Types**in Programming Languages (11)**

Christian Urban

http://www4.in.tum.de/lehre/vorlesungen/types/WS0607/

Munich, 30. January ²⁰⁰⁷ – p.¹ (1/1)

Recap from last Week

We had a look at the Curry-Howard correspondence

> $Types \iff \textsf{Formulae}\ \mathsf{Ferms} \iff \mathsf{Proof}$ Typed Terms \Leftrightarrow $\begin{array}{lcl} \text{ped Terms} & \Leftrightarrow & \text{Proof} \ \text{Evaluation} & \Leftrightarrow & \text{Proof} \ \text{Nonmalisation} & \Leftrightarrow & \text{Finding a Proof} \end{array}$ Typing Problem \iff Finding a Proof

We had a look at the Polymorphic Lambda-Calculus - used to encode algebraicdatatypes.

Motivation

T "Arithmetic, equality, showing a value as a string: three operations guaranteed to ^givelanguage designers nightmares" fromOdersky et al.

- **Equality: there are types for which equality** should be defined, for others it should not.
- ML has ^a special sort (or class) of equalitytypes, i.e. types over which equality is defined.
- **Type classes allow the user to define such** classes.

Type Classes

- A type class is defined by the set of operations/methods that must beimplemented for every type in the class.
- \blacksquare A type can be made a member of a type class using an instance declaration.
- Note the difference with classes in OO(classes there are types; type classes arenot types—they are more like Java's interfaces).

There is no access control in a type class (needs to be implemented using modules).

Problems

There are some problems with type classes

- **a** a program cannot be assigned a meaning independent of its types
- type-safety (well-typed programs cannot go wrong) cannot be formulated for transitionrelations
- **E** every phrase in a program has a most general/principle type

Can be solved in restricted systems; e.g. singleparameter type classes.

The intuition behind type classes is as follows

equal is ^a function with type

$X \to X \to \mathsf{bool}$

but under the assumption that \boldsymbol{X} is of type
class FQ class EQ.

The intuition behind type classes is as follows

equal is ^a function with type

$\forall X. \ X \to X \to \mathsf{bool}$

but under the assumption that \boldsymbol{X} is of type
class FQ class EQ.

The intuition behind type classes is as follows

equal is ^a function with type

$\forall X. \ X \to X \to \mathsf{bool}$

but under the assumption that \boldsymbol{X} is of type
class FQ class EQ.

 $\forall X$ such that $X \in \textsf{EQ}. X \to X \to \textsf{bool}$

The intuition behind type classes is as follows

equal is ^a function with type

$\forall X. \ X \to X \to \mathsf{bool}$

but under the assumption that \boldsymbol{X} is of type
class FQ class EQ.

 $\forall X$ such that $X \in EQ.$ $X \to X \to \text{bool}$
 $\forall X$ $X \subset FO \to X \to X \to \text{bool}$ $\forall X. X \in \textsf{EQ} \Rightarrow X \to X \to \textsf{bool}$

The intuition behind type classes is as follows

equal is ^a function with type

$\forall X. \ X \to X \to \mathsf{bool}$

but under the assumption that \boldsymbol{X} is of type
class FQ class EQ.

 $\forall X$ such that $X \in EQ.$ $X \to X \to bool$ $\forall X.$ EQ $(X) \Rightarrow X \to X \to$ bool

The intuition behind type classes is as follows

equal is ^a function with type

$\forall X. \ X \to X \to \mathsf{bool}$

but under the assumption that \boldsymbol{X} is of type
class FQ class EQ.

- $\forall X$ such that $X \in EQ.$ $X \to X \to bool$
- $\forall X.$ EQ $(X) \Rightarrow X \to X \to$ bool

"Types" will be of the formsome constraints $\Rightarrow T$

Concrete Example

class $\operatorname{\mathsf{EQ}}\nolimits(X)$ where equal : $X \to X \to$ bool

 ${\sf inst}\neq{\sf qual}: {\sf int} \to {\sf int} \to {\sf bool} \ \hbox{\sf equal} = {\sf primitive_equal_ov}$ \cdot equal \colon int \to int
equal $=$ primitive. = $=$ primitive equal over ints

 $\mathsf{list}_\mathsf{equal}:\mathsf{(equal:}X\to X\to\mathsf{bool})\Rightarrow [X]\to [X]\to\mathsf{bool}$ list $_\mathsf{equal}\ [\mathsf{]]\mathsf{]}$ = True list equa^l [] [] ⁼ True[׀ [׀ list_equal (x:xs) (y:ys) = equal x y \wedge list_equal xs ys

 $\mathsf{inst}\ \mathsf{equal}:\ (\mathsf{equal}{:} X \to X \to \mathsf{bool}) \Rightarrow [X] \to [X] \to \mathsf{bool}$ equal $=$ list_equal **|** ׀ $\overline{}$ ℄equal= $=$ list_equal

Syntax

Types: \boldsymbol{T} \mathbf{I} ::= $\begin{array}{cc} = & X \ & \mathbf{\Gamma} & \mathbf{\Gamma} \end{array}$ j
j
j $\begin{array}{ccc} & T \rightarrow T \ & \text{bool.\,int} \end{array}$ i
j $|\quad \text{bool}, \text{int}, \left[X\right], \ldots$ **Type-schemes:** S> ::=
- $\begin{array}{cc} = & T \ & \forall \end{array}$ $\forall X.C(X) \Rightarrow S$ **Constraints:** $\boldsymbol{C}(\boldsymbol{X})$::= $f \circ \colon X \to T, \ldots$
atain V where \boldsymbol{T} can contain \boldsymbol{X}

e e ::= x $\begin{array}{cc} e & e \end{array}$ $\lambda x.e$ \vert let $x = e$ in e

Programs:

 \bm{p} ::= $e|$ inst $o: S_T = e$ in p where S is type-scheme with the condition
that T con't he a veniable that T can't be a variable

Concrete SyntaxFor $\forall X.\; o:X\to T_1\Rightarrow T_2$ we write $o:X\rightarrow T_{1}\Rightarrow T_{2}$

 ${\sf list_equal} : ({\sf equal} \colon X \to X \to {\sf bool}) \Rightarrow [X] \to [X] \to {\sf bool}$ For inst $o: S = e$ we write [׀ [׀ $\bm{o}:\bm{S}$ $o=e$

 $\mathsf{inst}\ \mathsf{equal}:\ (\mathsf{equal}{:} X \to X \to \mathsf{bool}) \Rightarrow [X] \to [X] \to \mathsf{bool}$ equal $=$ list_equal [℄**|** ׀ equal= $=$ list_equal

$$
\cfrac{\mathsf{valid} \varGamma \quad x : S \in \varGamma}{\varGamma \vdash x : S}
$$

$$
\cfrac{\varGamma\vdash e_1:S\quad (x:S),\varGamma\vdash e_2:T}{\varGamma\vdash \mathsf{let}\ x=e_1\ \mathsf{in}\ e_2:T}
$$

 $\frac{x : T_1}{\cdots}$ $\, ,\, \Gamma \vdash e : T_{2} \quad \, \Gamma \vdash e_{1}$ $\varGamma\vdash\lambda x.e : T_1\to T_2$ $\underbrace{\hspace{1cm}}_1: T_1 \rightarrow T_2 \quad \Gamma \vdash e_2$ $\varGamma\vdash e_1\,e_2:T_2$ $_2: T_1$ $_2: T_2$

> $\Gamma, C(X) \vdash e : S \quad X \not\in \mathsf{dom}(\Gamma)$ $\varGamma\vdash e:\forall X.\, C(X)\Rightarrow S$

> > Munich, 30. January ²⁰⁰⁷ – p.¹¹ (1/3)

$$
\cfrac{\mathsf{valid} \varGamma \quad x : S \in \varGamma}{\varGamma \vdash x : S}
$$

$$
\cfrac{\varGamma\vdash e_1:S\quad (x:S),\varGamma\vdash e_2:T}{\varGamma\vdash \mathsf{let}\ x=e_1\ \mathsf{in}\ e_2:T}
$$

Old rules: valid $\boldsymbol{\varGamma} \quad (\boldsymbol{x} : \boldsymbol{S}) \in \boldsymbol{\varGamma} \quad \boldsymbol{S} \succ \boldsymbol{\varGamma}$ $\boldsymbol{\varGamma} \vdash x : \boldsymbol{T}$

 $\varGamma\vdash e_1$ $\frac{1:T_1\quad x:\forall\quad T_1}$ $,\varGamma\vdash e_2$ $\Gamma \vdash$ let $x=e_1$ in $e_2:T_2$ $_2: T_2$ $x : T_1, \varGamma \vdash e : T_2 \qquad \varGamma \vdash e_1 :$ $\frac{1}{1}$ in $\frac{e_2}{\sqrt{2}}$ $_{\rm 2}$: $T_{\rm 2}$ $\, ,\, \Gamma \vdash e : T_{2} \quad \, \Gamma \vdash e_{1}$ $\varGamma\vdash\lambda x.e : T_1\to T_2$ $\begin{array}{c} \vphantom{\overline{F}}_1:\, T_1 \to T_2 \quad \Gamma \vdash e_2 \end{array}$ $\varGamma\vdash e_1\,e_2:T_2$ $_2: T_1$ $_2$: T_2
Munich. 30. Munich, 30. January ²⁰⁰⁷ – p.¹¹ (2/3)

$$
\cfrac{\mathsf{valid} \varGamma \quad x : S \in \varGamma}{\varGamma \vdash x : S}
$$

$$
\cfrac{\varGamma\vdash e_1:S\quad (x:S),\varGamma\vdash e_2:T}{\varGamma\vdash \mathsf{let}\ x=e_1\ \mathsf{in}\ e_2:T}
$$

 $\frac{x : T_1}{\cdots}$ $\, ,\, \Gamma \vdash e : T_{2} \quad \, \Gamma \vdash e_{1}$ $\varGamma\vdash\lambda x.e : T_1\to T_2$ $\underbrace{\hspace{1cm}}_1: T_1 \rightarrow T_2 \quad \Gamma \vdash e_2$ $\varGamma\vdash e_1\,e_2:T_2$ $_2: T_1$ $_2: T_2$

> $\Gamma, C(X) \vdash e : S \quad X \not\in \mathsf{dom}(\Gamma)$ $\varGamma\vdash e:\forall X.\, C(X)\Rightarrow S$

> > Munich, 30. January ²⁰⁰⁷ – p.¹¹ (3/3)

Type-System

 $\frac{\Gamma\vdash e:\forall X.C(X)\Rightarrow S\quad \Gamma\vdash C(X)[X:=T]}{\Gamma\sqcup\ \square\ \square\ \square}$ \blacksquare $\varGamma\vdash e : S[X := T]$ ׀ **|** ׀

$$
\cfrac{\varGamma\vdash o_1:S_1\;\ldots\;\varGamma\vdash o_n:S_n}{\varGamma\vdash \{o_1:S_1,\ldots,o_n:S_n\}}
$$

$$
\frac{\Gamma\vdash e:S_T\quad \Gamma, o:S_T\vdash p:S'}{\Gamma\vdash \mathsf{inst}\ o:S_T=e\ \mathsf{in}\ p:S'}
$$

where we require that $\boldsymbol{\varGamma}$ contains only a single declaration for every \bm{o} : \bm{S} \bm{T} τ (you cannot overload o twice on the same type)

Compilation

- The constraints in $C(X) \Rightarrow T$ represent different implementations for the overloaded function. These constraints areoften called dictionaries.
- One can translate the programs with type classes to terms in "standard ML", that is let-polymorphism (one needs to rule out show (read s)).

However, one can extend the Hindley-Milner algorithm ^W to deal with type-classes directly.

Research

We considered only single-parameter type classes. Multi-parameter type classes occur often in practice and are (recently) supported by some Haskell implementations. Multi-parameter need careful design in order to obtain ^a decidable and meaningful type-system.