat"
assumes a: "a≤ b"
shows " (c * a)≤ (c * b)"

using a by (auto)

Beijing, 27. May 2009 – p. 46/49



Chains Involving Relations
lemma
shows "1 + n * x≤ (1 + x) ↑ n"

proof (induct n)
case 0
show "1 + 0 * x≤ (1 + x) ↑ 0" by simp

next
case (Suc n)
have ih: "1 + n * x≤ (1 + x) ↑ n" by fact
have "1 + (Suc n) * x≤ 1 + x + (n * x) + (n * x * x)" by simp
also have "... = (1 + x) * (1 + n * x)" by simp
also have "...≤ (1 + x) * ((1 + x) ↑ n)" using ih aux by blast
also have "... = (1 + x) ↑ (Suc n)" by simp
finally show "1 + (Suc n) * x≤ (1 + x) ↑ (Suc n)" by simp

qed

Beijing, 27. May 2009 – p. 47/49



Nested Proofslemma
shows "n * x < (1 + x) ↑ n"

proof -
have "1 + n * x≤ (1 + x) ↑ n"
proof (induct n)
case 0
show "1 + 0 * x≤ (1 + x) ↑ 0" by simp

next
case (Suc n)
have ih: "1 + n * x≤ (1 + x) ↑ n" by fact
have "1 + (Suc n) * x≤ 1 + x + (n * x) + (n * x * x)" by (simp)
also have "... = (1 + x) * (1 + n * x)" by simp
also have "...≤ (1 + x) * ((1 + x) ↑ n)" using ih aux by blast
also have "... = (1 + x) ↑ (Suc n)" by simp
finally show "1 + (Suc n) * x≤ (1 + x) ↑ (Suc n)" by simp

qed
then show "n * x < (1 + x) ↑ n" by simp

qed
Beijing, 27. May 2009 – p. 48/49



Isabelle Tutorial

I hope you want to do the whole proof about the
compiler lemma for WHILE

9:00 - 11:00, Monday, 1 June
9:30 - 11:30, Tuesday, 2 June

Beijing, 27. May 2009 – p. 49/49




