Welcome!

@ Files and Programme at:
http://isabelle.in.tum.de/nominal/activities/cas09/

@ Have you already installed Isabelle?

@ Can you step through Example.thy without getting
an error message?

If yes, then very good.
If not, then please ask now!


http://isabelle.in.tum.de/nominal/activities/cas09/

Nick Benton in "Machine Obstructed Proof":

Automated proving is not just a slightly more fussy
version of paper proving...It's a strange new skill,
much harder to learn than a new programming lan-
guage or application, or even many bits of mathe-
matics...Coq is worth the bother and it, or some-
thing like it, is the future, if only we could make
the initial learning experience a few thousand times
less painful.

Same applies to Isabelle. So be prepared.




A Six-Slides
Crash-Course on How
to Use Isabelle



Proof General

Important buttons:

@ [Next|and|Undo | advance /
retract the processed part

° jumps to the current

cursor position, same as
ctrl-c/ctrl-return

Feedback:

@ warning messages are given in
yellow

@ error messages in gl



X-Symbols

@ ...provide a nice way to input non-ascii
characters; for example:

V,3, 0. # N.T, X, # €, ...

@ they need to be input via the combination
\ <name-of-x-symbol>



X-Symbols

@ ...provide a nice way to input non-ascii
characters; for example:

V,3, 0. # N.T, X, # €, ...

@ they need to be input via the combination
\ <name-of-x-symbol>

@ short-cuts for often used symbols

| ... 17 ==> .. = /\ ... A
1 ... ] => ... = \/ ... V



Isabelle Proof-Scripts

@ Every proof-script (theory) is of the form

theory Name
imports T;...T,
begin

end



Isabelle Proof-Scripts

@ Every proof-script (theory) is of the form

theory Name
imports T;...T,,
begin

end

@ Normally, one T will be the theory Main.



Types

@ Isabelle is typed, has polymorphism and
overloading.
e Base types: nat, bool, string, ...
o Type-formers: ‘alist,'a X 'b, 'c set,'a = 'b...
e Type-variables: ‘a,’b,’c, ...



Types

@ Isabelle is typed, has polymorphism and
overloading.

e Base types: nat, bool, string, ...
o Type-formers: ‘alist,’'a X 'b, 'c set,'a = 'b...
e Type-variables: ‘a,’b,’c, ...

@ Types can be queried in Isabelle using:
typ nat
typ bool
typ string
fyp ll('G X ’b)ll
typ "'c set"
typ "a list"
typ "nat = bool"



Terms

@ The well-formedness of terms can be queried
using:
term c
term "1::inat"
term 1
term "{1, 2, 3::nat}"
term "[1, 2, 3]"
term "(True, "c")"
term "Suc 0"



Terms

@ The well-formedness of terms can be queried
using:
term c
term "1::inat"
term 1
term "{1, 2, 3::nat}"
term "[1, 2, 3]"
term "(True, "c")"
term "Suc 0"

@ Isabelle provides some useful colour feedback
term "True" gives "True" :: "bool"

w_u

term "true" gives "true": "a
term "V x. P x" gives "V x.Px": "bool"



Formulae

@ Every formula in Isabelle needs to be of type bool

term "True"

term "True A False"
term "{1,2,3} = {(3,2,1}"
term "V x. P x"

term "A — B"



Formulae

@ Every formula in Isabelle needs to be of type bool

term "True"

term "True A False"
term "{1,2,3} = {3,2,1}"
term "V x. P x"

term "A — B"

@ When working with Isabelle, you are confronted
with an objet logic (HOL) and a meta-logic (Pure)

term "A —> B"
term "/Ax. P x"

term "A — B"
term "V x. P x"



Formulae

@ Every formula in Isabelle needs to be of type bool

term "True"

term "True A False"
term "{1,2,3} = {3,2,1}"
term "V x. P x"

term "A — B"

@ When working with Isabelle, you are confronted
with an objet logic (HOL) and a meta-logic (Pure)

term "A —> B"
term "/Ax. P x"

term "A — B"
term "V x. P x"

term"A — B — C" term "[A; B] = C"



Inductive Predicates
and Theorems



inductive
even :: "nat = bool"
where
eZ[intro]: "even 0"
| eSS[intro]: "even n = even (Suc (Suc n))"



inductive
even :: "nat = bool"
where
eZ[intro]: "even 0"
| eSS[intro]: "even n = even (Suc (Suc n))"

@ The type of the predicate is always something to
bool.

@ The attribute [intro] adds the corresponding
clause to the hint-theorem base (later more).

@ The clauses correspond fo the rules
even n

even 0 even (Suc (Suc n))



Theorems

@ Isabelle's theorem database can be querried using

thm eZ

thm eSS

thm conjI
thm conjunctl



Theorems

@ Isabelle's theorem database can be querried using

thmeZ

thm eSS

thm conjI
thm conjunctl

eZ: evenO
eSS: even ?n —> even (Suc (Suc ?n))
conjI: [?P; ?2Q] = ?P A ?2Q
conjunctl: 2P A?2Q =— ?P




Theorems

@ Isabelle's theorem database can be querried using

thmeZ

thm eSS

thm conjI
thm conjunctl

schematic variables
eZ: evenO

eSS:  even ?n = even (Suc (Suc ?n))
conjI: [?P;?2Q] = ?P A 2Q
conjunctl: 2P A?2Q =— ?P




Theorems

@ Isabelle's theorem database can be querried using

thm eZ[no_vars]
thm eSS[no_vars]

thm conjI[no_vars]
thm conjunct1[no_vars] W

el:

eSS:
conjI:
conjunctl:

even 0

even n = even (Suc (Suc n))
P.Q=PAQ
PAQ=—P




Generated Theorems

@ Most definitions result in automatically generated
theorems: for example

thm even.intros[no_vars]
thm even.induct[no_vars]



Generated Theorems

@ Most definitions result in automatically generated
theorems: for example

thm even.intros[no_vars]
thm even.induct[no_vars]

intr's: even O
even n = even (Suc (Suc n))

ind'ct: [even x; P O;
An. [even n; P n] => P (Suc (Suc n))]
—P x




Theorem / Lemma / Corollary

@ ...they are of the form:

theorem theorem_name:
fixes x::"type"

assumes "assm;"
and "assm,y"

shows '"statement"

@ Grey parts are optional.

@ Assumptions and the (goal)statement must be of
type bool. Assumptions can have labels.



Theorem / Lemma / Corollary

@ ...they ar¢|.ma even_double:
shows "even (2 * n)"

lemma even_add:
assumes a: "even n"
and b: "even m"
shows "even (n + m)"

lemma neutral_element:

® Grey parts fixes xi"nat”
. shows"x+0=x"
@ Assumptiol

‘rype bOOI. /'\oaumplluna curt rnuve iuveid.

of



Isar Proofs
about Even



An Isar Proof ...

@ The Isar proof language has been conceived by Markus ‘
Wenzel, the main developer behind Isabelle.




An Isar Proof ...

goal

stepping stones

stepping stones

assumptions

@ The Isar proof language has been conceived by Markus
Wenzel, the main developer behind Isabelle.




An Isar Proof ...

@ A Rough Schema of an Isar Proof:

have  "assumption"
have  "assumption"
have "statement"
have "statement"

show "statement"
ged



An Isar Proof ...
@ A Rough Schema of an Isar Proof:

have nl: "assumption"
have n2: "assumption"

have n: "statement"
have m: "statement"

show "statement"
ged

@ each have-statement can be given a label



An Isar Proof ...

@ A Rough Schema of an Isar Proof:

have nl: "assumption" by justification
have n2: "assumption" by justification

have n: "statement" by justification
have m: "statement" by justification

show "statement" by justification
ged

@ each have-statement can be given a label
@ obviously, everything needs to have a justifiation



Justifications

@ Omitting proofs

sorry

@ Assumptions
by fact

@ Automated proofs
by simp simplification (equations, definitions)
by auto simplification & proof search

(many goals)

by force simplification & proof search
(first goal)

by blast proof search



Justifications

@ Omitting proofs
sorry

@ Assumptions
by fact

@ Automated proofs
by simp Automatic justifications can also be:
by auto using ...by ...
by force  usingih by ...
using nl n2 n3 by ...
by blast using lemma_name...by ...




First Exercise

@ Lets fry fo prove a simple lemma. Remember we
defined

Eveness of a number:
even n

eZ eS
even 0 even (Suc (Suc n))

lemma evan_double:
shows "even (2 * n)"



First Exercise

@ Lets fry fo prove a simple lemma. Remember we
defined

Eveness of a number:
even n

eZ eS
even 0 even (Suc (Suc n))

lemma evan_double:
shows "even (2 * n)"
proof (induct n)



Proofs by Induction

@ Proofs by induction involve cases, which are of
the form:

proof (induct)
case (Case-Name x. . .)
have "assumption" by justification

have "statment" by justification
show "statment" by justification

next
case (Another-Case-Name y. . .)



Your Turn

eZ

even 0
lemma even_double:

shows "even (2 * n)"
proof (induct n)

even n
e
even (Suc (Suc n))

case O
show "even (2 * 0)" sorry
next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" sorry
have a: "even (Suc (Suc (2 * n)))" sorry
show "even (2 * (Suc n))" sorry
ged



Your Turn

eZ

even 0
lemma even_double:

shows "even (2 * n)"
proof (induct n)

even n
e
even (Suc (Suc n))

case 0

show "even (2 * 0)" sorry ‘
next

case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" sorry
have a: "even (Suc (Suc (2 * n)))" sorry
show "even (2 * (Suc n))" sorry
ged



Your Turn

eZ

even 0
lemma even_double:

shows "even (2 * n)"
proof (induct n)

even n
e
even (Suc (Suc n))

case O
show "even (2 * 0)" by auto
next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" sorry
have a: "even (Suc (Suc (2 * n)))" sorry
show "even (2 * (Suc n))" sorry
ged



Your Turn

eZ

even 0
lemma even_double:

shows "even (2 * n)"
proof (induct n)

even n
e
even (Suc (Suc n))

case O
show "even (2 * 0)" by auto
next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" sorry
have a: "even (Suc (Suc (2 * n)))" sorry
show "even (2 * (Suc n))" sorry
ged



Your Turn

eZ

even 0
lemma even_double:

shows "even (2 * n)"

even n
e
even (Suc (Suc n))

proof (induct n)
case O
show "even (2 * 0)" by auto
next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" by simp
have a: "even (Suc (Suc (2 * n)))" sorry
show "even (2 * (Suc n))" sorry
ged



Your Turn

eZ

even 0
lemma even_double:

shows "even (2 * n)"

even n
e
even (Suc (Suc n))

proof (induct n)
case O
show "even (2 * 0)" by auto
next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" by simp
have a: "even (Suc (Suc (2 * n)))" sorry
show "even (2 * (Suc n))" sorry
ged



Your Turn

eZ

even 0
lemma even_double:

shows "even (2 * n)"

even n
e
even (Suc (Suc n))

proof (induct n)
case O
show "even (2 * 0)" by auto
next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" by simp
have a: "even (Suc (Suc (2 * n)))" using ih by auto

show "even (2 * (Suc n))" sorry
ged



Your Turn

eZ

even 0
lemma even_double:

shows "even (2 * n)"

even n
e
even (Suc (Suc n))

proof (induct n)
case O
show "even (2 * 0)" by auto
next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" by simp
have a: "even (Suc (Suc (2 * n)))" using ih by auto

show "even (2 * (Suc n))" sorry
ged



Your Turn

eZ

even 0
lemma even_double:

shows "even (2 * n)"
proof (induct n)

even n
e
even (Suc (Suc n))

case O
show "even (2 * 0)" by auto
next
case (Suc n)
have ih: "even (2 * n)" by fact
have eq: "2 * (Suc n) = Suc (Suc (2 * n))" by simp
have a: "even (Suc (Suc (2 * n)))" using ih by auto
show "even (2 * (Suc n))" using eq a by simp
ged



Your Turn

eZ

even 0
lemma even_twice:

shows "even (n + n)"

even n
e
even (Suc (Suc n))

proof (induct n)
case O
show "even (0 + 0)" sorry
next
case (Suc n)
have ih: "even (n + n)" by fact
have eq: "(Suc n) + (Suc n) = Suc (Suc (n + n))" sorry
have a: "even (Suc (Suc (n + n)))" sorry
show "even ((Suc n) + (Suc n))" sorry
ged



Your Turn

eZ

even 0
lemma even_twice:

shows "even (n + n)"

even n
e
even (Suc (Suc n))

proof (induct n)
case 0

show "even (0 + 0)" sorry ‘
next

case (Suc n)
have ih: "even (n + n)" by fact
have eq: "(Suc n) + (Suc n) = Suc (Suc (n + n))" sorry
have a: "even (Suc (Suc (n + n)))" sorry
show "even ((Suc n) + (Suc n))" sorry
ged



Your Turn

eZ

even 0
lemma even_twice:

shows "even (n + n)"

even n
e
even (Suc (Suc n))

proof (induct n)
case O
show "even (0 + 0)" by auto
next
case (Suc n)
have ih: "even (n + n)" by fact
have eq: "(Suc n) + (Suc n) = Suc (Suc (n + n))" by simp
have a: "even (Suc (Suc (n + n)))" using ih by auto
show "even ((Suc n) + (Suc n))" using eq a by simp
ged



Your Turn

eZ

even 0
lemma even_twice:

shows "even (n + n)"

even n
e
even (Suc (Suc n))

proof (induct n)

case O

show "even (0 + 0)" by auto
next

case (Suc n)

have ih: "even (n + n)" by fact

have eq: "(Suc n) + (Suc n) = Suc (Suc (n + n))" by simp

have "even (Suc (Suc (n + n)))" using ih by auto

then show "even ((Suc n) + (Suc n))" using eq by simp
ged



A Chain of Facts

@ Isar allows you to build a chain of facts as

follows:

have nl: *..."
have n2: “..."

n

have ni: “...

have "..." usingnl n2 ...ni

@ also works for show

"

have ". ..

moreover have "...

moreover have "...

A\

ultimately have "...

n



Your Turn

lemma even_twice:
shows "even (n + n)"
proof (induct n)
case O
show "even (0 + 0)" by auto
next
case (Suc n)
have ih: "even (n + n)" by fact
have "(Suc n) + (Suc n) = Suc (Suc (n + n))" by simp
moreover
have "even (Suc (Suc (n + n)))" using ih by auto
ultimately show "even ((Suc n) + (Suc n))" by simp
ged



Automatic Proofs

@ Do not expect Isabelle to be able to solve
automatically show "P=NP", but. ..

lemma
shows "even (2 * n)"
by (induct n) (auto)

lemma
shows "even (n + n)"
by (induct n) (auto)



Rule Inductions



Rule Inductions

@ Remember we defined

Eveness of a number:
even n

eZ e
even O even (Suc (Suc n))

Rule Inductions:

1.) Assume the property for the premises.
Assume the side-conditions.

2.) Show the property for the conclusion.



Your Turn Again

lemma even_add:
assumes a: "even n"
and b: "even m"
shows "even (n + m)"
usinga b
proof (induct)
case eZ
have as: "even m" by fact
show "even (0 + m)" sorry
next
case (eSS n)
have ih: "even m =—> even (n + m)" by fact
have as: "even m" by fact

show "even (Suc (Suc n) + m)" sorry
ged

e
e



Your Turn Again

lemma even_add:
assumes a: "even n"
and b: "even m"
shows "even (n + m)"
usinga b
proof (induct)
case eZ
have "even m" by fact
then show "even (0 + m)" by simp
next
case (eSS n)
have ih: "even m =—> even (n + m)" by fact
have as: "even m" by fact
have "even (n + m)" using ih as by simp
then have "even (Suc (Suc (n + m)))" by auto
then show "even (Suc (Suc n) + m)" by simp
ged



Rule Inductions

@ Whenever a lemma is of the form

lemma
assumes a: "pred"
and b: "somthing"
shows "something_else"

with pred being an inductively defined predicate,
then generally rule inductions are appropriate.



Does Not Work

lemma even_add_does_not_work:
assumes a: "even n"
and b:'"evenm"
shows "even (n + m)"
usingab
proof (induct n rule: nat_induct)
case 0
have "even m" by fact
then show "even (0 + m)" by simp
next
case (Suc n)
have ih: "[even n; even m] => even (n + m)" by fact
have asl: "even (Suc n)" by fact
have as2: "even m" by fact

show "even ((Suc n) + m)"



Last Lemma about Even?

lemma even_mul:
assumes a: "even n"
shows "even (n * m)"
using a
proof (induct)
case eZ
show "even (0 * m)" by auto
next
case (eSS n)
have as: "even n" by fact

have ih: "even (n * m)" by fact '
show "even ((Suc (Suc n)) * m)" sorry
ged

even_twice: even (n+n)
even_add:  [even n; even m] = even (n + m)




Last Lemma about Even?

lemma even_mul:
assumes a: "even n"
shows "even (n * m)"
using a
proof (induct)
case eZ
show "even (0 * m)" by auto
next
case (eSS n)
have as: "even n" by fact

have ih: "even (n * m)" by fact '
show "even ((Suc (Suc n)) * m)" sorry
ged

even_twice: even (?n+?n)
even_add:  [even ?n; even 2m] = even (?n + ?m)




Last Lemma about Even?

lemma even mu
assumes a: "even n"
shows "even (n * m)"
using a
proof (induct)
case eZ
show "even (0 * m)" by auto
next
case (eSS n)
have ih: "even (n * m)" by fact
have eq: "(m + m) + (n * m) = (Suc (Suc n)) * m" by simp
have "even (m + m)" using even_twice by simp
then have "even ((m + m) + (n * m))" using even_add ih by simp
then show "even ((Suc (Suc n)) * m)" using eq by simp
ged
even_twice: even (n+n)

even_add:  [even n; even m] = even (n + m)




Definitions



Definitions

@ Often it is useful to define concepts in terms of
existsing concepts. For example
definition
divide :: "nat = nat = bool" ("_ DVD _" [100,100] 100)
where

"mMDVDn=(3k n=m*k)"

@ The annotation after the type introduces some
more memorable syntax. The numbers are
precedences.

@ Once this definition is done, you can access it with

thm divide_def
mDVDn=(3k n=m>*KkK)



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"

using a

proof (induct)

ged



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"
using a
proof (induct)
case eZ
have "0 = 2 * (O::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)

ged



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"
using a
proof (induct)
case eZ
have "0 = 2 * (O::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)
next
case (eSS n)
have "2 DVD n" by fact

then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)
ged



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"
using a
proof (induct)
case eZ
have "0 = 2 * (O::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)
next
case (eSS n)
have "2 DVD n" by fact
then have "3 k. n = 2 * k" by (simp add: divide_def)

ged



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"
using a
proof (induct)
case eZ
have "0 = 2 * (O::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)
next
case (eSS n)
have "2 DVD n" by fact
then have "3 k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)

ged



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"
using a
proof (induct)
case eZ
have "0 = 2 * (O::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)
next
case (eSS n)
have "2 DVD n" by fact
then have "3 k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp

ged



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"
using a
proof (induct)
case eZ
have "0 = 2 * (O::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)
next
case (eSS n)
have "2 DVD n" by fact
then have "3 k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "3 k. Suc (Suc n) = 2 * k" by blast

ged



lemma even_divide:
assumes a: "even n"
shows "2 DVD n"
using a
proof (induct)
case eZ
have "0 = 2 * (O::nat)" by simp
then show "2 DVD 0" by (auto simp add: divide_def)
next
case (eSS n)
have "2 DVD n" by fact
then have "3 k. n = 2 * k" by (simp add: divide_def)
then obtain k where eq: "n = 2 * k" by (auto)
have "Suc (Suc n) = 2 * (Suc k)" using eq by simp
then have "3 k. Suc (Suc n) = 2 * k" by blast
then show "2 DVD (Suc (Suc n))" by (simp add: divide_def)
ged



Function Definitions
and the Simplifier



Function Definitions

Iterating a function n times can be defined by

fun

iter :: "(a = 'a) = nat = (a="a)" ("_II ")
where

"f110=(Ax. x)"

| "f Il (Sucn)=(f!In)o f"



Function Definitions

Iterating a function n times can be defined by

fun

iter it "(a = 'a) = nat = (a="a)" ("_II ")
where

"f110=(Ax. x)"

| "f Il (Sucn)=(f!In)o f"



Function Definitions

Iterating a function n times can be defined by

fun

iter it "(a = 'a) = nat = (a="a)" ("_II ")
where

"f110=(Ax. x)"

| "f Il (Sucn)=(f!In)o f"



Function Definitions

Iterating a function n times can be defined by

fun

iter ::"(a="a) = nat = (a="a)" ("_II _")
where

"f110=(Ax. x)"

| "f Il (Sucn)=(f!In)o f"



Function Definitions

Iterating a function n times can be defined by

fun

iter :: "(a = 'a) = nat = (a="a)" ("_II ")
where

"f110=(Ax. x)"

| "f Il (Sucn)=(f!In)o f"

b



Function Definitions

@ Iterating a function n times can be defined by

fun

iter : "(la='a) = nat = (‘a="a)" ("_I ")
where

"f110=(Ax. x)"

| "f Il (Sucn)=(f!In)o f"

@ Once a function is defined, the simplifier will be
able fo solve equations like
lemma

shows "f Il (Suc (Suc 0))=f o f"
by (simp add: comp_def)



Your Turn
lemma shows "f Il (m + n) = (f ' m) o (f I n)" sorry

A textbook proof: By induction on n:

@ Case 0: Trivial.

@ Case (Suc n): We have to show
fll(m+(Sucn))=fllmo(f!l (Sucn))
The induction hypothesis is
fllm+n)=(f!"m)o(f!n)

The justification
f Il (m+ (Suc n))

f Il (Suc (m + n))

fl(m+n)of

(f'm)o(f!ln)of (by ih)
(f'm)o((f!'n)yof) (byo_assoc)
(f "' m) o (f I (Suc n))



Your Turn

lemma

shows "f Il (m +n) = (f ! m) o (f I )"
proof (induct n)

case O

show "f Il (m + 0) = (f ' m) o (f ! 0)" sorry
next

case (Suc n)

have ih: "f Il (m + n) = (f ' m) o (f I n)" by fact

show "f Il (m + (Suc n)) = f ' m o (f I (Suc n))" sorry
ged



Your Turn
lemma
shows "f Il (m+n)=(f!m)o (f I n)"
proof (induct n)
case 0
show "f Il (m +0) = (f ' m) o (f 1 0)" by (simp add: comp_def)
next
case (Suc n)
have ih: "f Il (m + n) = (f ' m) o (f I n)" by fact
have eql: "f Il (m + (Suc n)) = f Il (Suc (m + n))" by simp
have eq2: "f Il (Suc (m + n)) = f !l (m + n) o f" by simp
have eq3: "f I (m+n) o f = (f ' m) o (f ! n) o " using ih by simp
have eq4: "(f Im)o (f'n)o f = (f Im)o ((f ! n) o f)"
by (simp add: o_assoc)
have eg5: "(f Im) o ((f "' n) o f) = (f ' m) o (f I (Suc n))" by simp
show "f Il (m + (Suc n)) = f ' m o (f I (Suc n))"
using eql eq2 eq3 eq4 eqb by (simp only:)
ged



Equational Reasoning in Isar

@ One frequently wants to prove an equation
t; = t,, by means of a chain of equations, like

t1:t2:t3:t4:...:tn



Equational Reasoning in Isar

@ One frequently wants to prove an equation
t; = t,, by means of a chain of equations, like

t1:t2:t3:t4:...:tn

@ This kind of reasoning is supported in Isar as:

have "t; = 15" by just.

also have "... = 13" by just.
also have "... = 4" by just.
also have "... = 1,," by just.

finally have "t; = 1,," by simp



Chains of Equations

lemma

shows "f l (m+n)=(f !m)o (f I n)"
proof (induct n)

case O

show "f Il (m +0) = (f ' m) o (f 1 0)" by (simp add: comp_def)
next

case (Suc n)

have ih: "f Il (m + n) = (f ' m) o (f I! n)" by fact

have "f Il (m + (Suc n)) = f Il (Suc (m + n))" by simp

also have "... = f Il (m + n) o f" by simp

also have "... = (f I'm) o (f I n) o f" using ih by simp

also have "... = (f 'm) o ((f I n) o f)" by (simp add: o_assoc)

also have "... = (f ' m) o (f !! (Suc n))" by simp

finally show "f Il (m + (Suc n)) = f Il m o (f I! (Suc n))" by simp
ged



Chains Involving Relations

@ This type of reasoning also extends to relations.

fun

pow :: “nat = nat = nat" ("_ T _")
where

Ilm T O = 1Il

| "m T (Sucn)=m* (m T n)"

lemma aux:
fixes a b c::!"nat"
assumes a: "a < b"
shows " (¢ * a) < (¢ * b)"
using a by (auto)



Chains Involving Relations

lemma
shows"l+n*x < (1+x) T n"
proof (induct n)
case 0
show "1+0* x < (1+x) T 0" by simp
next
case (Suc n)
have ih: "1+ n* x < (1+x) T n" by fact
have "1+ (Sucn) * x < 1+x+(n*x)+(n* x> x)" by simp

also have "... = (1+ x) * (1 + n* x)" by simp
also have "... < (1+x)* ((1+x) T n)" using ih aux by blast
also have "... = (1 + x) T (Suc n)" by simp

finally show "1 + (Suc n) * x < (1 +x) T (Suc n)" by simp
ged



lemma Nested Proofs

shows "n*x < (1+x) T n"
proof -
have "1+n*x < (1+x) T n"
proof (induct n)
case 0
show "1 +0* x < (1+x) T 0" by simp
next
case (Suc n)
have ih: "1 +n* x < (1+x) T n" by fact
have "1+ (Sucn)* x <1+ x+(n*x)+(n* x> x)" by (simp)
also have "... = (1 +x)* (1 + n* x)" by simp
also have "... < (1+x)* ((1+x) T n)" using ih aux by blast
also have "... = (1 + x) T (Suc n)" by simp
finally show "1 + (Suc n) * x < (1 +x) T (Suc n)" by simp
ged
then show "n* x < (1 +x) T n" by simp
ged



Isabelle Tutorial

I hope you want o do the whole proof about the
compiler lemma for WHILE

@ 9:00 - 11:00, Monday, 1 June

@ 9:30 - 11:30, Tuesday, 2 June





