
Types

in Programming Languages (11)

Christian Urbanhttp://www4.in.tum.de/lehre/vorlesungen/types/WS0607/

Munich, 30. January 2007 – p.1 (1/1)



Recap from last Week

We had a look at the Curry-Howard
correspondence

Types , Formulae
Typed Terms , Proof

Evaluation , Proof Normalisation
Typing Problem , Finding a Proof

We had a look at the Polymorphic
Lambda-Calculus - used to encode algebraic
datatypes.

Munich, 30. January 2007 – p.2 (1/1)



Motivation
“Arithmetic, equality, showing a value as a
string: three operations guaranteed to give
language designers nightmares” from
Odersky et al.

Equality: there are types for which equality
should be defined, for others it should not.

ML has a special sort (or class) of equality
types, i.e. types over which equality is
defined.

Type classes allow the user to define such
classes.

Munich, 30. January 2007 – p.3 (1/1)



Type Classes
A type class is defined by the set of
operations/methods that must be
implemented for every type in the class.

A type can be made a member of a type class
using an instance declaration.

Note the difference with classes in OO
(classes there are types; type classes are
not types—they are more like Java’s
interfaces).

There is no access control in a type class
(needs to be implemented using modules).

Munich, 30. January 2007 – p.4 (1/1)



Problems
There are some problems with type classes

a program cannot be assigned a meaning
independent of its types

type-safety (well-typed programs cannot go
wrong) cannot be formulated for transition
relations

every phrase in a program has a most
general/principle type

Can be solved in restricted systems; e.g. single
parameter type classes.

Munich, 30. January 2007 – p.5 (1/1)



Intuition
The intuition behind type classes is as follows

equal is a function with type

8X: X ! X ! bool

but under the assumption that X is of type
class EQ.

Munich, 30. January 2007 – p.6 (1/6)



Intuition
The intuition behind type classes is as follows

equal is a function with type

8X: X ! X ! bool

but under the assumption that X is of type
class EQ.

Munich, 30. January 2007 – p.6 (2/6)



Intuition
The intuition behind type classes is as follows

equal is a function with type

8X: X ! X ! bool

but under the assumption that X is of type
class EQ.8X such that X 2 EQ. X ! X ! bool

Munich, 30. January 2007 – p.6 (3/6)



Intuition
The intuition behind type classes is as follows

equal is a function with type

8X: X ! X ! bool

but under the assumption that X is of type
class EQ.8X such that X 2 EQ. X ! X ! bool8X: X 2 EQ ) X ! X ! bool

Munich, 30. January 2007 – p.6 (4/6)



Intuition
The intuition behind type classes is as follows

equal is a function with type

8X: X ! X ! bool

but under the assumption that X is of type
class EQ.8X such that X 2 EQ. X ! X ! bool8X: EQ(X) ) X ! X ! bool

Munich, 30. January 2007 – p.6 (5/6)



Intuition
The intuition behind type classes is as follows

equal is a function with type

8X: X ! X ! bool

but under the assumption that X is of type
class EQ.8X such that X 2 EQ. X ! X ! bool8X: EQ(X) ) X ! X ! bool

“Types” will be of the form
some constraints ) T

Munich, 30. January 2007 – p.6 (6/6)



Concrete Example
class EQ(X) where

equal : X ! X ! bool

inst equal : int ! int ! bool
equal = primitive equal over ints

list equal : (equal:X ! X ! bool)) [X℄ ! [X℄ ! bool
list equal [] [] = True
list equal (x:xs) (y:ys) = equal x y ^ list equal xs ys

inst equal : (equal:X ! X ! bool)) [X℄ ! [X℄ ! bool
equal = list equal

Munich, 30. January 2007 – p.7 (1/1)



Syntax
Types: T ::= Xj T ! Tj bool; int; [X℄; : : :
Type-schemes:S ::= Tj 8X:C(X) ) S

Constraints:C(X) ::= fo : X ! T; : : :g

where T can contain X

Munich, 30. January 2007 – p.8 (1/1)



Syntax
Terms: e ::= xj e ej �x:ej let x = e in e
Programs:p ::= e j inst o : ST = e in p

where S is type-scheme with the condition
that T can’t be a variable

Munich, 30. January 2007 – p.9 (1/1)



Concrete Syntax
For 8X: o : X ! T1 ) T2 we write

o : X ! T1 ) T2
list equal : (equal:X ! X ! bool)) [X℄ ! [X℄ ! bool

For inst o : S = e we write

o : So = e

inst equal : (equal:X ! X ! bool)) [X℄ ! [X℄ ! bool
equal = list equal

Munich, 30. January 2007 – p.10 (1/1)



Type-System
valid� x : S 2 �� ` x : S� ` e1 : S (x : S); � ` e2 : T� ` let x = e1 in e2 : T

x : T1; � ` e : T2� ` �x:e : T1 ! T2 � ` e1 : T1 ! T2 � ` e2 : T1� ` e1 e2 : T2

�;C(X) ` e : S X 62 dom(� )� ` e : 8X:C(X) ) S

Munich, 30. January 2007 – p.11 (1/3)



Type-System
valid� x : S 2 �� ` x : S� ` e1 : S (x : S); � ` e2 : T� ` let x = e1 in e2 : T

Old rules:

valid � (x : S) 2 � S � T� ` x : T� ` e1 : T1 x : 8A:T1; � ` e2 : T2� ` letx = e1 in e2 : T2x : T1; � ` e : T2� ` �x:e : T1 ! T2 � ` e1 : T1 ! T2 � ` e2 : T1� ` e1 e2 : T2

�;C(X) ` e : S X 62 dom(� )� ` e : 8X:C(X) ) S

Munich, 30. January 2007 – p.11 (2/3)



Type-System
valid� x : S 2 �� ` x : S� ` e1 : S (x : S); � ` e2 : T� ` let x = e1 in e2 : T

x : T1; � ` e : T2� ` �x:e : T1 ! T2 � ` e1 : T1 ! T2 � ` e2 : T1� ` e1 e2 : T2

�;C(X) ` e : S X 62 dom(� )� ` e : 8X:C(X) ) S

Munich, 30. January 2007 – p.11 (3/3)



Type-System

� ` e : 8X:C(X) ) S � ` C(X)[X := T ℄� ` e : S[X := T ℄

� ` o1 : S1 : : : � ` on : Sn� ` fo1 : S1; : : : ; on : Sng

� ` e : ST �; o : ST ` p : S0� ` inst o : ST = e in p : S0

where we require that � contains only a single declaration

for every o : ST (you cannot overload o twice on the same

type)

Munich, 30. January 2007 – p.12 (1/1)



Compilation
The constraints in C(X) ) T represent
different implementations for the
overloaded function. These constraints are
often called dictionaries.

One can translate the programs with type
classes to terms in “standard ML”, that is
let-polymorphism (one needs to rule out
show (read s)).

However, one can extend the Hindley-Milner
algorithm W to deal with type-classes
directly.

Munich, 30. January 2007 – p.13 (1/1)



Research
We considered only single-parameter type
classes. Multi-parameter type classes occur
often in practice and are (recently)
supported by some Haskell implementations.
Multi-parameter need careful design in
order to obtain a decidable and meaningful
type-system.

Munich, 30. January 2007 – p.14 (1/1)


	�egin {tabular}{@{}c@{}} \ {	itlefnt Types}\ large in Programming Languages (11)\
end {tabular}
	�egin {tabular}{@{}c@{}}Recap from last Weekend {tabular}
	�egin {tabular}{@{}c@{}}Motivationend {tabular}
	�egin {tabular}{@{}c@{}}Type Classesend {tabular}
	�egin {tabular}{@{}c@{}}Problemsend {tabular}
	�egin {tabular}{@{}c@{}}Intuitionend {tabular}
	�egin {tabular}{@{}c@{}}Concrete Exampleend {tabular}
	�egin {tabular}{@{}c@{}}Syntaxend {tabular}
	�egin {tabular}{@{}c@{}}Syntaxend {tabular}
	�egin {tabular}{@{}c@{}}Concrete Syntaxend {tabular}
	�egin {tabular}{@{}c@{}}Type-Systemend {tabular}
	�egin {tabular}{@{}c@{}}Type-Systemend {tabular}
	�egin {tabular}{@{}c@{}}Compilationend {tabular}
	�egin {tabular}{@{}c@{}}Researchend {tabular}

