
A Formalisation of the Myhill-Nerode Theorem
based on Regular Expressions?

Chunhan Wu
PLA University of Science and Technology Nanjing, China
and
Xingyuan Zhang
PLA University of Science and Technology Nanjing, China
and
Christian Urban
King’s College London, United Kingdom

There are numerous textbooks on regular languages. Many of them focus on finite automata for

proving properties. Unfortunately, automata are not so straightforward to formalise in theorem
provers. The reason is that natural representations for automata are graphs, matrices or functions,

none of which are inductive datatypes. Regular expressions can be defined straightforwardly as a

datatype and a corresponding reasoning infrastructure comes for free in theorem provers. We show
in this paper that a central result from formal language theory—the Myhill-Nerode Theorem—can

be recreated using only regular expressions. From this theorem many closure properties of regular
languages follow.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Mechanical Theorem
Proving; F.4.3 [Mathematical Logic and Formal Languages]: Formal Languages

General Terms: Interactive theorem proving, regular languages
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1. INTRODUCTION

Regular languages are an important and well-understood subject in Computer Science, with
many beautiful theorems and many useful algorithms. There is a wide range of textbooks
on this subject, many of which are aimed at students and contain very detailed ‘pencil-and-
paper’ proofs (e.g. the textbooks by Hopcroft and Ullman [1969] and by Kozen [1997]).
It seems natural to exercise theorem provers by formalising the theorems and by verifying
formally the algorithms.

A popular choice for a theorem prover would be one based on Higher-Order Logic
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(HOL), for example HOL4, HOLlight or Isabelle/HOL. For the development presented in
this paper we will use the Isabelle/HOL. HOL is a predicate calculus that allows quantifi-
cation over predicate variables. Its type system is based on the Simple Theory of Types by
Church [1940]. Although many mathematical concepts can be conveniently expressed in
HOL, there are some limitations that hurt when attempting a simple-minded formalisation
of regular languages in it.

The typical approach to regular languages, taken for example by Hopcroft and Ullman
[1969] and by Kozen [1997], is to introduce finite deterministic automata and then define
most notions in terms of them. For example, a regular language is normally defined as:

DEFINITION 1.1. A language A is regular, provided there is a finite deterministic au-
tomaton that recognises all strings of A.

This approach has many benefits. Among them is the fact that it is easy to convince oneself
that regular languages are closed under complementation: one just has to exchange the
accepting and non-accepting states in the corresponding automaton to obtain an automaton
for the complement language. The problem, however, lies with formalising such reasoning
in a theorem prover. Automata are built up from states and transitions that are commonly
represented as graphs, matrices or functions, none of which, unfortunately, can be defined
as an inductive datatype.

In case of graphs and matrices, this means we have to build our own reasoning infras-
tructure for them, as neither Isabelle/HOL nor HOL4 nor HOLlight support them with
libraries. Also, reasoning about graphs and matrices can be a hassle in theorem provers,
because we have to be able to combine automata. Consider for example the operation of
sequencing two automata, say A1 and A2, by connecting the accepting states of A1 to the
initial state of A2:

A1 A2 ⇒ A1 A2

On ‘paper’ we can define the corresponding graph in terms of the disjoint union of the state
nodes. Unfortunately in HOL, the standard definition for disjoint union, namely

A1 ] A2
def
= {(1, x) | x ∈ A1} ∪ {(2, y) | y ∈ A2} (1)

changes the type—the disjoint union is not a set, but a set of pairs. Using this definition for
disjoint union means we do not have a single type for the states of automata. As a result
we will not be able to define a regular language as one for which there exists an automaton
that recognises all its strings (Definition 1.1). This is because we cannot make a definition
in HOL that is only polymorphic in the state type, but not in the predicate for regularity;
and there is no type quantification available in HOL (unlike in Coq, for example).1

An alternative, which provides us with a single type for states of automata, is to give
every state node an identity, for example a natural number, and then be careful to rename
these identities apart whenever connecting two automata. This results in clunky proofs
establishing that properties are invariant under renaming. Similarly, connecting two au-
tomata represented as matrices results in messy constructions, which are not pleasant to
formally reason about. Braibant [2012, Page 67], for example, writes that there are no

1Slind already pointed out this problem in an email to the HOL4 mailing list on 21st April 2005.
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problems with reasoning about matrices, but that there is an “intrinsic difficulty of working
with rectangular matrices” in some parts of his formalisation of formal languages in Coq.

Functions are much better supported in Isabelle/HOL, but they still lead to similar prob-
lems as with graphs. Composing, for example, two non-deterministic automata in parallel
requires also the formalisation of disjoint unions. Nipkow [1998] dismisses for this the
option of using identities, because it leads according to him to “messy proofs”. Since he
does not need to define what regular languages are, Nipkow opts for a variant of (1) using
bit lists, but writes

“All lemmas appear obvious given a picture of the composition of automata. . . Yet
their proofs require a painful amount of detail.”

and

“If the reader finds the above treatment in terms of bit lists revoltingly concrete,
I cannot disagree. A more abstract approach is clearly desirable.”

Because of these problems to do with representing automata, formalising automata the-
ory is surprisingly not as easy as one might think, despite the sometimes very detailed, but
informal, textbook proofs. Lammich and Tuerk [2012] formalised Hopcroft’s algorithm
using an automata library of 27 kloc in Isabelle/HOL. There they use matrices for repre-
senting automata. Functions are used by Nipkow [1998], who establishes the link between
regular expressions and automata in the context of lexing. Berghofer and Reiter [2009]
use functions as well for formalising automata working over bit strings in the context of
Presburger arithmetic. A Larger formalisation of automata theory, including the Myhill-
Nerode theorem, was carried out in Nuprl by Constable et al. [2000] which also uses func-
tions. Other large formailsations of automata theory in Coq are by Filliâtre [1997] who
essentially uses graphs and by Almeida et al. [2010] and Braibant [2012], who both use
matrices. Many of these works, like Nipkow [1998] or Braibant [2012], mention intrinsic
problems with their representation of automata which made them ‘fight’ their respective
theorem prover.

In this paper, we will not attempt to formalise automata theory in Isabelle/HOL nor will
we attempt to formalise automata proofs from the literature, but take a different approach
to regular languages than is usually taken. Instead of defining a regular language as one
where there exists an automaton that recognises all its strings, we define a regular language
as:

DEFINITION 1.2. A language A is regular, provided there is a regular expression that
matches all strings of A.

And then ‘forget’ automata completely. The reason is that regular expressions can be de-
fined as an inductive datatype and a reasoning infrastructure for them (like induction and
recursion) comes for free in HOL. This convenience of regular expressions has recently
been exploited in HOL4 with a formalisation of regular expression matching based on
derivatives by Owens and Slind [2008], and with an equivalence checker for regular ex-
pressions in Isabelle/HOL by Krauss and Nipkow [2012] and in Matida by Asperti [2012]
and in Coq by Coquand and Siles [2011]. The main purpose of this paper is to show that a
central result about regular languages—the Myhill-Nerode Theorem—can be recreated by
only using regular expressions. This theorem gives necessary and sufficient conditions for
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when a language is regular. As a corollary of this theorem we can easily establish the usual
closure properties, including complementation, for regular languages. We use the Contin-
uation Lemma, which is also a corollary of the Myhill-Nerode Theorem, for establishing
the non-regularity of the language anbn.

Contributions: There is an extensive literature on regular languages. To our best knowl-
edge, our proof of the Myhill-Nerode Theorem is the first that is based on regular expres-
sions, only. The part of this theorem stating that finitely many partitions imply regularity
of the language is proved by an argument about solving equational systems. This argument
appears to be folklore. For the other part, we give two proofs: one direct proof using certain
tagging-functions, and another indirect proof using Antimirov’s partial derivatives [1995].
Again to our best knowledge, the tagging-functions have not been used before for estab-
lishing the Myhill-Nerode Theorem. Derivatives of regular expressions have been used
recently quite widely in the literature; partial derivatives, in contrast, attract much less at-
tention. However, partial derivatives are more suitable in the context of the Myhill-Nerode
Theorem, since it is easier to establish formally their finiteness result. We are not aware of
any proof that uses either of them for proving the Myhill-Nerode Theorem.

2. PRELIMINARIES

Strings in Isabelle/HOL are lists of characters with the empty string being represented by
the empty list, written []. We assume there are only finitely many different characters. Lan-
guages are sets of strings. The language containing all strings is written in Isabelle/HOL
as UNIV. The concatenation of two languages is written A · B and a language raised to the
power n is written An. They are defined as usual

A · B def
= {s1 @ s2 | s1 ∈ A ∧ s2 ∈ B}

A0 def
= {[]}

An+1 def
= A · An

where @ is the list-append operation. The Kleene-star of a language A is defined as the

union over all powers, namely A?
def
=

⋃
n An. In the paper we will make use of the follow-

ing properties of these constructions.

PROPOSITION 2.1.
(i) A? = A · A? ∪ {[]}
(ii) If [] /∈ A and s ∈ An+1 then n < length s.
(iii) B · (

⋃
n An) = (

⋃
n B · An)

(iv) If x ∈ A? and x 6= [] then there exists an xp and xs with x = xp @ xs and
xp 6= [] such that xp ∈ A and xs ∈ A?.

In (ii) we use the notation length s for the length of a string; this property states that if
[] /∈ A then the lengths of the strings in An+1 must be longer than n. Property (iv) states
that a non-empty string in A? can always be split up into a non-empty prefix belonging to
A and the rest being in A?. We omit the proofs for these properties, but invite the reader to
consult our formalisation.2

2Available under Wu et al. [2011b] in the Archive of Formal Proofs at
http://afp.sourceforge.net/entries/Myhill-Nerode.shtml.
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The notation in Isabelle/HOL for the quotient of a language A according to an equiv-
alence relation ≈ is A � ≈. We will write [[x]]≈ for the equivalence class defined as
{y | y ≈ x}, and have x ≈ y if and only if [[x]]≈ = [[y]]≈.

Central to our proof will be the solution of equational systems involving equivalence
classes of languages. For this we will use Arden’s Lemma (see for example [Sakarovitch
2009, Page 100]), which solves equations of the form X = A · X ∪ B provided [] /∈ A.
However we will need the following ‘reversed’ version of Arden’s Lemma (‘reversed’ in
the sense of changing the order of A · X to X · A).3

LEMMA 2.1 (REVERSED ARDEN’S LEMMA).
If [] /∈ A then X = X · A ∪ B if and only if X = B · A?.

Regular expressions are defined as the inductive datatype

r ::= ZERO
| ONE
| ATOM c
| TIMES r r
| PLUS r r
| STAR r

and the language matched by a regular expression is defined by recursion as

L(ZERO)
def
= {}

L(ONE)
def
= {[]}

L(ATOM c)
def
= {[c]}

L(PLUS r1 r2)
def
= L(r1) ∪ L(r2)

L(TIMES r1 r2)
def
= L(r1) · L(r2)

L(STAR r)
def
= L(r)?

Given a finite set of regular expressions rs, we will make use of the operation of generat-
ing a regular expression that matches the union of all languages of rs. This definion is not
trivial in a theorem prover, because rs (being a set) is unordered, but the regular expression
needs an order. Since we only need to know the existence of such a regular expression,
we can use Isabelle/HOL’s fold graph and Hilbert’s choice operator, written SOME in Is-
abelle/HOL, for defining +rs. This operation, roughly speaking, folds PLUS over the set
rs with ZERO for the empty set. We can prove that for a finite set rs

L(+rs) =
⋃

(L ‘ rs) (2)

holds, whereby L ‘ rs stands for the image of the set rs under function L defined as

L ‘ rs
def
= {L(r) | r ∈ rs}

In what follows we shall use this convenient short-hand notation for images of sets also
with other functions.

3The details of the proof for the reversed Arden’s Lemma are given in the Appendix.
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3. THE MYHILL-NERODE THEOREM, FIRST PART

The key definition in the Myhill-Nerode Theorem is the Myhill-Nerode Relation, which
states that w.r.t. a language two strings are related, provided there is no distinguishing
extension in this language. This can be defined as a ternary relation.

DEFINITION 3.1 (MYHILL-NERODE RELATION). Given a language A, two strings x
and y are Myhill-Nerode related provided

x ≈A y
def
= ∀ z. (x @ z ∈ A) = (y @ z ∈ A)

It is easy to see that ≈A is an equivalence relation, which partitions the set of all strings,
UNIV, into a set of disjoint equivalence classes. To illustrate this quotient construction, let
us give a simple example: consider the regular language containing just the string [c]. The
relation ≈{[c]} partitions UNIV into three equivalence classes X1, X2 and X3 as follows

X1 = {[]}
X2 = {[c]}
X3 = UNIV − {[], [c]}

One direction of the Myhill-Nerode Theorem establishes that if there are finitely many
equivalence classes, like in the example above, then the language is regular. In our setting
we therefore have to show:

THEOREM 3.1. If finite (UNIV�≈A) then regular A.

To prove this theorem, we first define the set finals A as those equivalence classes from
UNIV�≈A that contain strings of A, namely

finals A
def
= {[[s]]≈A | s ∈ A} (3)

In our running example, X2 is the only equivalence class in finals {[c]}. It is straightforward
to show that in general

A =
⋃

finals A finals A ⊆ UNIV�≈A (4)

hold. Therefore if we know that there exists a regular expression for every equivalence
class in finals A (which by assumption must be a finite set), then we can use + to obtain a
regular expression that matches every string in A.

Our proof of Theorem 3.1 relies on a method that can calculate a regular expression for
every equivalence class, not just the ones in finals A. We first define the notion of one-
character-transition between two equivalence classes

Y cZ=⇒ X
def
= Y · {[c]} ⊆ X (5)

which means that if we append the character c to the end of all strings in the equivalence
class Y, we obtain a subset of X. Note that we do not define an automaton here, we merely
relate two sets (with the help of a character). In our concrete example we have X1

cZ=⇒ X2,
X1

diZ=⇒ X3 with di being any other character than c, and X3
cjZ=⇒ X3 for any character cj .

Next we construct an initial equational system that contains an equation for each equiv-
alence class. We first give an informal description of this construction. Suppose we have
the equivalence classes X1,. . . ,Xn, there must be one and only one that contains the empty
string [] (since equivalence classes are disjoint). Let us assume [] ∈ X1. We build the
following initial equational system
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.
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X1 = (Y11, ATOM c11) + . . . + (Y1p, ATOM c1p) + λ(ONE)
X2 = (Y21, ATOM c21) + . . . + (Y2o, ATOM c2o)

...
Xn = (Yn1, ATOM cn1) + . . . + (Ynq, ATOM cnq)

where the terms (Yij , ATOM cij) are pairs consiting of an equivalence class and a regular
expression. In the initial equational system, they stand for all transitions Yij

cijZ=⇒ Xi.
There can only be finitely many terms of the form (Yij , ATOM cij) in a right-hand side
since by assumption there are only finitely many equivalence classes and only finitely many
characters. The term λ(ONE) in the first equation acts as a marker for the initial state, that
is the equivalence class containing the empty string [].4 In our running example we have
the initial equational system

X1 = λ(ONE)
X2 = (X1, ATOM c)
X3 = (X1, ATOM d1) + . . . + (X1, ATOM dn)

+ (X3, ATOM c1) + . . . + (X3, ATOM cm)

(6)

where d1. . . dn is the sequence of all characters but not containing c, and c1. . . cm is the
sequence of all characters.

Overloading the function L for the two kinds of terms in the equational system, we have

L(Y, r)
def
= Y · L(r) L(λ(r)) def

= L(r)

and we can prove for X2..n that the following equations

Xi = L(Yi1, ATOM ci1) ∪ . . . ∪ L(Yiq, ATOM ciq). (7)

hold. Similarly for X1 we can show the following equation

X1 = L(Y11, ATOM c11) ∪ . . . ∪ L(Y1p, ATOM c1p) ∪ L(λ(ONE)). (8)

holds. The reason for adding the λ-marker to our initial equational system is to obtain this
equation: it only holds with the marker, since none of the other terms contain the empty
string. The point of the initial equational system is that solving it means we will be able to
extract a regular expression for every equivalence class.

Our representation for the equations in Isabelle/HOL are pairs, where the first compo-
nent is an equivalence class (a set of strings) and the second component is a set of terms.
Given a set of equivalence classes CS, our initial equational system Init CS is thus formally
defined as

Init rhs CS X
def
= if [] ∈ X

then {(Y, ATOM c) | Y ∈ CS ∧ Y cZ=⇒ X} ∪ {λ(ONE)}
else {(Y, ATOM c) | Y ∈ CS ∧ Y cZ=⇒ X}

Init CS
def
= {(X, Init rhs CS X) | X ∈ CS}

(9)

4Note that we mark, roughly speaking, the single ‘initial’ state in the equational system, which is different from
the method by Brzozowski [1964], where he marks the ‘terminal’ states. We are forced to set up the equational
system in our way, because the Myhill-Nerode Relation determines the ‘direction’ of the transitions—the succes-
sor ‘state’ of an equivalence class Y can be reached by adding a character to the end of Y. This is also the reason
why we have to use our reversed version of Arden’s Lemma.
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Because we use sets of terms for representing the right-hand sides of equations, we can
prove (7) and (8) more concisely as

LEMMA 3.1. If (X, rhs) ∈ Init (UNIV�≈A) then X =
⋃
L ‘ rhs.

Our proof of Theorem 3.1 will proceed by transforming the initial equational system into
one in solved form maintaining the invariant in Lemma 3.1. From the solved form we will
be able to read off the regular expressions.

In order to transform an equational system into solved form, we have two operations: one
that takes an equation of the form X = rhs and removes any recursive occurrences of X in
the rhs using our variant of Arden’s Lemma. The other operation takes an equation X = rhs
and substitutes X throughout the rest of the equational system adjusting the remaining reg-
ular expressions appropriately. To define this adjustment we define the append-operation
taking a term and a regular expression as argument

(Y, r2) / r1
def
= (Y, TIMES r2 r1)

λ(r2) / r1
def
= λ(TIMES r2 r1)

We lift this operation to entire right-hand sides of equations, written as rhs / r. With this
we can define the arden-operation for an equation of the form X = rhs as:

Arden X rhs
def
= let

rhs ′= rhs − {(X, r) | (X, r) ∈ rhs}
r ′= STAR (+{r | (X, r) ∈ rhs})

in rhs ′ / r ′

(10)

In this definition, we first delete all terms of the form (X, r) from rhs; then we calculate the
combined regular expressions for all r coming from the deleted (X, r), and take the STAR
of it; finally we append this regular expression to rhs ′. If we apply this operation to the
right-hand side of X3 in (6), we obtain the equation:

X3 = (X1, TIMES (ATOM d1) (STAR +{ATOM c1,. . . , ATOM cm})) + . . .
. . . + (X1, TIMES (ATOM dn) (STAR +{ATOM c1,. . . , ATOM cm}))

That means we eliminated the recursive occurrence of X3 on the right-hand side. Note we
used the abbreviation +{ATOM c1,. . . , ATOM cm} to stand for a regular expression that
matches with every character. In our algorithm we are only interested in the existence of
such a regular expression and do not specify it any further.

It can be easily seen that the Arden-operation mimics Arden’s Lemma on the level of
equations. To ensure the non-emptiness condition of Arden’s Lemma we say that a right-
hand side is ardenable provided

ardenable rhs
def
= ∀Y r. (Y, r) ∈ rhs −→ [] /∈ L(r)

This allows us to prove a version of Arden’s Lemma on the level of equations.

LEMMA 3.2. Given an equation X = rhs. If X =
⋃
L ‘ rhs, ardenable rhs, and finite

rhs, then X =
⋃
L ‘ (Arden X rhs).

Our ardenable condition is slightly stronger than needed for applying Arden’s Lemma, but
we can still ensure that it holds throughout our algorithm of transforming equations into
solved form.
ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.
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The substitution-operation takes an equation of the form X = xrhs and substitutes it into
the right-hand side rhs.

Subst rhs X xrhs
def
= let

rhs ′= rhs − {(X, r) | (X, r) ∈ rhs}
r ′=+{r | (X, r) ∈ rhs}

in rhs ′∪ (xrhs / r ′)

We again delete first all occurrences of (X, r) in rhs; we then calculate the regular expres-
sion corresponding to the deleted terms; finally we append this regular expression to xrhs
and union it up with rhs ′. When we use the substitution operation we will arrange it so that
xrhs does not contain any occurrence of X. For example substituting the first equation in
(6) into the right-hand side of the second, thus eliminating the equivalence class X1, gives
us the equation

X2 = λ(TIMES ONE (ATOM c)) (11)

With these two operations in place, we can define the operation that removes one equa-
tion from an equational systems ES. The operation Subst all substitutes an equation X =
xrhs throughout an equational system ES; Remove then completely removes such an equa-
tion from ES by substituting it to the rest of the equational system, but first eliminating all
recursive occurrences of X by applying Arden to xrhs.

Subst all ES X xrhs
def
= {(Y, Subst yrhs X xrhs) | (Y, yrhs) ∈ ES}

Remove ES X xrhs
def
= Subst all (ES − {(X, xrhs)}) X (Arden X xrhs)

Finally, we can define how an equational system should be solved. For this we will need
to iterate the process of eliminating equations until only one equation will be left in the
system. However, we do not just want to have any equation as being the last one, but the
one involving the equivalence class for which we want to calculate the regular expression.
Let us suppose this equivalence class is X. Since X is the one to be solved, in every iteration
step we have to pick an equation to be eliminated that is different from X. In this way X is
kept to the final step. The choice is implemented using Hilbert’s choice operator, written
SOME in the definition below.

Iter X ES
def
= let

(Y, yrhs) = SOME (Y, yrhs). (Y, yrhs) ∈ ES ∧ X 6= Y
in Remove ES Y yrhs

The last definition we need applies Iter over and over until a condition Cond is not satisfied
anymore. This condition states that there are more than one equation left in the equational
system ES. To solve an equational system we use Isabelle/HOL’s while-operator as follows:

Solve X ES
def
= while Cond (Iter X) ES

We are not concerned here with the definition of this operator (see [Berghofer and Nipkow
2002] for example), but note that we eliminate in each Iter-step a single equation, and
therefore have a well-founded termination order by taking the cardinality of the equational
system ES. This enables us to prove properties about our definition of Solve when we ‘call’
it with the equivalence class X and the initial equational system Init (UNIV�≈A) from (9)

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.
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using the principle:

invariant (Init (UNIV�≈A))
∀ES. invariant ES ∧ Cond ES −→ invariant (Iter X ES)
∀ES. invariant ES ∧ Cond ES −→ card (Iter X ES) < card ES
∀ES. invariant ES ∧ ¬ Cond ES −→ P ES

P (Solve X (Init (UNIV�≈A)))

(12)

This principle states that given an invariant (which we will specify below) we can prove
a property P involving Solve. For this we have to discharge the following proof obliga-
tions: first the initial equational system satisfies the invariant; second the iteration step Iter
preserves the invariant as long as the condition Cond holds; third Iter decreases the termi-
nation order, and fourth that once the condition does not hold anymore then the property P
must hold.

The property P in our proof will state that Solve X (Init (UNIV�≈A)) returns with a
single equation X = xrhs for some xrhs, and that this equational system still satisfies the
invariant. In order to get the proof through, the invariant is composed of the following six
properties:

invariant ES
def
= finite ES (finiteness)
∧ ∀ (X, rhs)∈ES. finite rhs (finiteness rhs)
∧ ∀ (X, rhs)∈ES. X =

⋃
L ‘ rhs (soundness)

∧ ∀X rhs rhs ′. (X, rhs) ∈ ES ∧ (X, rhs ′) ∈ ES −→ rhs = rhs ′

(distinctness)
∧ ∀ (X, rhs)∈ES. ardenable rhs (ardenable)
∧ ∀ (X, rhs)∈ES. rhss rhs ⊆ lhss ES (validity)

The first two ensure that the equational system is always finite (number of equations and
number of terms in each equation); the third makes sure the ‘meaning’ of the equations
is preserved under our transformations. The other properties are a bit more technical, but
are needed to get our proof through. Distinctness states that every equation in the system
is distinct. Ardenable ensures that we can always apply the Arden operation. The last
property states that every rhs can only contain equivalence classes for which there is an
equation. Therefore lhss is just the set containing the first components of an equational
system, while rhss collects all equivalence classes X in the terms of the form (X, r). That

means formally lhss ES
def
= {X | (X, rhs) ∈ ES} and rhss rhs

def
= {X | (X, r) ∈ rhs}.

It is straightforward to prove that the initial equational system satisfies the invariant.

LEMMA 3.3. If finite (UNIV�≈A) then invariant (Init (UNIV�≈A)).

PROOF. Finiteness is given by the assumption and the way how we set up the initial
equational system. Soundness is proved in Lemma 3.1. Distinctness follows from the fact
that the equivalence classes are disjoint. The ardenable property also follows from the
setup of the initial equational system, as does validity.

Next we show that Iter preserves the invariant.

LEMMA 3.4. If invariant ES, (X, rhs) ∈ ES and Cond ES, then invariant (Iter X ES).

PROOF. The argument boils down to choosing an equation Y = yrhs to be eliminated
and to show that Subst all (ES − {(Y, yrhs)}) Y (Arden Y yrhs) preserves the invariant.
We prove this as follows:
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∀ES. invariant (ES ∪ {(Y, yrhs)}) implies invariant (Subst all ES Y (Arden Y yrhs))

Finiteness is straightforward, as the Subst and Arden operations keep the equational sys-
tem finite. These operations also preserve soundness and distinctness (we proved sound-
ness for Arden in Lemma 3.2). The property ardenable is clearly preserved because the
append-operation cannot make a regular expression to match the empty string. Validity
is given because Arden removes an equivalence class from yrhs and then Subst all re-
moves Y from the equational system. Having proved the implication above, we can in-
stantiate ES with ES − {(Y, yrhs)} which matches with our proof-obligation of Subst all.
Since ES = ES − {(Y, yrhs)} ∪ {(Y, yrhs)}, we can use the assumption to complete the
proof.

We also need the fact that Iter decreases the termination measure.

LEMMA 3.5. If invariant ES, (X, rhs) ∈ ES and Cond ES, then
card (Iter X ES) < card ES.

PROOF. By assumption we know that ES is finite and has more than one element. There-
fore there must be an element (Y, yrhs) ∈ ES with (Y, yrhs) 6= (X, rhs). Using the distinct-
ness property we can infer that Y 6= X. We further know that Remove ES Y yrhs removes
the equation Y = yrhs from the system, and therefore the cardinality of Iter strictly de-
creases.

This brings us to our property we want to establish for Solve.

LEMMA 3.6. If finite (UNIV�≈A) and X ∈ UNIV�≈A then there exists a rhs such
that Solve X (Init (UNIV�≈A)) = {(X, rhs)} and invariant {(X, rhs)}.

PROOF. In order to prove this lemma using (12), we have to use a slightly stronger
invariant since Lemma 3.4 and 3.5 have the precondition that (X, rhs) ∈ ES for some
rhs. This precondition is needed in order to choose in the Iter-step an equation that is not
X = rhs. Therefore our invariant cannot be just invariant ES, but must be invariant ES ∧
(∃ rhs. (X, rhs) ∈ ES). By assumption X ∈ UNIV�≈A and Lemma 3.3, the more general
invariant holds for the initial equational system. This is premise 1 of (12). Premise 2 is
given by Lemma 3.4 and the fact that Iter might modify the rhs in the equation X = rhs,
but does not remove it. Premise 3 of (12) is by Lemma 3.5. Now in premise 4 we like to
show that there exists a rhs such that ES = {(X, rhs)} and that invariant {(X, rhs)} holds,
provided the condition Cond does not holds. By the stronger invariant we know there exists
such a rhs with (X, rhs) ∈ ES. Because Cond is not true, we know the cardinality of ES is
1. This means ES must actually be the set {(X, rhs)}, for which the invariant holds. This
allows us to conclude that Solve X (Init (UNIV�≈A)) = {(X, rhs)} and invariant {(X,
rhs)} hold, as needed.

With this lemma in place we can show that for every equivalence class in UNIV�≈A there
exists a regular expression.

LEMMA 3.7. If finite (UNIV�≈A) and X ∈ UNIV�≈A then regular X.

PROOF. By the preceding lemma, we know that there exists a rhs such that Solve X
(Init (UNIV �≈A)) returns the equation X = rhs, and that the invariant holds for this
equation. That means we know X =

⋃
L ‘ rhs. We further know that this is equal to
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L ‘ (Arden X rhs) using the properties of the invariant and Lemma 3.2. Using the va-

lidity property for the equation X = rhs, we can infer that rhss rhs ⊆ {X} and because
the Arden operation removes that X from rhs, that rhss (Arden X rhs) = {}. This means
the right-hand side Arden X rhs can only consist of terms of the form λ(r). So we can
collect those (finitely many) regular expressions rs and have X = L(+rs). With this we
can conclude the proof.

Lemma 3.7 allows us to finally give a proof for the first direction of the Myhill-Nerode
Theorem.

PROOF OF THEOREM 3.1. By Lemma 3.7 we know that there exists a regular expres-
sion for every equivalence class in UNIV�≈A. Since finals A is a subset of UNIV�≈A,
we also know that for every equivalence class in finals A there exists a regular expression.
Moreover by assumption we know that finals A must be finite, and therefore there must be a
finite set of regular expressions rs such that

⋃
finals A = L(+rs). Since the left-hand side

is equal to A, we can use +rs as the regular expression that is needed in the theorem.

Note that our algorithm for solving equational systems provides also a method for calcu-
lating a regular expression for the complement of a regular language: if we combine all
regular expressions corresponding to equivalence classes not in finals A, then we obtain a
regular expression for the complement language A. This is similar to the usual construction
of a ‘complement automaton’.

4. MYHILL-NERODE, SECOND PART

In this section we will give a proof for establishing the second part of the Myhill-Nerode
Theorem. It can be formulated in our setting as follows:

THEOREM 4.1. Given r is a regular expression, then finite (UNIV�≈L(r)).

The proof will be by induction on the structure of r. It turns out the base cases are straight-
forward.

PROOF (BASE CASES). The cases for ZERO, ONE and ATOM are routine, because we
can easily establish that

UNIV�≈{} = {UNIV}
UNIV�≈{[]} ⊆ {{[]}, UNIV − {[]}}
UNIV�≈{[c]} ⊆ {{[]}, {[c]}, UNIV − {[], [c]}}

hold, which shows that UNIV�≈L(r) must be finite.

Much more interesting, however, are the inductive cases. They seem hard to be solved
directly. The reader is invited to try.5

5The induction hypothesis is not strong enough to make any progress with the TIME and STAR cases.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.



A Formalisation of the Myhill-Nerode Theorem based on Regular Expressions · 13

In order to see how our proof proceeds consider the following suggestive picture given
by Constable et al. [2000]:

a1a2

a3 a4

a1.1

a1.2a2.1
a2.2

a3.1
a3.2a4.1

a4.2

UNIV UNIV�≈L(r) UNIV�R

(13)

The relation ≈L(r) partitions the set of all strings, UNIV, into some equivalence classes.
To show that there are only finitely many of them, it suffices to show in each induction step
that another relation, say R, has finitely many equivalence classes and refines ≈L(r).

DEFINITION 4.1. A relation R1 refines R2 provided R1 ⊆ R2.

For constructing R, we will rely on some tagging-functions defined over strings. Given the
inductive hypothesis, it will be easy to prove that the range of these tagging-functions is
finite. The range of a function f is defined as

range f
def
= f ‘ UNIV

that means we take the image of f w.r.t. all elements in the domain. With this we will
be able to infer that the tagging-functions, seen as relations, give rise to finitely many
equivalence classes. Finally we will show that the tagging-relations are more refined than
≈L(r), which implies that UNIV�≈L(r) must also be finite. We formally define the notion
of a tagging-relation as follows.

DEFINITION 4.2 (TAGGING-RELATION). Given a tagging-function tag, then two strings
x and y are tag-related provided

x ∼∼∼tag y
def
= tag x = tag y .

In order to establish finiteness of a set A, we shall use the following powerful principle
from Isabelle/HOL’s library.

If finite (f ‘ A) and inj on f A then finite A. (14)

It states that if an image of a set under an injective function f (injective over this set) is
finite, then the set A itself must be finite. We can use it to establish the following two
lemmas.

LEMMA 4.1. If finite (range tag) then finite (UNIV�∼∼∼tag).

PROOF. We set in (14), f to be X 7→ tag ‘ X. We have range f to be a subset of Pow
(range tag), which we know must be finite by assumption. Now f ‘ UNIV �∼∼∼tag is a
subset of range f, and so also finite. Injectivity amounts to showing that X = Y under the
assumptions that X, Y ∈ UNIV�∼∼∼tag and f X = f Y. From the assumptions we obtain x ∈ X
and y ∈ Y with tag x = tag y. Since x and y are tag-related, this in turn means that the
equivalence classes X and Y must be equal. Therefore (14) allows us to conclude with
finite (UNIV�∼∼∼tag).

LEMMA 4.2. Given two equivalence relations R1 and R2, whereby R1 refines R2. If
finite (UNIV�R1) then finite (UNIV�R2).
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PROOF. We prove this lemma again using (14). This time we set f to be X 7→ {[[x]]R1 |
x ∈ X}. It is easy to see that finite (f ‘ UNIV�R2) because it is a subset of Pow (UNIV�
R1), which must be finite by assumption. What remains to be shown is that f is injective
on UNIV�R2. This is equivalent to showing that two equivalence classes, say X and Y,
in UNIV�R2 are equal, provided f X = f Y. For X = Y to be equal, we have to find two
elements x ∈ X and y ∈ Y such that they are R2 related. We know there exists a x ∈ X
with X = [[x]]R2 . From the latter fact we can infer that [[x]]R1 ∈ f X and further [[x]]R1 ∈ f
Y. This means we can obtain a y such that [[x]]R1 = [[y]]R1 holds. Consequently x and y are
R1-related. Since by assumption R1 refines R2, they must also be R2-related, as we need to
show.

Chaining Lemma 4.1 and 4.2 together, means in order to show that UNIV�≈L(r) is finite,
we have to construct a tagging-function whose range can be shown to be finite and whose
tagging-relation refines ≈L(r). Let us attempt the PLUS-case first. We take as tagging-
function

+tag A B x
def
= ([[x]]≈A , [[x]]≈B)

where A and B are some arbitrary languages. The reason for this choice is that we need to
establish that ∼∼∼+tag A B refines ≈A ∪ B. This amounts to showing x ≈A y or x ≈B y under
the assumption x ∼∼∼+tag A B y. As we shall see, this definition will provide us with just the
right assumptions in order to get the proof through.

PROOF (PLUS-CASE). We can show in general, if finite (UNIV�≈A) and finite (UNIV
�≈B) then finite (UNIV�≈A × UNIV�≈B) holds. The range of +tag A B is a subset
of this product set—so finite. For the refinement proof-obligation, we know that ([[x]]≈A ,
[[x]]≈B) = ([[y]]≈A , [[y]]≈B) holds by assumption. Then clearly either x ≈A y or x ≈B y,
as we needed to show. Finally we can discharge this case by setting A to L(r1) and B to
L(r2).

The TIMES-case is slightly more complicated. We first prove the following lemma, which
will aid the proof about refinement.

LEMMA 4.3. The relation ∼∼∼tag refines ≈A, provided for all strings x, y and z we have
that x ∼∼∼tag y and x @ z ∈ A imply y @ z ∈ A.

We therefore can analyse how the strings x @ z are in the language A and then construct
an appropriate tagging-function to infer that y @ z are also in A. For this we will use the
notion of the set of all possible partitions of a string:

Partitions x
def
= {(xp, xs) | xp @ xs = x} (15)

If we know that (xp, xs) ∈ Partitions x, we will refer to xp as the prefix of the string x, and
respectively to xs as the suffix.

Now assuming x @ z ∈ A · B, there are only two possible ways of how to ‘split’ this
string to be in A · B:
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x zp zs

x z
x @ z ∈ A · B

x @ zp ∈ A zs ∈ B

xp xs z

x z
x @ z ∈ A · B

xs @ z ∈ Bxp ∈ A

Either x and a prefix of z is in A and the rest in B (first picture) or there is a prefix of x in
A and the rest is in B (second picture). In both cases we have to show that y @ z ∈ A · B.
The first case we will only go through if we know that x ≈A y holds (∗). Because then we
can infer from x @ zp ∈ A that y @ zp ∈ A holds for all zp. In the second case we only
know that xp and xs is one possible partition of the string x. We have to know that both xp
and the corresponding partition yp are in A, and that xs is ‘B-related’ to ys (∗∗). From the
latter fact we can infer that ys @ z ∈ B. This will solve the second case. Taking the two
requirements, (∗) and (∗∗), together we define the tagging-function in the TIMES-case as:

×tag A B
def
= ([[x]]≈A, {[[xs]]≈B | xp ∈ A ∧ (xp, xs) ∈ Partitions x})

Note that we have to make the assumption for all suffixes xs, since we do not know anything
about how the string x is partitioned. With this definition in place, let us prove the TIMES-
case.

PROOF (TIMES-CASE). If finite (UNIV�≈A) and finite (UNIV�≈B) then finite (UNIV
�≈A × Pow (UNIV�≈B)) holds. The range of ×tag A B is a subset of this product set,
and therefore finite. For the refinement of ≈A · B and ∼∼∼×tag A B, we have by Lemma 4.3

×tag A B x = ×tag A B y

and x @ z ∈ A · B, and have to establish y @ z ∈ A · B. As shown in the pictures above,
there are two cases to be considered. First, there exists a zp and zs such that x @ zp ∈ A
and zs ∈ B. By the assumption about ×tag A B we have [[x]]≈A = [[y]]≈A and thus x ≈A y.
Hence by the Myhill-Nerode Relation y @ zp ∈ A holds. Using zs ∈ B, we can conclude in
this case with y @ z ∈ A · B (recall zp @ zs = z).

Second there exists a partition xp and xs with xp ∈ A and xs @ z ∈ B. We therefore have

[[xs]]≈B ∈ {[[xs]]≈B | xp ∈ A ∧ (xp, xs) ∈ Partitions x}

and by the assumption about ×tag A B also

[[xs]]≈B ∈ {[[ys]]≈B | yp ∈ A ∧ (yp, ys) ∈ Partitions y}

This means there must be a partition yp and ys such that yp ∈ A and [[xs]]≈B = [[ys]]≈B . Un-
folding the Myhill-Nerode Relation and together with the facts that xp ∈ A and xs @ z ∈ B,
we obtain yp ∈ A and ys @ z ∈ B, as needed in this case. We again can complete the
TIMES-case by setting A to L(r1) and B to L(r2).
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The case for STAR is similar to TIMES, but poses a few extra challenges. To deal with
them, we define first the notion of a string prefix and a strict string prefix:

x ≤ y
def
= ∃ z. y = x @ z

x < y
def
= x ≤ y ∧ x 6= y

When analysing the case of x @ z being an element in A? and x is not the empty string,
we have the following picture:

xpmax xs za zb

x z
x @ z ∈ A?

xs @ za ∈ Axpmax ∈ A? zb ∈ A?

xs @ z ∈ A?

We can find a strict prefix xp of x such that xp ∈ A?, xp < x and the rest xs @ z ∈ A?.
For example the empty string [] would do (recall x 6= []). There are potentially many such
prefixes, but there can only be finitely many of them (the string x is finite). Let us therefore
choose the longest one and call it xpmax. Now for the rest of the string xs @ z we know it is
in A? and cannot be the empty string. By Property 2.1(iv), we can separate this string into
two parts, say a and b, such that a 6= [], a ∈ A and b ∈ A?. Now a must be strictly longer
than xs, otherwise xpmax is not the longest prefix. That means a ‘overlaps’ with z, splitting
it into two components za and zb. For this we know that xs @ za ∈ A and zb ∈ A?. To cut
a story short, we have divided x @ z ∈ A? such that we have a string a with a ∈ A that lies
just on the ‘border’ of x and z. This string is xs @ za.

In order to show that x @ z ∈ A? implies y @ z ∈ A?, we use the following tagging-
function:

?tag A x
def
= {[[xs]]≈A | xp < x ∧ xp ∈ A? ∧ (xp, xs) ∈ Partitions x}

PROOF (STAR-CASE). If finite (UNIV�≈A) then finite (Pow (UNIV�≈A)) holds. The
range of ?tag A is a subset of this set, and therefore finite. Again we have to show under
the assumption x ∼∼∼?tag A y that x @ z ∈ A? implies y @ z ∈ A?.

We first need to consider the case that x is the empty string. From the assumption about
strict prefixes in ∼∼∼?tag A, we can infer y is the empty string and then clearly have y @ z ∈
A?. In case x is not the empty string, we can divide the string x @ z as shown in the picture
above. By the tagging-function and the facts xpmax ∈ A? and xpmax < x, we have

[[xs]]≈A ∈ {[[xs]]≈A | xpmax < x ∧ xpmax ∈ A? ∧ (xpmax, xs) ∈ Partitions x}

which by assumption is equal to

[[xs]]≈A ∈ {[[ys]]≈A | yp < y ∧ yp ∈ A? ∧ (yp, ys) ∈ Partitions y}

From this we know there exist a partition yp and ys with yp ∈ A? and also xs ≈A ys.
Unfolding the Myhill-Nerode Relation we know ys @ za ∈ A. We also know that zb ∈ A?.
Therefore yp @ (ys @ za) @ zb ∈ A?, which means y @ z ∈ A?. The last step is to set A to
L(r) and thus complete the proof.
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5. SECOND PART PROVED USING PARTIAL DERIVATIVES

As we have seen in the previous section, in order to establish the second direction of the
Myhill-Nerode Theorem, it is sufficient to find a more refined relation than≈L(r) for which
we can show that there are only finitely many equivalence classes. So far we showed
this directly by induction on r using tagging-functions. However, there is also an indirect
method to come up with such a refined relation by using derivatives of regular expressions
introduced by Brzozowski [1964].

Assume the following two definitions for the left-quotient of a language, which we write
as Der c A and Ders s A where c is a character and s a string, respectively:

Der c A
def
= {s | [c] @ s ∈ A}

Ders s A
def
= {s ′ | s @ s ′∈ A}

In order to aid readability, we shall make use of the following abbreviation

Derss s As
def
=

⋃
Ders s ‘ As

where we apply the left-quotient to a set of languages and then combine the results. Clearly
we have the following equivalence between the Myhill-Nerode Relation (Definition 3.1)
and left-quotients

x ≈A y if and only if Ders x A = Ders y A (16)

It is also straightforward to establish the following properties of left-quotients

Der a {} = {}
Der a {[]} = {}
Der a {[b]} = if a = b then {[]} else {}
Der a (A ∪ B) = Der a A ∪ Der a B
Der c (A · B) = (Der c A) · B ∪ (if [] ∈ A then Der c B else {})
Der c (A?) = (Der c A) · A?
Ders [] A = A
Ders (c :: s) A = Ders s (Der c A)

(17)

Note that in the last equation we use the list-cons operator written :: . The only inter-
esting case is the case of A? where we use Property 2.1(i) in order to infer that Der c (A?)
= Der c (A · A?). We can then complete the proof by using the fifth equation and noting
that Der c (A?) ⊆ (Der c A) · A? provided [] ∈ A.

Brzozowski [1964] observed that the left-quotients for languages of regular expressions
can be calculated directly using the notion of derivatives of a regular expression. We define
this notion in Isabelle/HOL as follows:

der c (ZERO)
def
= ZERO

der c (ONE)
def
= ZERO

der c (ATOM d)
def
= if c = d then ONE else ZERO

der c (PLUS r1 r2)
def
= PLUS (der c r1) (der c r2)

der c (TIMES r1 r2)
def
= if δ(r1) then PLUS (TIMES (der c r1) r2) (der c r2)

else TIMES (der c r1) r2
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der c (STAR r)
def
= TIMES (der c r) (STAR r)

ders [] r
def
= r

ders (c :: s) r
def
= ders s (der c r)

The last two clauses extend derivatives from characters to strings. The boolean function
δ(r) needed in the TIMES-case tests whether a regular expression can recognise the empty
string. It can be defined as follows.

δ(ZERO)
def
= False

δ(ONE)
def
= True

δ(ATOM c)
def
= False

δ(PLUS r1 r2)
def
= δ(r1) ∨ δ(r2)

δ(TIMES r1 r2)
def
= δ(r1) ∧ δ(r2)

δ(STAR r)
def
= True

By induction on the regular expression r, respectively on the string s, one can easily show
that left-quotients and derivatives of regular expressions relate as follows (see for exam-
ple [Sakarovitch 2009]):

Der c (L(r)) = L(der c r)
Ders s (L(r)) = L(ders s r) (18)

The importance of this fact in the context of the Myhill-Nerode Theorem is that we can use
(16) and (18) in order to establish that

x ≈L(r) y if and only if L(ders x r) = L(ders y r).

holds and hence

x ≈L(r) y provided ders x r = ders y r (19)

This means the right-hand side (seen as a relation) refines the Myhill-Nerode Relation.
Consequently, we can use ∼∼∼(λx. ders x r) as a tagging-relation. However, in order to be
useful for the second part of the Myhill-Nerode Theorem, we have to be able to establish
that for the corresponding language there are only finitely many derivatives—thus ensuring
that there are only finitely many equivalence classes. Unfortunately, this is not true in
general. Sakarovitch gives an example where a regular expression has infinitely many
derivatives w.r.t. the language (ab)? ∪ (ab)?a, which is formally written in our notation as
{[a,b]}? ∪ ({[a,b]}? · {[a]}) (see [Sakarovitch 2009, Page 141]).

What Brzozowski [1964] established is that for every language there are only finitely
‘dissimilar’ derivatives for a regular expression. Two regular expressions are said to be
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similar provided they can be identified using the using the ACI-identities:

(A) PLUS (PLUS r1 r2) r3 ≡ PLUS r1 (PLUS r2 r3)
(C) PLUS r1 r2 ≡ PLUS r2 r1
(I) PLUS r r ≡ r

(20)

Carrying this idea through, we must not consider the set of all derivatives, but the one
modulo ACI. In principle, this can be done formally, but it is very painful in a theorem
prover (since there is no direct characterisation of the set of dissimilar derivatives).

Fortunately, there is a much simpler approach using partial derivatives. They were
introduced by Antimirov [1995] and can be defined in Isabelle/HOL as follows:

pder c (ZERO)
def
= {}

pder c (ONE)
def
= {}

pder c (ATOM d)
def
= if c = d then {ONE} else {}

pder c (PLUS r1 r2)
def
= pder c r1 ∪ pder c r2

pder c (TIMES r1 r2)
def
= if δ(r1) then TIMESS (pder c r1) r2 ∪ pder c r2

else TIMESS (pder c r1) r2
pder c (STAR r)

def
= TIMESS (pder c r) (STAR r)

pders [] r
def
= {r}

pders (c :: s) r
def
=

⋃
(pders s) ‘ (pder c r)

Again the last two clauses extend partial derivatives from characters to strings. Unlike
‘simple’ derivatives, the functions for partial derivatives return sets of regular expressions.
In the TIMES and STAR cases we therefore use the auxiliary definition

TIMESS rs r
def
= {TIMES r ′ r | r ′∈ rs}

in order to ‘sequence’ a regular expression with a set of regular expressions. Note that in
the last clause we first build the set of partial derivatives w.r.t the character c, then build the
image of this set under the function pders s and finally ‘union up’ all resulting sets. It will
be convenient to introduce for this the following abbreviation

pderss s rs
def
=

⋃
pders s ‘ rs

which simplifies the last clause of pders to

pders (c :: s) r
def
= pderss s (pder c r)

Partial derivatives can be seen as having the ACI-identities already built in: taking the
partial derivatives of the regular expressions in (20) gives us in each case equal sets. An-
timirov [1995] showed a similar result to (18) for partial derivatives, namely

(i) Der c (L(r)) =
⋃
L ‘ pder c r

(ii) Ders s (L(r)) =
⋃
L ‘ pders s r (21)
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PROOF. The first fact is by a simple induction on r. For the second we slightly modify
Antimirov’s proof by performing an induction on s where we generalise over all r. That
means in the cons-case the induction hypothesis is

(IH) ∀ r. Ders s (L(r)) =
⋃
L ‘ pders s r

With this we can establish
Ders (c :: s) (L(r)) = Ders s (Der c (L(r))) by def.

= Ders s (
⋃
L ‘ pder c r) by (21.i)

= Derss s (L ‘ pder c r) by def. of Ders
=

⋃
L ‘ pderss s (pder c r) by IH

=
⋃
L ‘ pders (c :: s) r by def.

Note that in order to apply the induction hypothesis in the fourth equation, we need the
generalisation over all regular expressions r. The case for the empty string is routine and
omitted.

Taking (18) and (21) together gives the relationship between languages of derivatives and
partial derivatives

(i) L(der c r) =
⋃
L ‘ pder c r

(ii) L(ders s r) =
⋃
L ‘ pders s r (22)

These two properties confirm the observation made earlier that by using sets, partial deriva-
tives have the ACI-identities of derivatives already built in.

Antimirov also proved that for every language and every regular expression there are
only finitely many partial derivatives, whereby the set of partial derivatives of r w.r.t. a
language A is defined as

pdersl A r
def
=

⋃
x∈A pders x r (23)

THEOREM 5.1 [ANTIMIROV 1995]. For every language A and every regular expres-
sion r, finite (pdersl A r).

Antimirov’s proof first establishes this theorem for the language UNIV+, which is the set
of all non-empty strings. For this he proves:

pdersl UNIV+ (ZERO) = {}
pdersl UNIV+ (ONE) = {}
pdersl UNIV+ (ATOM c) = {ONE}
pdersl UNIV+ (PLUS r1 r2) = pdersl UNIV+ r1 ∪ pdersl UNIV+ r2
pdersl UNIV+ (TIMES r1 r2) ⊆ TIMESS (pdersl UNIV+ r1) r2 ∪ pdersl UNIV+ r2
pdersl UNIV+ (STAR r) ⊆ TIMESS (pdersl UNIV+ r) (STAR r)

(24)
from which one can deduce by induction on r that

finite (pdersl UNIV+ r)

holds. Now Antimirov’s theorem follows because

pdersl UNIV r = pders [] r ∪ pdersl UNIV+ r

and for all languages A, pdersl A r is a subset of pdersl UNIV r. Since we follow An-
timirov’s proof quite closely in our formalisation (only the last two cases of (24) involve
some non-routine induction arguments), we omit the details.
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Let us now return to our proof for the second direction in the Myhill-Nerode Theorem.
The point of the above calculations is to use ∼∼∼(λx. pders x r) as tagging-relation.

PROOF OF THEOREM 4.1 (SECOND VERSION). Using (16) and (21) we can easily in-
fer that

x ≈L(r) y provided pders x r = pders y r

which means the tagging-relation∼∼∼(λx. pders x r) refines≈L(r). So we know by Lemma 4.2,
finite (UNIV�≈L(r)) holds if finite (UNIV�∼∼∼(λx. pders x r)). In order to establish the latter,
we can use Lemma 4.1 and show that the range of the tagging-function λx. pders x r is
finite. For this recall Definition 23, which gives us that

pdersl UNIV r
def
=

⋃
x pders x r

Now the range of λx. pders x r is a subset of Pow (pdersl UNIV r), which we know is
finite by Theorem 5.1. Consequently there are only finitely many equivalence classes of
∼∼∼(λx. pders x r). This relation refines≈L(r), and therefore we can again conclude the second
part of the Myhill-Nerode Theorem.

6. CLOSURE PROPERTIES OF REGULAR LANGUAGES

The beauty of regular languages is that they are closed under many set operations. Closure
under union, concatenation and Kleene-star are trivial to establish given our definition of
regularity (recall Definition 1.2). More interesting in our setting is the closure under com-
plement, because it seems difficult to construct a regular expression for the complement
language by direct means. However the existence of such a regular expression can now be
easily proved using both parts of the Myhill-Nerode Theorem, since

s1 ≈A s2 if and only if s1 ≈A s2

holds for any strings s1 and s2. Therefore A and the complement language A give rise to
the same partitions. So if one is finite, the other is too, and vice versa. As noted earlier,
our algorithm for solving equational systems actually calculates a regular expression for
the complement language. Calculating such a regular expression via automata using the
standard method would be quite involved. It includes the steps: regular expression ⇒
non-deterministic automaton ⇒ deterministic automaton ⇒ complement automaton ⇒
regular expression. Clearly not something you want to formalise in a theorem prover if it
is cumbersome to reason about automata.

A perhaps surprising fact is that regular languages are closed under any left-quotient.
Define

Dersl B A
def
=

⋃
x∈B Ders x A

and assume B is any language and A is regular, then Dersl B A is regular. To see this
consider the following argument using partial derivatives (which we used in Section 5):
From A being regular we know there exists a regular expression r such that A = L(r). We
also know that pdersl B r is finite for every language B and regular expression r (recall
Theorem 5.1). By definition and (21) we have

Dersl B (L(r)) =
⋃
L ‘ pdersl B r (25)
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Since there are only finitely many regular expressions in pdersl B r, we know by (2) that
there exists a regular expression so that the right-hand side of (25) is equal to the language
L(+(pdersl B r)). Thus the regular expression +(pdersl B r) verifies that Dersl B A is
regular.

Even more surprising is the fact given first by Haines [1969] stating that for every lan-
guage A, the language consisting of all (scattered) substrings of A is regular (see also [Shal-
lit 2008; Fenner et al. 2009]). A (scattered) substring can be obtained by striking out zero
or more characters from a string. This can be defined inductively in Isabelle/HOL by the
following three rules:

[] � y
x � y

x � c :: y
x � y

c :: x � c :: y

It is straightforward to prove that � is a partial order. Now define the language of sub-
strings and superstrings of a language A respectively as

Sub A
def
= {x | ∃ y∈A. x � y}

Sup A
def
= {x | ∃ y∈A. y � x}

We like to establish

THEOREM 6.1 [HAINES 1969]. For every language A, the languages (i) Sub A and
(ii) Sup A are regular.

Our proof follows the one given by Shallit [2008, Pages 92–95], except that we use Hig-
man’s Lemma, which is already proved in the Isabelle/HOL library by Sternagel. Higman’s
Lemma allows us to infer that every language A of antichains, satisfying

∀ x, y ∈ A. x 6= y −→ x 6�y ∧ y 6�x (26)

is finite.
The first step in our proof of Theorem 6.1 is to establish the following simple properties

for Sup

Sup {} def
= {}

Sup {[]} def
= UNIV

Sup {[c]} def
= UNIV · {[c]} · UNIV

Sup (A ∪ B)
def
= Sup A ∪ Sup B

Sup (A · B) def
= Sup A · Sup B

Sup (A?)
def
= UNIV

(27)

whereby the last equation follows from the fact that A? contains the empty string. With
these properties at our disposal we can establish the lemma

LEMMA 6.1. If A is regular, then also Sup A.

PROOF. Since our alphabet is finite, we have a regular expression, written ALL, that
matches every string. Using this regular expression we can inductively define the operation
r↑
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(ZERO)↑ def
= ZERO

(ONE)↑ def
= ALL

(ATOM c)↑ def
= TIMES ALL (TIMES (ATOM c) ALL)

(PLUS r1 r2)↑
def
= PLUS (r1)↑ (r2)↑

(TIMES r1 r2)↑
def
= TIMES (r1)↑ (r2)↑

(STAR r)↑ def
= ALL

and use (27) to establish that L((r)↑) = Sup (L(r)) holds. This shows that Sup A is regular,
provided A is.

Now we can prove the main lemma w.r.t. Sup, namely

LEMMA 6.2. For every language A, there exists a finite language M such that

Sup M = Sup A .

PROOF. For M we take the set of all minimal elements of A. An element x is said to be
minimal in A provided

minA x
def
= ∀ y∈A. y � x −→ x � y

By Higman’s Lemma (26) we know that M
def
= {x ∈ A | minA x} is finite, since every

minimal element is incomparable, except with itself. It is also straightforward to show that
Sup M ⊆ Sup A. For the other direction we have x∈ Sup A. From this we obtain a y such that
y ∈ A and y � x. Since we have that the relation {(y, x) | y � x ∧ x 6= y} is well-founded,
there must be a minimal element z such that z ∈ A and z � y, and hence by transitivity also
z � x (here we deviate from the argument given by Shallit [2008], because Isabelle/HOL
provides already an extensive infrastructure for reasoning about well-foundedness). Since
z is minimal and an element in A, we also know that z is in M. From this together with
z � x, we can infer that x is in Sup M, as required.

This lemma allows us to establish the second part of Theorem 6.1.

PROOF OF THE SECOND PART OF THEOREM 6.1. Given any language A, by Lemma 6.2
we know there exists a finite, and thus regular, language M. We further have Sup M = Sup
A, which establishes the second part.

In order to establish the first part of this theorem, we use the property proved by Shallit
[2008], namely that

Sub A = Sup (Sub A) (28)

holds. Now the first part of Theorem 6.1 is a simple consequence of the second part.

PROOF OF THE FIRST PART OF THEOREM 6.1. By the second part, we know the right-
hand side of (28) is regular, which means Sub A is regular. But since we established already
that regularity is preserved under complement (using Myhill-Nerode), also Sub A must be
regular.

Finally we like to show that the Myhill-Nerode Theorem is also convenient for estab-
lishing the non-regularity of languages. For this we use the following version of the Con-
tinuation Lemma (see for example [Rosenberg 2006]).
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LEMMA 6.3 (CONTINUATION LEMMA). If a language A is regular and a set of strings
B is infinite, then there exist two distinct strings x and y in B such that x ≈A y.

This lemma can be easily deduced from the Myhill-Nerode Theorem and the Pigeonhole
Principle: Since A is regular, there can be only finitely many equivalence classes. Hence
an infinite set must contain at least two strings that are in the same equivalence class, that
is they need to be related by the Myhill-Nerode Relation.

Using this lemma, it is straightforward to establish that the language A
def
=

⋃
n an @ bn

is not regular (an stands for the strings consisting of n times the character a; similarly for

bn). For this consider the infinite set B
def
=

⋃
n an.

LEMMA 6.4. No two distinct strings in set B are Myhill-Nerode related by language A.

PROOF. After unfolding the definition of B, we need to establish that given i 6= j, the
strings ai and aj are not Myhill-Nerode related by A. That means we have to show that
∀ z. ai @ z ∈ A = aj @ z ∈ A leads to a contradiction. Let us take bi for z. Then we know
ai @ bi ∈ A. But since i 6= j, aj @ bi /∈ A. Therefore ai and aj cannot be Myhill-Nerode
related by A, and we are done.

To conclude the proof of non-regularity for the language A, the Continuation Lemma and
the lemma above lead to a contradiction assuming A is regular. Therefore the language A
is not regular, as we wanted to show.

7. CONCLUSION AND RELATED WORK

In this paper we took the view that a regular language is one where there exists a regular
expression that matches all of its strings. Regular expressions can conveniently be defined
as a datatype in theorem provers. For us it was therefore interesting to find out how far we
can push this point of view. We have established in Isabelle/HOL both directions of the
Myhill-Nerode Theorem.

THEOREM 7.1 (MYHILL-NERODE THEOREM).
A language A is regular if and only if finite (UNIV�≈A).

Having formalised this theorem means we pushed our point of view quite far. Using this
theorem we can obviously prove when a language is not regular—by establishing that it
has infinitely many equivalence classes generated by the Myhill-Nerode Relation (this is
usually the purpose of the Pumping Lemma). We can also use it to establish the standard
textbook results about closure properties of regular languages. Interesting is the case of
closure under complement, because it seems difficult to construct a regular expression
for the complement language by direct means. However the existence of such a regular
expression can be easily proved using the Myhill-Nerode Theorem.

While regular expressions are convenient, they have some limitations. One is that there
seems to be no method of calculating a minimal regular expression (for example in terms of
length) for a regular language, like there is for automata. On the other hand, efficient reg-
ular expression matching, without using automata, poses no problem as shown by Owens
et al. [2009]. For an implementation of a simple regular expression matcher, whose cor-
rectness has been formally established, we refer the reader to Owens and Slind [2008]. In
our opinion, their formalisation is considerably slicker than for example the approach to
regular expression matching taken by Harper [1999] and by Yi [2006].
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Our proof of the first direction is very much inspired by Brzozowski’s algebraic method
[1964] used to convert a finite automaton to a regular expression. The close connection can
be seen by considering the equivalence classes as the states of the minimal automaton for
the regular language. However there are some subtle differences. Because our equivalence
classes (or correspondingly states) arise from the Myhill-Nerode Relation, the most natu-
ral choice is to characterise each state with the set of strings starting from the initial state
leading up to that state. Usually, however, the states are characterised as the strings start-
ing from that state leading to the terminal states. The first choice has consequences about
how the initial equational system is set up. We have the λ-term on our ‘initial state’, while
Brzozowski has it on the terminal states. This means we also need to reverse the direction
of Arden’s Lemma. We have not found anything in the ‘pencil-and-paper-reasoning’ lit-
erature about our way of proving the first direction of the Myhill-Nerode Theorem, but it
appears to be folklore.

We presented two proofs for the second direction of the Myhill-Nerode Theorem. One
direct proof using tagging-functions and another using partial derivatives. This part of our
work is where our method using regular expressions shines, because we can completely
side-step the standard argument (for example used by Kozen [1997]) where automata need
to be composed. However, it is also the direction where we had to spend most of the
‘conceptual’ time, as our first proof based on tagging-functions is new for establishing the
Myhill-Nerode Theorem. All standard proofs of this direction proceed by arguments over
automata.

The indirect proof for the second direction arose from our interest in Brzozowski’s
derivatives for regular expression matching. While Brzozowski [1964] already established
that there are only finitely many dissimilar derivatives for every regular expression, this
result is not as straightforward to formalise in a theorem prover as one might wish. The
reason is that the set of dissimilar derivatives is not defined inductively, but in terms of
an ACI-equivalence relation. This difficulty prevented for example Krauss and Nipkow
[2012] to prove termination of their equivalence checker for regular expressions. Their
checker is based on Brzozowski’s derivatives and for their argument the lack of a formal
proof of termination is not crucial (it merely lets them “sleep better” [Krauss and Nipkow
2012]). We expect that their development simplifies by using partial derivatives, instead
of derivatives, and that the termination of the algorithm can be formally established (the
main ingredient is Theorem 5.1). However, since partial derivatives use sets of regular
expressions, one needs to carefully analyse whether the resulting algorithm is still exe-
cutable. Given the infrastructure for executable sets introduced by Haftmann [2009] in
Isabelle/HOL, it should.

We started out by claiming that in a theorem prover it is eaiser to reason about regular
expressions than about automta. Here are some numbers: Our formalisation of the Myhill-
Nerode Theorem consists of 780 lines of Isabelle/Isar code for the first direction and 460
for the second (the one based on tagging-functions), plus around 300 lines of standard
material about regular languages. The formalisation of derivatives and partial derivatives
shown in Section 5 consists of 390 lines of code. The closure properties in Section 6 (ex-
cept Theorem 6.1) can be established in 100 lines of code. The Continuation Lemma and
the non-regularity of an bn require 70 lines of code. The algorithm for solving equational
systems, which we used in the first direction, is conceptually relatively simple. Still the use
of sets over which the algorithm operates means it is not as easy to formalise as one might
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wish. However, it seems sets cannot be avoided since the ‘input’ of the algorithm consists
of equivalence classes and we cannot see how to reformulate the theory so that we can use
lists or matrices. Lists would be much easier to reason about, since we can define functions
over them by recursion. For sets we have to use set-comprehensions, which is slightly un-
wieldy. Matrices would allow us to use the slick formalisation by Nipkow [2011] of the
Gauss-Jordan algorithm.

While our formalisation might appear large, it should be seen in the context of the work
done by Constable et al. [2000] who formalised the Myhill-Nerode Theorem in Nuprl
using automata. They write that their four-member team would need something on the
magnitude of 18 months for their formalisation of the first eleven chapters of the textbook
by Hopcroft and Ullman [1969], which includes the Myhill-Nerode theorem. It is hard
to gauge the size of a formalisation in Nurpl, but from what is shown in the Nuprl Math
Library about their development it seems substantially larger than ours. We attribute this to
our use of regular expressions, which meant we did not need to ‘fight’ the theorem prover.
Recently, Lammich and Tuerk [2012] formalised Hopcroft’s algorithm in Isabelle/HOL (in
7000 lines of code) using an automata library of 27000 lines of code. Also, Filliâtre [1997]
reports that his formalisation in Coq of automata theory and Kleene’s theorem is “rather
big”. Almeida et al. [2010] reported about another formalisation of regular languages in
Coq. Their main result is the correctness of Mirkin’s construction of an automaton from a
regular expression using partial derivatives. This took approximately 10600 lines of code.
Braibant [2012] formalised a large part of regular language theory and Kleene algebras
in Coq. While he is mainly interested in implementing decision procedures for Kleene
algebras, his library includes a proof of the Myhill-Nerode theorem. He reckons that our
“development is more concise” than his one based on matrices [Braibant 2012, Page 67].
He writes that there is no conceptual problems with formally reasoning about matrices for
automata, but notes “intrinsic difficult[ies]” when working with matrices in Coq, which is
the sort of ‘fighting’ one would encounter also in other theorem provers.

In terms of time, the estimate for our formalisation is that we needed approximately 3
months and this included the time to find our proof arguments. Unlike Constable et al.
[2000], who were able to follow the Myhill-Nerode proof by Hopcroft and Ullman [1969],
we had to find our own arguments. So for us the formalisation was not the bottleneck. The
code of our formalisation [Wu et al. 2011b] can be found in the Archive of Formal Proofs
at http://afp.sourceforge.net/entries/Myhill-Nerode.shtml.
Acknowledgements: We are grateful for the comments we received from Larry Paulson.
Tobias Nipkow made us aware of the properties in Theorem 6.1 and Tjark Weber helped
us with proving them. Christian Sternagel provided us with a version of Higman’s Lemma
that applies to arbtrary, but finite alphabets.

REFERENCES

ALMEIDA, J. B., MORIERA, N., PEREIRA, D., AND DE SOUSA, S. M. 2010. Partial Derivative Automata
Formalized in Coq. In Proc. of the 15th International Conference on Implementation and Application of
Automata. LNCS, vol. 6482. 59–68.

ANTIMIROV, V. 1995. Partial Derivatives of Regular Expressions and Finite Automata Constructions. Theoreti-
cal Computer Science 155, 291–319.

ASPERTI, A. 2012. A Compact Proof of Decidability for Regular Expression Equivalence. In Proc. of the 3rd
International Conference on Interactive Theorem Proving. LNCS, vol. 7406. 283–298.

BERGHOFER, S. AND NIPKOW, T. 2002. Executing Higher Order Logic. In Proc. of the International Workshop
on Types for Proofs and Programs. LNCS, vol. 2277. 24–40.

ACM Transactions on Computational Logic, Vol. V, No. N, 20YY.



A Formalisation of the Myhill-Nerode Theorem based on Regular Expressions · 27

BERGHOFER, S. AND REITER, M. 2009. Formalizing the Logic-Automaton Connection. In Proc. of the 22nd
International Conference on Theorem Proving in Higher Order Logics. LNCS, vol. 5674. 147–163.

BRAIBANT, T. 2012. Kleene Algebras, Rewriting Modulo AC, and Circuits in Coq. Ph.D. thesis, University of
Grenoble.

BRZOZOWSKI, J. A. 1964. Derivatives of Regular Expressions. Journal of the ACM 11, 4, 481–494.
CHURCH, A. 1940. A Formulation of the Simple Theory of Types. Journal of Symbolic Logic 5, 2, 56–68.
CONSTABLE, R. L., JACKSON, P. B., NAUMOV, P., AND URIBE, J. C. 2000. Constructively Formalizing

Automata Theory. In Proof, Language, and Interaction. MIT Press, 213–238.
COQUAND, T. AND SILES, V. 2011. A Decision Procedure for Regular Expression Equivalence in Type Theory.

In Proc. of the 1st Conference on Certified Programs and Proofs. LNCS, vol. 7086. 119–134.
FENNER, S. A., GASARCH, W. I., AND POSTOW, B. 2009. The Complexity of Finding SUBSEQ(A). Theory

of Computing Systems 45, 3, 577–612.
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A. APPENDIX?

PROOF OF LEMMA 2.1. For the right-to-left direction we assume X = B · A? and show
that X = X · A ∪ B holds. From Property 2.1(i) we have A? = A · A? ∪ {[]}, which is equal
to A? = A? · A ∪ {[]}. Adding B to both sides gives B · A? = B · (A? · A ∪ {[]}), whose
right-hand side is equal to (B · A?) · A ∪ B. Applying the assumed equation completes this
direction.

For the other direction we assume X = X · A ∪ B. By a simple induction on n, we can
establish the property

(∗) X = X · An+1 ∪ (
⋃

m ≤ n B · Am)

Using this property we can show that B · An ⊆ X holds for all n. From this we can infer
B · A? ⊆ X using the definition of ?. For the inclusion in the other direction we assume a
string s with length k is an element in X. Since [] /∈ A we know by Property 2.1(ii) that s
/∈ X · Ak+1 since its length is only k (the strings in X · Ak+1 are all longer). From (∗) it
follows then that s must be an element in

⋃
m ≤ k B · Am. This in turn implies that s is in⋃

n B · An. Using Property 2.1(iii) this is equal to B · A?, as we needed to show.

?If the reviewers deem more suitable, the authors are prepared to drop material or move it to an electronic
appendix.
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