INn Programming L anguages (6)

Christian Urban

http://wwwé4.in.tum.de/lehre/vorlesungen/types/WS0607/

Munich, 29. November 2006 - p.1 (1/1)

Story So Far

B We started with a simple expression language where
every expression (if it is typable at all) has a unique

Type.

B There are functions (identity functions, sorting, list
operations) which are the same for any type:

Ae.x : T =T
Ae.x: (T =T)= (T=1T)

B Therefore we considered polymorphism and
type-schemes.

Munich, 29. November 2006 - p.2 (1/1)

Story So Far

B We studied a simple language of types and
expressions:

T = X type variables
| T =T function types
e = x variables
ee applications
Ax.e lambda-abstractions
let x = eine lets

B We looked at two algorithms that given a (valid)
context and an expression, calculate the type (if
there exists one); they even calculated a principal
type scheme for a typable expression.

Munich, 29. November 2006 - p.3 (1/1)

Story So Far

B Type-safety is then the combination of the
preservation and progress property.

B Preservation:
IfokFe:Tande — e’ then g e’ : T

B Progress:

If o e : T then either there exists an e’ with
e — €', or e is a value.

Munich, 29. November 2006 - p.4 (1/3)

Story So Far

B Type-safety is then the combination of the
preservation and progress property.

B Preservation:
IfokFe:Tandell vthengd v : T

W "Progress”

If o e : T then either there exists a v such
that e | v.

Munich, 29. November 2006 - p.4 (2/3)

Story So Far

B Type-safety is then the combination of the
preservation and progress property.

B Preservation:
Ifoke:Tandell vtheng v : T

W "Progress”

If o e : T then either there exists a v such
that e | v.

B In order to establish them we need to do several
proofs by induction (some of them are quite tricky).

Munich, 29. November 2006 - p.4 (3/3)

M otivation

B Type-systems and type-safety are designed
to prevent things like:

union {
float f;
Int i;
} unsafe_union

unsafe_union.f = 1.5
printf (“7%d", unsafe_union.i)

Munich, 29. November 2006 - p.5 (1/1)

Fallures

B Sometimes functions need to indicate that
they fail and have to handle failure.

e ..=
error error value
try e; with es error handling

valid I' F|_€1:T F|_€2:T
I''+error: T I' = try ey with eg : T

Munich, 29. November 2006 - p.6 (1/1)

Fallures

B Evaluation rules:

e1 { error es { error
ei1es | error ejes { error
e; v

try ey with e2 | v

e1 error es {} v
Tr'y €1 with €9 ~U« (¥

Munich, 29. November 2006 - p.7 (1/1)

Fallure

B Preservation and progress in the presence of
errors

m Preservation:
IfoFe: Tand e — €’ then

gkFe :T

m Progress:
If o F e : T then either there exists
an e’ withe — €', oreisavalue, or e
IS anh error.

Munich, 29. November 2006 - p.8 (1/1)

Extending the Language

B Adding new types, such as unit, nat, T list
T x T, does not pose any difficulties.

B Same with simple expressions such as

0,1, 2...
nil, e1 :: e-
(61962)

B Difficulties arose with references - the
naive approach leads to problems in the

let-rule. We needed to impose a restriction.

Munich, 29. November 2006 - p.9 (1/1)

Recursion

B In a real programming language we need
non-termination

e = ...
| fix e fixed point

B The following abbreviation is useful:

. def
letrec € = e in ey, =

let © = fix(Ax.eq) in e

Munich, 29. November 2006 - p.10 (1/1)

Recursion

B Typing rule for recursions

I'+e: T — T
I'fixe: T

B We specify the behaviour of recursion by
reduction

fix (Ax.e) — e|x := fix (Ax.e)]

e — e’
fix e —> fix €’

Munich, 29. November 2006 - p.11 (1/1)

Kinds of Polymorphism

B So far we considered parametric polymorphism:

Functions can be used at different type, but they
have to be independent of the type.

This allows one to forget about types during run-time
(in theory — in practice one can at least minimise the
need of types, an example is equality).

B Ad-hoc polymorphism allows function to compute
differently at different type (for example + over
intfegers and reals). Here we have coercions and

overloading.

Munich, 29. November 2006 - p.12 (1/1)

Subtyping

B We write T' <: T’ to indicate that T is a
subtype of T".

B If T <: T’ then whenever an expression of
type T is needed then we can use an
expression of type T'.

I''e: T T <:T'
I'e: T’

B General principles of subtyping:

Ty <:13 T3 <: 13
T <: T Tl <: T3/\unich,29.NovemberZOOé—p.B (1/1)

Subtyping

W If 7T <:T’, then an expression of type T’
can be coerced to be an expression of type
T’ (in a unique way).

B Problem with uniqueness: assume
int <: string, int <: real, real <:string

Then 3 can be coerced to a string like
. 3 — 7737?
m3— 3.0and 3.0 — 73.0”

We require coherence - only a unique way.

Munich, 29. November 2006 - p.14 (1/1)

Other Types

B Products (clear)

T1 <: Sl T2 <: Sz
T1XT2<231X32

B Functions (not so clear)
int — int <: int — readl
and
real — int <:int — int

Therefore
Sl < T1 T2 < Sz
T, — 15 <251—)52

Munich, 29. November 2006 - p.15 (1/1)

Co/Contra-Variance

Bl Function types

Sl < T1 T2 < Sz
T, — 15 <251—)52

B are contra-variant in their arguments, and
B co-variant in their result

B Lists can be co-variant:

T1 <: T2
Ty list <: T5 list

Munich, 29. November 2006 - p.16 (1/1)

|nteresting Cases

B In order to maintain type-safety, references cannot
be co- or contra-variant, but have to be non-variant.

We achieve this by:
Tl <: T2 T2 <: Tl

T; ref <: T5ref
B Similarly, arrays:
Tl <: T2 T2 <: T1

T4 array <: 13 array

but Java allows (a flaw in the design):
T1 <: T2

17 array <: 15 array

Munich, 29. November 2006 - p.17 (1/1)

Formal Matters

More formally we have:

B Types:
T = X type variables
| T — T function types
| Top super-type for everything
B Terms:
e variables

= x
| ee applications
| Ax.e lambda-abstractions

Munich, 29. November 2006 - p.18 (1/1)

Subtyping Judgement

B We have contexts A of (type-variable,type)-pairs.
Valid contexts are:

valid A X & dom A
valid o wvalid (X <:T), A

B Subtyping judgements:
valid A valid A
A+ T <: Top AFX <:X
(X <:8S)eA AFS<:T
AFX <:T

Al_Sl<:T1 A|_T2<:Sg
AFT, T, <: 81 — S,

Top Refl

Trans

Funs

Munich, 29. November 2006 - p.19 (1/1)

Properties

W Giver valid A valid A
AFT <:Top AF X <: X

(X <:S)eA AFS<:T
AFX < T Trans

A|_51<ZT1 A|_T2<2S2
A"Tl—)T2<251—)Sz

B Do we have reflexivity:

Top

Refl

Funs

AFET <:T
B What about transitivity:
IfA I_Tl <:T20ndA I_T2 <:T3Th€nA |_T1 <:T3.

Munich, 29. November 2006 - p.20 (1/1)

Simple Type-System

B Variables
valid I' valid A (x:T) eI
A;I'Ex: T

B Applications
A;F|—61:T1—>T2 A;F|_622T1
A; I' €1 €9 . T2

B Lambdas
Asx: T, I'+e: Ty x & domlI’
A;I'- Ax.e: Ty — T5
B Subtyping
A;I'Fe: T AT <: T
A;I'Fe: T

Munich, 29. November 2006 - p.21 (1/1)

Typing Problem

Bl Given contexts A and I', and an expression
e what should the subtyping algorithm
calculate?

Munich, 29. November 2006 - p.22 (1/3)

Typing Problem

Bl Given contexts A and I', and an expression
e what should the subtyping algorithm
calculate?

B Returning Top is probably not a good idea.

Munich, 29. November 2006 - p.22 (2/3)

Typing Problem

Bl Given contexts A and I', and an expression
e what should the subtyping algorithm
calculate?

B Returning Top is probably not a good idea.

B We like to have a minimal type (according to
the subtyping relation).

Munich, 29. November 2006 - p.22 (3/3)

Possible Question

B What should the subtyping rule(s) look like
for records?

B Explain what is meant by capture-avoiding
substitution.

B Give a definition for what it means when 0
unifies T and S.

Munich, 29. November 2006 - p.23 (1/1)

M ore Next Week

B Slides at the end of

http://wwwé4.in.tum.de/lehre/vorlesungen/types/WS0607/

There is also an appraisal form where you
can complain anonymously.

B You can say whether the lecture was too
easy, too quiet, too hard to follow, too

chaotic and so on. You can also comment on
things T should repeat.

Munich, 29. November 2006 - p.24 (1/1)

	�egin {tabular}{@{}c@{}} \ {	itlefnt Types}\ large in Programming Languages (6)\
end {tabular}
	�egin {tabular}{@{}c@{}}Story So Farend {tabular}
	�egin {tabular}{@{}c@{}}Story So Farend {tabular}
	�egin {tabular}{@{}c@{}}Story So Farend {tabular}
	�egin {tabular}{@{}c@{}}Motivationend {tabular}
	�egin {tabular}{@{}c@{}}Failuresend {tabular}
	�egin {tabular}{@{}c@{}}Failuresend {tabular}
	�egin {tabular}{@{}c@{}}Failureend {tabular}
	�egin {tabular}{@{}c@{}}Extending the Languageend {tabular}
	�egin {tabular}{@{}c@{}}Recursionend {tabular}
	�egin {tabular}{@{}c@{}}Recursionend {tabular}
	�egin {tabular}{@{}c@{}}Kinds of Polymorphismend {tabular}
	�egin {tabular}{@{}c@{}}Subtypingend {tabular}
	�egin {tabular}{@{}c@{}}Subtypingend {tabular}
	�egin {tabular}{@{}c@{}}Other Typesend {tabular}
	�egin {tabular}{@{}c@{}}Co/Contra-Varianceend {tabular}
	�egin {tabular}{@{}c@{}}Interesting Casesend {tabular}
	�egin {tabular}{@{}c@{}}Formal Mattersend {tabular}
	�egin {tabular}{@{}c@{}}Subtyping Judgementend {tabular}
	�egin {tabular}{@{}c@{}}Propertiesend {tabular}
	�egin {tabular}{@{}c@{}}Simple Type-Systemend {tabular}
	�egin {tabular}{@{}c@{}}Typing Problemend {tabular}
	�egin {tabular}{@{}c@{}}Possible Questionend {tabular}
	�egin {tabular}{@{}c@{}}More Next Weekend {tabular}

