
Nominal Techniques
in Isabelle/HOL

based on work by Andy Pitts

joint work with Stefan, Markus,
Alexander. . .

U d
up down

Munich, 8. February 2006 – p.1 (1/1)



Substitution Lemma: If x 6� y and x 62 FV (L), thenM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄.
Proof: By induction on the structure of M .� Case 1: M is a variable.

Case 1.1. M � x. Then both sides equalN [y := L℄ since x 6� y.
Case 1.2. M � y. Then both sides equal L, for x 62 FV (L)

implies L[x := : : :℄ � L.

Case 1.3. M � z 6� x; y. Then both sides equal z.� Case 2: M � �z:M1. By the variable convention we may assume
that z 6� x; y and z is not free inN;L. Then by induction hypothesis(�z:M1)[x := N ℄[y := L℄� �z:(M1[x := N ℄[y := L℄)� �z:(M1[y := L℄[x := N [y := L℄℄)� (�z:M1)[y := L℄[x := N [y := L℄℄.� Case 3: M �M1M2. The statement follows again from the induc-
tion hypothesis. “� ”
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2.1.12. Convention: Terms that are �-congruent are identified. So
now we write �x:x � �y:y etcetera.

2.1.13. Variable Convention: If M1; : : : ;Mn occur in a certain
mathematical context (e.g. definition, proof), then in these terms all
bound variables are chosen to be different from the free variables.

2.1.14. Moral: Using conventions 2.1.12 and 2.1.13 one can work with�-terms in the naive way.
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Remember: only if y 6= x and x 62 FV (N) then(�y:M)[x := N ℄ = �y:(M [x := N ℄)(�z:M1)[x := N ℄[y := L℄� (�z:(M1[x := N ℄))[y := L℄ 1 � �z:(M1[x := N ℄[y := L℄) 2 � �z:(M1[y := L℄[x := N [y := L℄℄) IH� (�z:(M1[y := L℄))[x := N [y := L℄℄) 2! !� (�z:M1)[y := L℄[x := N [y := L℄℄. 1!
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Existing Formalisation
Techniques

with “bare hands”
(extremely messy) defining lambda-terms as
syntax-trees; work with explicit �-conversions

de-Bruijn indices
they are “very formal”; but even if there were
no technical problems with dB, they involve often
quite different lemmas than “paper proofs”

HOAS
. . . yes, but induction is problematic, no way to de-
fine conveniently notions such as simultaneous sub-
stitution etc . . . not my personal preference ;o)
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Formal Proof in Isabelle
lemma forget:
assumes a: ”x # L”
shows ”L[x ::=N ℄ = L”
using a by (nominal induct L avoiding: x N rule: lam.induct)

(auto simp add: abs fresh fresh atm)

lemma fresh fact:
fixes x :: ”name”
assumes a: ”x # M ” and b: ”x # N ”
shows ”x # M [y ::=N ℄”
using a b by (nominal induct M avoiding: x y N rule: lam.induct)

(auto simp add: abs fresh fresh atm)

lemma subst lemma:
assumes a: ”x 6= y” and b: ”x # L”
shows ”M [x ::=N ℄[y ::=L℄ = M [y ::=L℄[x ::=N [y ::=L℄℄”
using a b by (nominal induct M avoiding: x y N L rule: lam.induct)

(auto simp add: forget fresh fact)
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We Start with Atoms
We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent
from the language at hand).

a countable infinite set
— this will be important
on later on.
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example lambda-calculus�
:�a:�b:(a b 
)

a and b are atoms—bound and binding
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We Start with Atoms
We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent
from the language at hand).

example integralsZ 1
�1

 Z 1
0 x2 + y dx

!
d2

0, 1 and 2 are constants
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We Start with Atoms
We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent
from the language at hand).

example integralsZ 1
�1

 Z 1
0 x2 + y dx

!
d2

binding 2 does not make sense
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We Start with Atoms
We introduce atoms. Everything that is bound,
binding and bindable is an atom (independent
from the language at hand).

example integralsZ 1
�1

 Z 1
0 x2 + y dx

!
d2

binding 2 does not make sense

Why atoms? Because an
operation we introduce shortly
will act on atoms only and
leaves everything else alone.
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Swappings
In general, renaming substitutions do not
respect �-equivalence, e.g.[b := a℄�a:b [b := a℄�
:b�a:a �
:a

Munich, 8. February 2006 – p.6 (1/6)



Swappings
In general, renaming substitutions do not
respect �-equivalence, e.g.[b := a℄�a:b [b := a℄�
:b=�a:a =�
:a

Munich, 8. February 2006 – p.6 (2/6)



Swappings
In general, renaming substitutions do not
respect �-equivalence, e.g.[b := a℄�a:b [b := a℄�
:b=�a:a =�
:a
Traditional Solution: replace [b := a℄t by a
more complicated, ‘capture-avoiding’ form
of substitution.
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Swappings
In general, renaming substitutions do not
respect �-equivalence, e.g.(b a)��a:b (b a)��
:b=�b:a =�
:a
Nice Alternative: use a less complicated
operation for renaming

(b a)�t def= swap all occurrences ofb and a in t
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:b=�b:a =�
:a
Nice Alternative: use a less complicated
operation for renaming

(b a)�t def= swap all occurrences ofb and a in t

be they bound, binding or bindable
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Swappings
In general, renaming substitutions do not
respect �-equivalence, e.g.(b a)��a:b (b a)��
:b=�b:a =�
:a
Nice Alternative: use a less complicated
operation for renaming

(b a)�t def= swap all occurrences ofb and a in t

Unlike for [b :=a℄(�), for (b a)�(�) we do
have if t =� t0 then (b a)�t =� (b a)�t0.
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Permutations
We shall extend ‘swappings’ to ‘(finite) lists of
swappings’ (a1 b1) : : : (an bn);
also called permutations (we shall often write� for them). Permutations are bijective
mappings from atoms to atoms. For example

� =
0

�a 7! bb 7! a
 7! 

1

A = (
 b)(a b)(a 
)�a = b
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Permutations
We shall extend ‘swappings’ to ‘(finite) lists of
swappings’ (a1 b1) : : : (an bn);
also called permutations (we shall often write� for them). Permutations are bijective
mappings from atoms to atoms. For example

� =
0

�a 7! bb 7! a
 7! 

1

A = (
 b)(a b)(a 
)�
 = 

Our list-representation is
not unique, because

(
 b)(a b)(a 
) and (a b)
are the ’same’ permutation.
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Permutations on Atoms
A permutation acts on an atom as follows:

[℄�a def= a

((a1 a2) :: �)�a def=
8<

:
a1 if ��a = a2a2 if ��a = a1��a otherwise

[℄ stands for the empty list (the identity
permutation), and(a1 a2) :: � stands for the permutation� followed by the swapping (a1 a2)
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Permutations on Atoms (ct.)
the composition of two permutations is
given by list-concatenation, written as�0��,

the inverse of a permutation is given by
list reversal, written as ��1, and
permutation equality, two permutations� and �0 are equal iff

� � �0 def= 8a: ��a = �0�a
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Permutations on�-Terms

�� (a) given by the action on atoms�� (t1 t2) def= (��t1)(��t2)��(�a:t) def= �(��a):(��t)
We have:��1�(��t) = tt1 = t2 if and only if ��t1 = ��t2��t1 = t2 if and only if t1 = ��1�t2
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We have:��1�(��t) = tt1 = t2 if and only if ��t1 = ��t2��t1 = t2 if and only if t1 = ��1�t2

’we treat lambdas as if
there were no binders’
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Permutations on�-Terms

�� (a) given by the action on atoms�� (t1 t2) def= (��t1)(��t2)��(�a:t) def= �(��a):(��t)
We have:��1�(��t) = tt1 = t2 if and only if ��t1 = ��t2��t1 = t2 if and only if t1 = ��1�t2
What is it about permutations? Well. . .

they have much nicer properties than
renaming-substitutions (stemming from
the fact that they are bijections on
atoms),

they give rise to a relatively simple
definition of �-equivalence on
syntax-trees (shown next)

and more later on
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�-Equivalence
Consider the following four rules:

a � a�-atm

t1 � s1 t2 � s2t1 t2 � s1 s2 �-app

t � s�a:t � �a:s�-lam1 t � (a b)�s a 62fv(s)�a:t � �b:s �-lam2

assuming a 6= b
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assuming a 6= b�a:t � �b:s iff t is �-equivalent with s in
which all occurrences of b have been renamed
to a. . . oops permuted to a.

Munich, 8. February 2006 – p.11 (2/4)



�-Equivalence
Consider the following four rules:

a � a�-atm

t1 � s1 t2 � s2t1 t2 � s1 s2 �-app

t � s�a:t � �a:s�-lam1 t � (a b)�s a 62fv(s)�a:t � �b:s �-lam2

assuming a 6= b�a:t � �b:s iff t is �-equivalent with s in
which all occurrences of b have been renamed
to a. . . oops permuted to a.

But this alone leads to an ’unsound’ rule!
Consider �a:b and �b:a
which are not �-equivalent. However, if we
apply the permutation (a b) to a we getb � b
which leads to non-sense.

We need to ensure that there are no ’free’
occurrences of a in s, i.e. a 62fv(s).
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Not-Free-In

a 62 fv(b) fv-atm

a 62 fv(t1) a 62 fv(t2)a 62 fv(t1 t2) fv-app

a 62 fv(�a:t) fv-lam1 a 62 fv(t)a 62 fv(�b:t) fv-lam2

assuming a 6= b

Be careful, we have defined two relations over
lambda-terms/syntax-trees. We have not de-
fined what ’bound’ or ’free’ means. That is a
feature, not a bug.TM
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� is an Equivalence
You might be an agnostic and notice that

a 6= b t � (a b)�s a 62fv(s)�a:t � �b:s �-lam2
is defined rather asymmetrically. Still we have:

Theorem: � is an equivalence relation.

(Reflexivity) t � t
(Symmetry) if t1 � t2 then t2 � t1

(Transitivity) if t1 � t2 and t2 � t3 then t1 � t3) is rather tricky to prove
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Comparison with=�
Traditionally =� is defined as

least congruence which identifies �a:t with�b:[a := b℄t provided b is not free in t
where [a := b℄t replaces all free occurrences
of a by b in t.

with (�)�(�) and (�) 62fv(�) we
never need to choose a ’fresh’ atom (good
for implementations)

permutation respects both relations,
whilst renaming-substitution does not
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General Permutations
So far we have only considered permutations
acting on atoms and lambda-terms. We are now
going to overload � : � prm) �) � to
act on other types as well.

��a a being an atom (of type �)

[℄�a def= a

((a1 a2) :: �)�a def=
8<

:
a1 if ��a = a2a2 if ��a = a1��a otherwise
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going to overload � : � prm) �) � to
act on other types as well.

��a a being an atom (of type �)

[℄�a def= a

((a1 a2) :: �)�a def=
8<

:
a1 if ��a = a2a2 if ��a = a1��a otherwise

For sake of simplicity, let us as-
sume we only have one type of
atoms.
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Overloading of __� __

��[℄ def= [℄ lists��(x :: xs) def= (��x) :: (��xs)

��X def= f��x j x 2 Xg sets

��(x1; x2) def= (��x1; ��x2) products

��None
def= None options��Some(x) def= Some(��x)

��x def= x integers, strings, bools
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Permutation Properties
Whenever we deal with a type, we have to
make sure that it has a sensible permutation
operation. . . axiomatic type-classes are just(?)
the thing we need:

[℄�x = x(�1��2)�x = �1�(�2�x)�1 � �2 implies �1�x = �2�x

We refer to these properties as pt�;� and re-
fer to the type � as permutation type (provided
they are satisfied for �).
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Permutation Types
The property of being a permutation type is in
some sense hereditary:pt�;�pt�;� list provided pt�;�

similar for sets, products and optionspt�;nat, pt�;string, pt�;bool
The nominal datatype-package needs to make
sure that every type the implementors deem
important is a permutation type (with axiomatic
type-classes no problem).
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Permutations on Functions
Interesting: Given f : �1 ) �2 and

��f def= �x:��(f(��1�x))
then pt�;�1 and pt�;�2 imply pt�;�1)�2 .
The definition on functions implies that

��(f x) = (��f)(��x)

holds for permutation types.
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Support and Freshness
Even more interesting: The support of an
object x : � is a set of atoms �:

supp� x def= fa j infinitefb j (a b)�x 6= xgg

An atom is fresh for an x, if it is not in the
support of x:

a # x def= a 62 supp�(x)

I will often drop the � in supp�.
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Even more interesting: The support of an
object x : � is a set of atoms �:

supp� x def= fa j infinitefb j (a b)�x 6= xgg

An atom is fresh for an x, if it is not in the
support of x:

a # x def= a 62 supp�(x)

I will often drop the � in supp�.

OK, this definition is a tiny bit com-
plicated, so let’s go slowly. . .
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Support of an Atom
What is the support of the atom 
?
supp(
) def= fa j infinitefb j (a b)�
 6= 
gg

Let’s check the (infinitely many) atoms one by
one:
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Support of an Atom
What is the support of the atom 
?
supp(
) def= fa j infinitefb j (a b)�
 6= 
gg

Let’s check the (infinitely many) atoms one by
one: a: (a ?)�
 6= 
 nob: (b ?)�
 6= 
 no
: (
 ?)�
 6= 
 yesd: (d ?)�
 6= 
 no

... no

So supp(
) = f
g
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Support of a Product

supp(x1;x2)def= fa j inf fb j (a b)�(x1;x2) 6= (x1;x2)gg
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fa j inffb j ((a b)�x1; (a b)�x2) 6= (x1; x2)gg

We know(x1; x2) = (y1; y2) iff x1 = y1 ^ x2 = y2

hence(x1; x2) 6= (y1; y2) iff x1 6= y1 _ x2 6= y2
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supp(x1) [ supp(x2)
So supp(x1; x2) = supp(x1)[ supp(x2)
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Some Simple Properties
supp (x1; x2) = (supp x1) [ (supp x2)a # (x1; x2) iff a # x1 ^ a # x2

supp� (a : �) = fag
supp [℄ = ?,
supp(x :: xs) = supp(x) [ supp(xs)

supp(None) = ?,
supp(Some(x)) = supp(x)

supp(1) = supp("s") = supp(True) = ?
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Some Simple Properties
supp (x1; x2) = (supp x1) [ (supp x2)a # (x1; x2) iff a # x1 ^ a # x2

supp� (a : �) = fag
supp [℄ = ?,
supp(x :: xs) = supp(x) [ supp(xs)

supp(None) = ?,
supp(Some(x)) = supp(x)

supp(1) = supp("s") = supp(True) = ?
The support of “finitary” structures
is usually quite simple: for example
the support of a lambda-term t is the
set of atoms occuring in t.

��a def= : : :��(t1 t2) def= (��t1) (��t2)���a:t def= �(��a) (��t)
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FYI: Infinitary Structures
supp A = ? A set of all atoms in �

since 8a; b: (a b)�A = A

supp F = fa1; : : : ; ang assuming F is a
finite set of atoms a1; : : : ; an
not every set of atoms has finite support:
e.g. ”atoms=2”
the support of functions is even more
interesting (one instance later on)
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Existence of a Fresh Atom
Q: Why do we assume that there are infinitely
many atoms?

A: For any finitely supported x:

9
: 
 # x
If something is finitely supported, then we can
always choose a fresh atom (also for finitely
supported functions).
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It is as Simple as That. . .
Assuming pt�;�: a # x ^ b # x) (a b)�x = x
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 j (b 
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(2’) finf
 j (a 
)�x 6= x _ (b 
)�x 6= xg f. (1)
(3’) inff
 j :((a 
)�x 6= x _ (b 
)�x 6= x)g f. (2’)

Given a finite set of atoms,
its ’co-set’ must be infinite.
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 j (a 
)�x = x ^ (b 
)�x = x)g f. (2’)
(4) (i) (a 
)�x = x (ii) (b 
)�x = x for a 
 2 (3’)

If a set is infinite, it must
contain a few elements. Let’s
pick 
 so that 
 6= a; b.
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3rd property of pt�;�:�1 � �2 ) �1�x = �2�x
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Done.
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Last Lem. in the SN-Proof
lemma all Red:
assumes a: ”� ` t : � ”

and b: ”8(x; �) 2 set�: x 2 dom(�) ^ �hxi2Red�”
shows ”�[t℄2Red� ”

Girard in Proofs-and-Types:

Let t be any term (not assumed to be reducible), and
suppose all free variables of t are among x1. . .xn of
types �1. . .�n. If t1. . . tn are reducible terms of type�1. . .�n then t[x1 := t1; : : : ; xn := tn℄ is reducible.
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lemma all Red:
assumes a: ”� ` t : � ”

and b: ”8(x; �) 2 set�: x 2 dom(�) ^ �hxi2Red�”
shows ”�[t℄2Red� ”
using a b proof (nominal induct t avoiding: � � � rule: lam.induct)
case (Lam a t)
have ih: ”

V���: [j�` t :� ; 8(x; �)2set�: x2dom(�) ^ �hxi2Red�j℄=) �[t℄2Red� ”
and � cond: ”8(x; �) 2 set�: x 2 dom(�) ^ �hxi2Red�”
and fresh: ”a # �” ”a # �”
and ”� ` Lam [a℄:t : � ” by fact
hence ”9�1�2: � = �1!�2 ^ ((a; �1)#�) ` t : �2” by (simp ...)
then obtain �1 �2 where � : ”� = �1!�2”

and ty: ”((a; �1)#�) ` t : �2” by blast
from ih have ”8s 2 Red�1 : (�[t℄)[a ::= s℄ 2 Red�2” using fresh ty� cond
by (force dest: fresh context simp add: psubst subst)

hence ”Lam [a℄:(�[t℄) 2 Red�1!�2” by (simp only: abs Red)
thus ”�[Lam [a℄:t℄ 2 Red� ” using fresh � by simp

qed
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The End?U d
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