Quiz

Assuming that a and b are distinct variables, is it possible to find λ -terms M_1 to M_7 that make the following pairs α -equivalent?

 $\Box \ \lambda a.\lambda b.(M_1 b)$ and $\lambda b.\lambda a.(a M_1)$ $\Box \ \lambda a.\lambda b.(M_2 b)$ and $\lambda b.\lambda a.(a\ M_3)$ $\Box \ \lambda a.\lambda b.(b\ M_4)$ and $\lambda b.\lambda a.(a\ M_5)$ $\Box \ \lambda a.\lambda b.(b\ M_6)$ and $\lambda a.\lambda a.(a\ M_7)$

If there is one solution for ^a pair, can you describe all its solutions?

Nominal Unification

Christian Urban Andrew Pitts Jamie Gabbay

W University of Cambridge

Nominal Unification

Why?

First-order unification is simple, but cannot be used for terms involving binders.

Higher-order unification is (more) complicated — e.g. Huet's algorithms or L_λ by Miller — and not satisfactory from ^a pragmatic point of view (not always decidable, not always MGUs or applies only to ^a restricted class of terms).

Higher-order: capture-avoiding substitution But often one wants to use possibly-capturing substitution (or context-substitution)

for example:

$$
\frac{\operatorname{app}(\operatorname{fn} a.Y,X) \Downarrow V}{\operatorname{let} a = X \operatorname{in} Y \Downarrow V}
$$

Higher-order: capture-avoiding substitution But often one wants to use possibly-capturing substitution (or context-substitution)

for example:

$$
\frac{\text{app}(\text{fn } a, a, 1) \Downarrow 1}{\text{let } a = 1 \text{ in } a \Downarrow 1}
$$

 $\det\,a=$ $\mathbf{I} = 1 \text{ in } a \Downarrow 1 \quad [Y := a; X, V := 1]$

Higher-order: capture-avoiding substitution But often one wants to use possibly-capturing substitution (or context-substitution)

for example:

$$
\frac{\text{app}(\text{fn }a.b, 1) \Downarrow 1}{\text{let } b = 1 \text{ in } b \Downarrow 1} \text{ error!}
$$

 $\det\,a=$ $[Y := a; X, V := 1]$ $\mathrm{let}\ b\ =$ $| Y := b; X, V := 1 |$

Higher-order: capture-avoiding substitution But often one wants to use possibly-capturing substitution (or context-substitution)

for example:

$$
\frac{\text{app}(\text{fn }\lambda a.\text{F}a)\text{ }X\text{ }\Downarrow\text{ }V}{\text{let }X(\lambda a.\text{F}a)\text{ }\Downarrow\text{ }V}
$$

Higher-order: capture-avoiding substitution But often one wants to use possibly-capturing substitution (or context-substitution)

for example:

$$
\frac{\text{app}(\text{fn }F)\text{ }X\text{ }\Downarrow\text{ }V}{\text{ let }X\text{ }F\text{ }\Downarrow\text{ }V}
$$

let 1 $\lambda a.a \Downarrow 1$ or let 1 $\lambda b.b \Downarrow 1$

Higher-order: capture-avoiding substitution But often one wants to use possibly-capturing substitution (or context-substitution)

for example:

$$
\frac{\text{app}(\text{fn } F)\ X\ \Downarrow\ V}{\text{let } X\ F\ \Downarrow\ V}
$$

let 1 $\lambda a.a \Downarrow 1$ or let 1 $\lambda b.b \Downarrow 1$ Does it have to be so? No!

Problem: substitution does not respec^t α -equivalence, e.g.

]fn a.b

]fn c.b

Problem: substitution does not respec^t α -equivalence, e.g.

 $[\boldsymbol{b}:=\boldsymbol{a}]$ fn $\boldsymbol{a}.\boldsymbol{b}$ $[\boldsymbol{b}:=\boldsymbol{a}]$ fn $\boldsymbol{c}.\boldsymbol{b}$ $=\hspace{1pt}\mathrm{in} \hspace{1pt} a$. a $=\hspace{0.1cm} \mathrm{in} \hspace{0.1cm} c.a$

Problem: substitution does not respec^t α -equivalence, e.g.

 $[\boldsymbol{b}:=\boldsymbol{a}]$ fn $\boldsymbol{a}.\boldsymbol{b}$ $[\boldsymbol{b}:=\boldsymbol{a}]$ fn $\boldsymbol{c}.\boldsymbol{b}$ $=\hspace{1pt}\mathrm{in} \hspace{1pt} a$. a $=\hspace{0.1cm} \mathrm{in} \hspace{0.1cm} c.a$

Traditional Solution: replace $[\boldsymbol{b}:=\boldsymbol{a}] \boldsymbol{t}$ by] $\boldsymbol{\mathsf{Q}}$ more complicated, 'capture-avoiding' form of substitution.

Problem: substitution does not respec^t α -equivalence, e.g.

Nice Alternative: use ^a less complicated operation for renaming

> $$ $\boldsymbol{\cdot} t \stackrel{{\sf def}}{=}$ swap **all** occurrences of \bm{b} and \bm{a} in \bm{t}

Problem: substitution does not respec^t α -equivalence, e.g.

Nice Alternative: use ^a less complicated operation for renaming

> $$ $\boldsymbol{\cdot} t \stackrel{{\sf def}}{=}$ swap **all** occurrences of \bm{b} and $\hat{\bm{a}}$ in \bm{t}

be they free, bound or binding

Problem: substitution does not respec^t α -equivalence, e.g.

Nice Alternative: use ^a less complicated operation for renaming

> $$ $\boldsymbol{\cdot} t \stackrel{{\sf def}}{=}$ swap **all** occurrences of \bm{b} and \bm{a} in \bm{t}

Unlike for $[\boldsymbol{b}\!:=\!\boldsymbol{a}](\boldsymbol{a})$ − $\left(\begin{matrix} -\end{matrix} \right)$, for $(b\ a)$ · (−) we do have if $t=_\alpha t$ $^{\prime}$ then $(b\,a)$ $\bm{\cdot} t =_{\alpha} (b\, a)$ $\bm{\cdot}$ $\boldsymbol{\ell}$.

Problem: substitution does not respec^t α -equivalence, e.g.

Nice Alternative: use ^a less complicated operati<mark>/Preview:</mark> (SW apping ings to lists of swappings $(a_1, b_1), \ldots$ Unlike for [b:= ^a](−) , for (b a) also called **permutations**. have if $t=\alpha$ t Then (U a) $\overline{\cdot \iota} = \overline{\alpha} \, (\overline{\iota} \, \overline{\iota} \, \overline{\iota})$ · $\overline{\bm{U}}$ 0. In the next few slides we shall extend 'swappings' to 'lists of swappings' ($\bm{a_1}\,\bm{b_1})$. . . ($\boldsymbol{a_n}\, \boldsymbol{b_n}),$ Amsterdam, 3. June 2003 – p.5

 \Box \langle \rangle Units Atoms \boldsymbol{a} $\Box \langle t, t' \rangle$ Pairs \Box a.t Abstractions $\boxed{\blacksquare}$ $\pi \cdot X$ Suspensions \blacksquare \blacks

a permutation applied to a term:

$$
\begin{array}{c}\n\Box \quad [\cdot a \quad \stackrel{\text{def}}{=} \quad a \\
\Box \quad (b \ c) :: \pi \cdot a \quad \stackrel{\text{def}}{=} \quad \begin{cases} \nc & \text{if } \pi \cdot a = b \\
b & \text{if } \pi \cdot a = c \\
\pi \cdot a & \text{otherwise}\n\end{cases}\n\end{array}
$$

^a permutation applied to a term:

$$
\begin{array}{c}\n\Box \quad [\cdot a \quad \stackrel{\text{def}}{=} \quad a \\
\Box \quad (b \ c) :: \pi \cdot a \quad \stackrel{\text{def}}{=} \quad \begin{cases} \nc & \text{if } \pi \cdot a = b \\
b & \text{if } \pi \cdot a = c \\
\pi \cdot a & \text{otherwise}\n\end{cases} \\
\Box \quad \pi \cdot a.t \quad \stackrel{\text{def}}{=} \quad \pi \cdot a \cdot \pi \cdot t\n\end{array}
$$

^a permutation applied to a term:

$$
\begin{array}{c}\n\Box \quad \Box \quad \Box a \quad \mathop{def}\nolimits = a \\
\Box \quad (b c) :: \pi \cdot a \quad \mathop{def}\nolimits = \n\begin{cases}\n c & \text{if } \pi \cdot a = b \\
 b & \text{if } \pi \cdot a = c \\
\pi \cdot a & \text{otherwise}\n\end{cases} \\
\Box \quad \pi \cdot \pi \cdot X \quad \mathop{def}\nolimits = \n\begin{cases}\n \pi \cdot a \cdot \pi \cdot t \\
 \pi \cdot \pi \cdot \gamma \cdot X\n\end{cases}\n\end{array}
$$

^a permutation applied to a term:

[] $\bm \cdot \bm G$ def $=$ a $\left(\bm{b}\,\bm{c}\right)$:: $\bm{\pi}\cdot\bm{a}$ def = $\sqrt{2}$ $\left\langle \right\rangle$ c if $\pi \cdot a = b$ b if $\pi \cdot a = c$ $\boldsymbol{\pi}\cdot\boldsymbol{a}$ otherwise $\pi\cdot a.t$ def $\pi\cdot a.\pi\cdot t$ $\boldsymbol{\pi} {\boldsymbol{\cdot}} \boldsymbol{\pi}$ $\boldsymbol{\varGamma} \cdot \boldsymbol{X} \quad \stackrel{\small \textsf{def}}{=} \quad ($ $\boldsymbol{\pi} @ \boldsymbol{\pi}$ $\boldsymbol{\ell}$) · X Permutations on atoms are bijections!

 $\pi \cdot a = b$ iff $a = ($ $\boldsymbol{\pi}$ − 1) $\bm{\cdot} \bm{b}$

We will identify

fn $a.X \ \approx \ \texttt{fn} \ b.(a\ b) \!\cdot\! X$

provided that 'b is fresh for $X - (b \# X)'$, i.e., does not occur freely in any ground term that might be substituted for X .

We will identify

fn $a.X \ \approx \ \texttt{fn} \ b.(a\ b) \!\cdot\! X$ provided that 'b is fresh for $X \triangle t$ h $\#$ X)' i.e., does not occur <mark>explicit permutation –</mark> that might be substitution to be approximated for $\frac{1}{2}$ explicit permutation waits to be applied to the term that is substituted for X

We will identify

fn $a.X \ \approx \ \texttt{fn} \ b.(a\ b) \!\cdot\! X$

provided that 'b is fresh for $X - (b \# X)'$, i.e., does not occur freely in any ground term that might be substituted for X .

We will identify

fn $a.X \ \approx \ \texttt{fn} \ b.(a\ b) \!\cdot\! X$

provided that 'b is fresh for $X - (b \# X)'$, i.e., does not occur freely in any ground term that might be substituted for X .

If we know more about X , e.g., if we knew that $a \# X$ and $b \# X$, then we can replace $(a b) \cdot X$ by X.

Our equality is **not** just

$t \approx t'$ α -equivalence

but judgements

$\nabla \vdash t \approx t'$ α -equivalence

where

$$
\nabla = \{a_1 \# X_1, \ldots, a_n \# X_n\}
$$

is a finite set of freshness assumptions.

but judgements

$\nabla \vdash t \approx t'$ α -equivalence

where

$\nabla = \{a_1 \# X_1, \ldots, a_n \# X_n\}$

is ^a finite set of freshness assumptions.

 ${a \# X, b \# X} \vdash$ fn $a.X \approx$ fn $b.X$

but judgements

 $\nabla \vdash t \approx t'$ α -equivalence $\nabla \vdash a \mathrel{\#} t$ freshness

where

 $\nabla = \{a_1 \# X_1, \ldots, a_n \# X_n\}$ is ^a finite set of freshness assumptions.

 ${a \# X, b \# X} \vdash$ fn $a.X \approx$ fn $b.X$

Rules for Equivalence

Excerpt (i.e. only the interesting rules)

Rules for Equivalence

 $\nabla \vdash t \thickapprox t'$ $\nabla \vdash a.t \approx a.t'$

$a \neq b$ $\boldsymbol{\nabla} \vdash t \approx (a b) \boldsymbol{\cdot} t' \quad \boldsymbol{\nabla} \vdash a \mathrel{\#} t'$ $\nabla \vdash a.t \approx b.t'$
Rules for Equivalence

 $(a \# X) \in \nabla$ for all a with $\pi \cdot a \neq \pi' \cdot a$ $\nabla \vdash \pi\mathord{\cdot} X \approx \pi'\mathord{\cdot} X$

Rules for Equivalence $(a \# X) \in \nabla$ for all a with $\boldsymbol{\pi}\cdot\boldsymbol{a}\neq \boldsymbol{\pi}'\cdot\boldsymbol{a}$ $\nabla \vdash \pi\mathord{\cdot} X \approx \pi'\mathord{\cdot} X$ for example

 ${a \# X, b \# X} \vdash X \approx (ab) \cdot X$

Rules for Equivalence $(a \# X) \in \nabla$ for all a with $\pi \cdot a \neq \pi' \cdot a$ $\nabla \vdash \pi\mathord{\cdot} X \approx \pi'\mathord{\cdot} X$ for example ${a \# X, c \# X} \vdash (a c) (a b) \mathbf{\cdot} X \approx (b c) \mathbf{\cdot} X$ because $(a c)(a b): a \mapsto b$ $(b c): a \mapsto a$ $b \mapsto$ $b \mapsto c$ $\boldsymbol{c} \mapsto$ $c \mapsto b$ disagree at a and c .

Amsterdam, 3. June 2003 – p.10

Rules for Freshness

Excerpt (again only the interesting rules)

Rules for Freshness

$$
\cfrac{a\neq b}{\nabla\vdash a\ \# \ b}
$$

 $a \neq b \hspace{6mm} \nabla \vdash a \; \# \; t$ $\bm{\nabla} \vdash a \mathrel{\#} b.t$

$$
\overline{\bm \nabla \vdash a \mathbin{\#} a .t}
$$

$$
\frac{(\pi^{-1}\cdot a\;\#\;X)\in\nabla}{\nabla\vdash a\;\#\;\pi\cdot X}
$$

Theorem: \approx is an equivalence relation.

(Reflexivity) $\nabla \vdash t \approx t$ (Symmetry) if $\nabla \vdash t_1 \approx t_2$ then $\nabla \vdash t_2 \approx t_1$ (Transitivity) if $\nabla \vdash t_1 \approx t_2$ and $\nabla \vdash t_2 \approx t_3$ then $\nabla \vdash t_1 \thickapprox t_3$

Theorem: \approx is an equivalence relation.

because \approx has very good properties: $\nabla \vdash t \approx t'$ then $\nabla \vdash \pi \cdot t \approx \pi \cdot t'$ $\nabla \vdash a \mathrel{\#} t$ then $\nabla \vdash \pi \mathbf{\cdot} a \mathrel{\#} \pi \mathbf{\cdot} t$

Theorem: \approx is an equivalence relation.

because \approx has very good properties:

 $\nabla \vdash t \approx t'$ then $\nabla \vdash \pi \cdot t \approx \pi \cdot t'$ $\nabla \vdash a \mathrel{\#} t$ then $\nabla \vdash \pi \mathbf{\cdot} a \mathrel{\#} \pi \mathbf{\cdot} t$ $\nabla \vdash t \approx \pi {\cdot} t'$ then $\nabla \vdash (\pi^{-1}) {\cdot} t \approx t'$

 $\nabla \vdash a \mathbin{\#} \pi\mathord{\cdot} t$ then $\nabla \vdash (\pi^{-1})\mathord{\cdot} a \mathbin{\#} t$

Theorem: \approx is an equivalence relation.

because \approx has very good properties:

- $\nabla \vdash t \approx t'$ then $\nabla \vdash \pi \cdot t \approx \pi \cdot t'$ $\nabla \vdash a \mathrel{\#} t$ then $\nabla \vdash \pi \mathbf{\cdot} a \mathrel{\#} \pi \mathbf{\cdot} t$ $\nabla \vdash t \approx \pi {\cdot} t'$ then $\nabla \vdash (\pi^{-1}) {\cdot} t \approx t'$
	- $\nabla \vdash a \mathbin{\#} \pi\mathord{\cdot} t$ then $\nabla \vdash (\pi^{-1})\mathord{\cdot} a \mathbin{\#} t$
	- $\nabla \vdash a \mathrel{\#} t$ and $\nabla \vdash t \approx t'$ then $\nabla \vdash a \mathbin{\#} t'$

Comparison with = $-\alpha$

Traditionally $=_\alpha$ is defined as

least congruence which identifies $a.t$ with $\bm{b}.[$ $\boldsymbol{a}:=\boldsymbol{b}]\boldsymbol{t}$ provided \boldsymbol{b} is not free in \boldsymbol{t}]

where [$\bm{a} := \bm{b}]\bm{t}$ replaces all free occurrences] of \boldsymbol{a} \boldsymbol{a} by \boldsymbol{b} in \boldsymbol{t} .

Comparison with = $-\alpha$

Traditionally $=_\alpha$ is defined as

least congruence which identifies a.t with $\bm{b}.[$ $\boldsymbol{a}:=\boldsymbol{b}]\boldsymbol{t}$ provided \boldsymbol{b} is not free in \boldsymbol{t}]

where [$\bm{a} := \bm{b}]\bm{t}$ replaces all free occurrences] of \boldsymbol{a} \boldsymbol{a} by \boldsymbol{b} in \boldsymbol{t} .

For ground terms:

Theorem:	$t =_{\alpha} t'$ iff $\emptyset \vdash t \approx t'$
$a \not\in FA(t)$ iff $\emptyset \vdash a \neq t$	

Comparison with = $-\alpha$

Traditionally $=_\alpha$ is defined as

least congruence which identifies a.t with $\bm{b}.[$ $\boldsymbol{a}:=\boldsymbol{b}]\boldsymbol{t}$ provided \boldsymbol{b} is not free in \boldsymbol{t}]

where [$\bm{a} := \bm{b}]\bm{t}$ replaces all free occurrences] of \boldsymbol{a} \boldsymbol{a} by \boldsymbol{b} in \boldsymbol{t} .

In general $=_\alpha$ and \approx are distinct!

> $\boldsymbol{a}.\boldsymbol{X} =_{\alpha} \boldsymbol{b}.\boldsymbol{X}$ but not $\varnothing \vdash a.X \thickapprox b.X \hspace{0.2cm} (a \neq b)$

Comparison with = $-\alpha$ Traditional definition of the $\frac{1}{\sqrt{2}}$ is the congruence which is the congruence with identifies a.t with identifies a.t with $\frac{1}{\sqrt{2}}$ is the congruence of $\frac{1}{\sqrt{2}}$ is the congruence of $\frac{1}{\sqrt{2}}$ is the congruence of $\frac{1}{\sqrt{2}}$ is the **ner** give two terms that are **not** ^α-equivalent. then applying $[X:=a]$, $[X:=b]$, \ldots] $\frac{1}{2}$ r_{e} all free occurrences all \mathbf{v}_{e} \mathbb{R}^2] of aB Treshnes SUDSTITUTI =αsubstitutions. Therefore $\{a \# X, b \# X\} \vdash a.X$ ∅ does hold. That is ^a crucial point: if we had $\varnothing \vdash a.X \thickapprox b.X$,]] The freshness constraints $\boldsymbol{a} \mathrel{\#} \boldsymbol{X}$ and $\bm{b}\,\mathrel{\#}\,\bm{X}$ rule out the problematic $\bm{a} \ \#\ X, \bm{b} \ \#\ X\} \vdash \bm{a}.\bm{X} \thickapprox \bm{b}.\bm{X}$

$$
\begin{array}{ll}\n\blacksquare & \sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t) \\
\blacksquare & \sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases}\n\pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\
\pi \cdot X & \text{otherwise}\n\end{cases}\n\end{array}
$$

$$
\begin{array}{ll}\n\Box & \sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t) \\
\Box & \sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases}\n\pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\
\pi \cdot X & \text{otherwise}\n\end{cases}\n\end{array}
$$

for example

 \boldsymbol{a} . ($\bm{a}\,\bm{b})$ $\cdot X \; \left[X := \langle b, Y \rangle \right]$]

$$
\begin{array}{ll}\n\Box & \sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t) \\
\Box & \sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases}\n\pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\
\pi \cdot X & \text{otherwise}\n\end{cases}\n\end{array}
$$

for example

 \boldsymbol{a} . ($\bm{a}\,\bm{b})$ $\cdot X \; \left[X := \langle b, Y \rangle \right]$] $\Rightarrow a.$ ($\bm{a}\,\bm{b})$ $\cdot X[X:=\langle b,Y\rangle]$]

$$
\begin{array}{ll}\n\blacksquare & \sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t) \\
\blacksquare & \sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases}\n\pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\
\pi \cdot X & \text{otherwise}\n\end{cases}\n\end{array}
$$

for example

 \boldsymbol{a} . ($\bm{a}\,\bm{b})$ $\cdot X \; \left[X := \langle b, Y \rangle \right]$] $\Rightarrow a.$ ($\bm{a}\,\bm{b})$ $\cdot X[X:=\langle b,Y\rangle]$] $\Rightarrow a.$ ($(\bm{a}\ \bm{b}){\bm{\cdot}}\langle \bm{b}, \bm{Y}\rangle$

$$
\begin{array}{ll}\n\blacksquare & \sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t) \\
\blacksquare & \sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases}\n\pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\
\pi \cdot X & \text{otherwise}\n\end{cases}\n\end{array}
$$

for example

 \boldsymbol{a} . ($\bm{a}\,\bm{b})$ $\cdot X \; \left[X := \langle b, Y \rangle \right]$] $\Rightarrow a.$ ($\bm{a}\,\bm{b})$ $\cdot X[X:=\langle b,Y\rangle]$] $\Rightarrow a.$ ($(\bm{a}\ \bm{b}){\bm{\cdot}}\langle \bm{b}, \bm{Y}\rangle$ $\Rightarrow a. \langle a, ($ $\bm{a}\,\bm{b})$ $\cdot Y\rangle$

 $\boldsymbol{\sigma}(\boldsymbol{a}.t) \stackrel{\sf def}{=}$ $= a \cdot \sigma$ $\left(t\right)$ σ ($\pi\mathord{\cdot} X) \stackrel{\mathsf{def}}{=}$ = \begin{cases} $\boldsymbol{\pi}\cdot\boldsymbol{\sigma}(X)$ if $\boldsymbol{\sigma}(X) \neq X$ $\boldsymbol{\pi}\cdot\!\boldsymbol{X}$ otherwise if $\boldsymbol{\nabla}\vdash t\thickapprox t$ $^\prime$ and \blacktriangledown $\boldsymbol{\prime}$ $\vdash\sigma(\nabla)$ then $\boldsymbol{\nabla}$ $\boldsymbol{\ell}$ $\vdash \sigma(t)$ $\bm{\approx}\bm{\sigma}(t$ $\boldsymbol{\prime}$)

 $\boldsymbol{\sigma}(\boldsymbol{a}.t) \stackrel{\sf def}{=}$ $= a \cdot \sigma$ $\left(t\right)$ σ ($\pi\mathord{\cdot} X) \stackrel{\mathsf{def}}{=}$ = \begin{cases} $\boldsymbol{\pi}\cdot\boldsymbol{\sigma}(X)$ if $\boldsymbol{\sigma}(X) \neq X$ $\boldsymbol{\pi}\cdot\!\boldsymbol{X}$ otherwise if $\boldsymbol{\nabla}\vdash t\thickapprox t$ $^\prime$ and $(\nabla$ $\boldsymbol{\prime}$ $\vdash\sigma(\nabla)$ then $\boldsymbol{\nabla}$ $\boldsymbol{\ell}$ $\vdash \sigma(t)$ $\thickapprox\sigma(t)$ $\boldsymbol{\prime}$) this means ∇ $\boldsymbol{\prime}$ $\vdash a \mathbin{\#} \sigma(X)$ holds for all ($\bm a\;\#\; \bm X)\in \bm\nabla$

 $\boldsymbol{\sigma}(\boldsymbol{a}.t) \stackrel{\sf def}{=}$ $= a \cdot \sigma$ $\left(t\right)$ σ ($\pi\mathord{\cdot} X) \stackrel{\mathsf{def}}{=}$ = \begin{cases} $\boldsymbol{\pi}\cdot\boldsymbol{\sigma}(X)$ if $\boldsymbol{\sigma}(X) \neq X$ $\boldsymbol{\pi}\cdot\!\boldsymbol{X}$ otherwise if $\boldsymbol{\nabla}\vdash t\thickapprox t$ $^\prime$ and \blacktriangledown $\boldsymbol{\prime}$ $\vdash\sigma(\nabla)$ then $\boldsymbol{\nabla}$ $\boldsymbol{\ell}$ $\vdash \sigma(t)$ $\bm{\approx}\bm{\sigma}(t$ $\boldsymbol{\prime}$)

 $\boldsymbol{\sigma}(\boldsymbol{a}.t) \stackrel{\sf def}{=}$ $= a \cdot \sigma$ $\left(t\right)$ σ ($\pi\mathord{\cdot} X) \stackrel{\mathsf{def}}{=}$ = \begin{cases} $\boldsymbol{\pi}\cdot\boldsymbol{\sigma}(X)$ if $\boldsymbol{\sigma}(X) \neq X$ $\boldsymbol{\pi}\cdot\!\boldsymbol{X}$ otherwise if $\boldsymbol{\nabla}\vdash t\thickapprox t$ $^\prime$ and \blacktriangledown $\boldsymbol{\prime}$ $\vdash\sigma(\nabla)$ then $\boldsymbol{\nabla}$ $\boldsymbol{\ell}$ $\vdash \sigma(t)$ $\bm{\approx}\bm{\sigma}(t$ $\boldsymbol{\prime}$) σ ($\boldsymbol{\pi}\!\cdot\!\boldsymbol{t})$ $= \pi\!\cdot\!\sigma(t)$

Equational Problems

An equational problem

$$
t\thickapprox?~t'
$$

is solved by

a substitution $\boldsymbol{\sigma}$ (terms for variables) and a set of freshness assumptions $\bm{\nabla}$ so that $\bm{\nabla} \vdash \bm{\sigma}(t)$ $\bm{\approx}\bm{\sigma}(t$ $\boldsymbol{\prime}$).

Unifying equations may entail solving freshness problems.

E.g. assuming that $a \neq a'$, then $\boldsymbol{a}.\boldsymbol{t} \thickapprox? \boldsymbol{a}'.\boldsymbol{t}'$

can only be solved if

 $t\approx ? \; (a \, a')\!\cdot\! t' \;\;$ and $\;\; a \mathrel{\#} ? \; t'$

can be solved.

Freshness Problems

A freshness problem

$$
a\mathrel{\#}\mathord{?} t
$$

is solved by

 \blacksquare a substitution σ ■ and a set of freshness assumptions ∇ so that $\nabla \vdash a \mathrel{\#} \sigma(t)$.

Existence of MGUs

Theorem: there is an algorithm which, given ^a nominal unification problem P , decides whether or not it has a solution (σ, ∇) , and returns ^a most general one if it does.

Existence of MGUs

Theorem: there is an algorithm which, given ^a nominal unification problem P , decides whether or not it has a solution (σ, ∇) , and returns ^a most general one if it does.

straightforward definition: "iff there exists a τ such that \dots "

Existence of MGUs

Theorem: there is an algorithm which, given ^a nominal unification problem P , decides whether or not it has a solution (σ, ∇) , and returns ^a most general one if it does.

Proof: one can reduce all the equations to 'solved form' first (creating ^a substitution), and then solve the freshness problems (easy).

Remember the Quiz?

Assuming that a and b are distinct variables, is it possible to find λ -terms M_1 to M_7 that make the following pairs α -equivalent?

 $\lambda a.\lambda b. (M_1\ b)$ and $\lambda b.\lambda a. ($ $a M_1$ $\lambda a.\lambda b. (M_2\ b)$ and $\lambda b.\lambda a. ($ $\bm{a} \; \bm{M_3})$ $\boldsymbol{\lambda a}.\boldsymbol{\lambda b}.$ (b) $\bm{M}_{\bm{A}})$ and $\bm{\lambda b}.\bm{\lambda a}.$ ($a\ M_{5})$ $\lambda a.\lambda b. (b\ M_6)$ and $\lambda a.\lambda a. (b\ M_6)$ $a M_{7}$

If there is one solution for ^a pair, can you describe all its solutions?

 $\lambda a.\lambda b.(M_1 b)$ and $\lambda b.\lambda a.(a M_1)$

 $|a.b.\langle M_1, b \rangle \approx ? \; b.a.\langle a, M_1 \rangle$

 $|a.b.\langle M_1, b \rangle \approx ? \; b.a.\langle a, M_1 \rangle$

 $\stackrel{\varepsilon}{\Longrightarrow} b. \langle M_1, b \rangle \approx ? \; (a \, b) {\cdot} a . \langle a, M_1 \rangle \; , \; a \; \# ? \; a . \langle a, M_1 \rangle$

 $|a.b.\langle M_1, b \rangle \approx ? \; b.a.\langle a, M_1 \rangle$

 $\stackrel{\varepsilon}{\Longrightarrow} b. \langle M_1, b \rangle \approx ? \; b. \langle b, (a\,b) \!\cdot\! M_1 \rangle \; , \; a \; \# ? \; a. \langle a, M_1 \rangle$

 $|a.b.\langle M_1, b \rangle \approx ? \; b.a.\langle a, M_1 \rangle$

 $\stackrel{\varepsilon}{\Longrightarrow} b. \langle M_1, b \rangle \approx ? \; b. \langle b, (a\,b) \!\cdot\! M_1 \rangle \; , \; a \; \# ? \; a. \langle a, M_1 \rangle$

 $\stackrel{\varepsilon}{\Longrightarrow}\langle M_1,b\rangle \approx ? \; \langle b, (a\,b){\cdot}M_1\rangle \; , \; a\neq ?\; a {\boldsymbol .} \langle a,M_1\rangle$

 $|a.b.\langle M_1, b \rangle \approx ? \; b.a.\langle a, M_1 \rangle$

 $\stackrel{\varepsilon}{\Longrightarrow} b. \langle M_1, b \rangle \approx ? \; b. \langle b, (a\,b) \!\cdot\! M_1 \rangle \; , \; a \; \# ? \; a. \langle a, M_1 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow}\langle M_1,b\rangle \approx ? \; \langle b, (a\,b){\cdot}M_1\rangle \; , \; a\neq ?\; a {\boldsymbol .} \langle a,M_1\rangle$ $\stackrel{\varepsilon}{\Longrightarrow} M_1 \approx ? \; b \; , \; b \approx ? \; (a \, b) {\cdot} M_1 \; , \; a \; \# ? \; a . \langle a , M_1 \rangle$

 $|a.b.\langle M_1, b \rangle \approx ? \; b.a.\langle a, M_1 \rangle$

 $\stackrel{\varepsilon}{\Longrightarrow} b. \langle M_1, b \rangle \approx ? \; b. \langle b, (a\,b) \!\cdot\! M_1 \rangle \; , \; a \; \# ? \; a. \langle a, M_1 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow}\langle M_1,b\rangle \approx ? \; \langle b, (a\,b){\cdot}M_1\rangle \; , \; a\neq ?\; a {\boldsymbol .} \langle a,M_1\rangle$ $\stackrel{\varepsilon}{\Longrightarrow} M_1 \approx ? \; b \; , \; b \approx ? \; (a \, b) {\cdot} M_1 \; , \; a \; \# ? \; a . \langle a , M_1 \rangle$ $[M_1{:=}b]$ $\Longrightarrow^{\!\!\!\!\!\!\!\!\!\!\!\ {}^{\scriptstyle a}\, A} b \thickapprox ? \; (a\,b) {\cdot} b \; , \; a\,\,\# ? \; a {\cdot} \langle a,b\rangle$
$|a.b.\langle M_1, b \rangle \approx ? \; b.a.\langle a, M_1 \rangle$

 $\stackrel{\varepsilon}{\Longrightarrow} b. \langle M_1, b \rangle \approx ? \; b. \langle b, (a\,b) \!\cdot\! M_1 \rangle \; , \; a \; \# ? \; a. \langle a, M_1 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow}\langle M_1,b\rangle \approx ? \; \langle b, (a\,b){\cdot}M_1\rangle \; , \; a\neq ?\; a {\boldsymbol .} \langle a,M_1\rangle$ $\stackrel{\varepsilon}{\Longrightarrow} M_1 \approx ? \; b \; , \; b \approx ? \; (a \, b) {\cdot} M_1 \; , \; a \; \# ? \; a . \langle a , M_1 \rangle$ $[M_1{:=}b]$ $\Longrightarrow^{\!\!\!\!\!\!\!\!\!\!\ {}^{\scriptstyle a}\,} b \approx ?\; a \; , \; a \; \# ?\; a . \langle a,b\rangle$

 $|a.b.\langle M_1, b \rangle \approx ? \; b.a.\langle a, M_1 \rangle$

 $\stackrel{\varepsilon}{\Longrightarrow} b. \langle M_1, b \rangle \approx ? \; b. \langle b, (a\,b) \!\cdot\! M_1 \rangle \; , \; a \; \# ? \; a. \langle a, M_1 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow}\langle M_1,b\rangle \approx ? \; \langle b, (a\,b){\cdot}M_1\rangle \; , \; a\neq ?\; a {\boldsymbol .} \langle a,M_1\rangle$ $\stackrel{\varepsilon}{\Longrightarrow} M_1 \approx ? \; b \; , \; b \approx ? \; (a \, b) {\cdot} M_1 \; , \; a \; \# ? \; a . \langle a , M_1 \rangle$ $[M_1{:=}b]$ $\Longrightarrow^{\!\!\!\!\!\!\!\!\!\!\ {}^{\scriptstyle a}\,} b \approx ?\; a \; , \; a \; \# ?\; a . \langle a,b\rangle$

 \Longrightarrow FAIL

 $|a.b.\langle M_1, b \rangle \approx ? \; b.a.\langle a, M_1 \rangle$

 $\stackrel{\varepsilon}{\Longrightarrow} b. \langle M_1, b \rangle \approx ? \; b. \langle b, (a\,b) \!\cdot\! M_1 \rangle \; , \; a \; \# ? \; a. \langle a, M_1 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow}\langle M_1,b\rangle \approx ? \; \langle b, (a\,b){\cdot}M_1\rangle \; , \; a\neq ?\; a {\boldsymbol .} \langle a,M_1\rangle$ $\stackrel{\varepsilon}{\Longrightarrow} M_1 \approx ? \; b \; , \; b \approx ? \; (a \, b) {\cdot} M_1 \; , \; a \; \# ? \; a . \langle a , M_1 \rangle$ $[M_1{:=}b]$ $\Longrightarrow^{\!\!\!\!\!\!\!\!\!\!\ {}^{\scriptstyle a}\,} b \approx ?\; a \; , \; a \; \# ?\; a . \langle a,b\rangle$

 \Longrightarrow FAIL

 $\big|\,\boldsymbol{\lambda a}.\boldsymbol{\lambda b}.(M_1\,b)=_\alpha \boldsymbol{\lambda b}.\boldsymbol{\lambda a}.(a\,M_1)$ has no solution $\big|$

 $\lambda a.\lambda b.(b M_6)$ and $\lambda a.\lambda a.(a M_7)$

 $|a.b.\langle b, M_6\rangle \approx ? \ a.a.\langle a, M_7\rangle$

 $|a.b.\langle b, M_6\rangle \approx? \ a.a.\langle a, M_7\rangle$

 $\stackrel{\varepsilon}{\Longrightarrow}$ $b.\langle b,M_6\rangle \approx ? \; a.\langle a,M_7\rangle$

 $|a.b.\langle b, M_6\rangle \approx? \ a.a.\langle a, M_7\rangle$

 $\stackrel{\varepsilon}{\Longrightarrow}$ $b.\langle b,M_6\rangle \approx ? \; a.\langle a,M_7\rangle$

 $\stackrel{\varepsilon}{\Longrightarrow}\left\langle b,M_{6}\right\rangle \thickapprox?\left\langle b,\left(b\,a\right){\cdot}M_{7}\right\rangle ,\;b\neq ?\,\left\langle a,M_{7}\right\rangle$

 $|a.b.\langle b, M_6\rangle \approx ? \ a.a.\langle a, M_7\rangle$

 $\stackrel{\varepsilon}{\Longrightarrow}$ $b.\langle b,M_6\rangle \approx ? \; a.\langle a,M_7\rangle$

 $\stackrel{\varepsilon}{\Longrightarrow}\left\langle b,M_{6}\right\rangle \thickapprox?\left\langle b,\left(b\,a\right){\cdot}M_{7}\right\rangle ,\;b\neq ?\,\left\langle a,M_{7}\right\rangle$

 $\stackrel{\varepsilon}{\Longrightarrow} b \approx ? \; b \; , \; M_6 \approx ? \; (b \, a) \!\cdot\! M_7 \; , \; b \mathrel{\#} ? \; \langle a, M_7 \rangle$

 $|a.b.\langle b, M_6\rangle \approx ? \ a.a.\langle a, M_7\rangle$ $\stackrel{\varepsilon}{\Longrightarrow}$ $b.\langle b,M_6\rangle \approx ? \; a.\langle a,M_7\rangle$ $\stackrel{\varepsilon}{\Longrightarrow}\left\langle b,M_{6}\right\rangle \thickapprox?\left\langle b,\left(b\,a\right){\cdot}M_{7}\right\rangle ,\;b\neq ?\,\left\langle a,M_{7}\right\rangle$ $\stackrel{\varepsilon}{\Longrightarrow} b \approx ? \; b \; , \; M_6 \approx ? \; (b \, a) \!\cdot\! M_7 \; , \; b \mathrel{\#} ? \; \langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} M_6 \thickapprox ? \; (b\,a) {\cdot} M_7 \;,\; b \mathrel{\#} ? \; \langle a,M_7 \rangle$

 $|a.b.\langle b, M_6\rangle \approx? \ a.a.\langle a, M_7\rangle$ $\stackrel{\varepsilon}{\Longrightarrow}$ $b.\langle b,M_6\rangle \approx ? \; a.\langle a,M_7\rangle$ $\stackrel{\varepsilon}{\Longrightarrow}\left\langle b,M_{6}\right\rangle \thickapprox?\left\langle b,\left(b\,a\right){\cdot}M_{7}\right\rangle ,\;b\neq ?\,\left\langle a,M_{7}\right\rangle$ $\stackrel{\varepsilon}{\Longrightarrow} b \approx ? \; b \; , \; M_6 \approx ? \; (b \, a) \!\cdot\! M_7 \; , \; b \mathrel{\#} ? \; \langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} M_6 \thickapprox ? \; (b\,a) {\cdot} M_7 \;,\; b \mathrel{\#} ? \; \langle a,M_7 \rangle$ $[M_6\text{:=}(b\,a)\!\cdot\! M_7]$ \Longrightarrow $\stackrel{(c,a)}{\longrightarrow}$ $b \#? \langle a, M_7 \rangle$

 $|a.b.\langle b, M_6\rangle \approx? \ a.a.\langle a, M_7\rangle$ $\stackrel{\varepsilon}{\Longrightarrow}$ $b.\langle b,M_6\rangle \approx ? \; a.\langle a,M_7\rangle$ $\stackrel{\varepsilon}{\Longrightarrow}\left\langle b,M_{6}\right\rangle \thickapprox?\left\langle b,\left(b\,a\right){\cdot}M_{7}\right\rangle ,\;b\neq ?\,\left\langle a,M_{7}\right\rangle$ $\stackrel{\varepsilon}{\Longrightarrow} b \approx ? \; b \; , \; M_6 \approx ? \; (b \, a) \!\cdot\! M_7 \; , \; b \mathrel{\#} ? \; \langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} M_6 \thickapprox ? \; (b\,a) {\cdot} M_7 \;,\; b \mathrel{\#} ? \; \langle a,M_7 \rangle$ $[M_6\text{:=}(b\,a)\!\cdot\! M_7]$ \Longrightarrow $\stackrel{(c,a)}{\longrightarrow}$ $b \#? \langle a, M_7 \rangle$ $\stackrel{\varnothing}{\Longrightarrow} b \;\#?\; a\ ,\ b \;\#?\; M_7$

 $|a.b.\langle b, M_6\rangle \approx? \ a.a.\langle a, M_7\rangle$ $\stackrel{\varepsilon}{\Longrightarrow}$ $b.\langle b,M_6\rangle \approx ? \; a.\langle a,M_7\rangle$ $\stackrel{\varepsilon}{\Longrightarrow}\left\langle b,M_{6}\right\rangle \thickapprox?\left\langle b,\left(b\,a\right){\cdot}M_{7}\right\rangle ,\;b\neq ?\,\left\langle a,M_{7}\right\rangle$ $\stackrel{\varepsilon}{\Longrightarrow} b \approx ? \; b \; , \; M_6 \approx ? \; (b \, a) \!\cdot\! M_7 \; , \; b \mathrel{\#} ? \; \langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} M_6 \thickapprox ? \; (b\,a) {\cdot} M_7 \;,\; b \mathrel{\#} ? \; \langle a,M_7 \rangle$ $[M_6\text{:=}(b\,a)\!\cdot\! M_7]$ \Longrightarrow $\stackrel{(c,a)}{\longrightarrow}$ $b \#? \langle a, M_7 \rangle$ $\stackrel{\varnothing}{\Longrightarrow} b \;\#?\; a\ ,\ b \;\#?\; M_7$ $\stackrel{\varnothing}{\Longrightarrow} b \;\#?\; M_7$

 $|a.b.\langle b, M_6\rangle \approx? \ a.a.\langle a, M_7\rangle$ $\stackrel{\varepsilon}{\Longrightarrow}$ $b.\langle b,M_6\rangle \approx ? \; a.\langle a,M_7\rangle$ $\stackrel{\varepsilon}{\Longrightarrow}\left\langle b,M_{6}\right\rangle \thickapprox?\left\langle b,\left(b\,a\right){\cdot}M_{7}\right\rangle ,\;b\neq ?\,\left\langle a,M_{7}\right\rangle$ $\stackrel{\varepsilon}{\Longrightarrow} b \approx ? \; b \; , \; M_6 \approx ? \; (b \, a) \!\cdot\! M_7 \; , \; b \mathrel{\#} ? \; \langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} M_6 \thickapprox ? \; (b\,a) {\cdot} M_7 \;,\; b \mathrel{\#} ? \; \langle a,M_7 \rangle$ $[M_6\text{:=}(b\,a)\!\cdot\! M_7]$ \Longrightarrow $\stackrel{(c,a)}{\longrightarrow}$ $b \#? \langle a, M_7 \rangle$ $\stackrel{\varnothing}{\Longrightarrow} b \;\#?\; a\ ,\ b \;\#?\; M_7$ $\stackrel{\varnothing}{\Longrightarrow} b \;\#?\; M_7$ $\{b\# M_{7}\}$ \Longrightarrow ⊘

 $\langle a.b. \langle b, M_6 \rangle \; \approx ? \; \; a.a. \langle a, M_7 \rangle$

 $\stackrel{\varepsilon}{\Longrightarrow} b. \langle b,M_6\rangle \approx ? \ a. \langle a,M_7\rangle$ $\Longrightarrow \langle b,M_6\rangle \approx \sim 1$ $\frac{1}{\alpha}$ $\frac{1}{\alpha}$ \Rightarrow $b \approx ?$ b , Λ does not co ntain free occurrences $\stackrel{\varepsilon}{\Longrightarrow} M_6 \approx ? \; (b \, \vert \, \substack{\circ}{\circ}$ f swapping all occurred $[M_6\text{:=}(b\,a)\!\cdot\! M_7]$ ⁼⇒ b #? ha, M7 i $\boldsymbol{\lambda a}.\boldsymbol{\lambda b}.(\boldsymbol{b}\,M_6)$ $\qquad \qquad =_{\alpha} \; \lambda a.\lambda a.(a\,M_{7})$ we can take $\boldsymbol{M}_{\mathbf{7}}$ to be any $\boldsymbol{\lambda}$ -term that does not contain free occurrences of \bm{b} , so long as we take $\boldsymbol{M_6}$ to be the result of swapping all occurrences of \bm{b} and \bm{a} throughout $\boldsymbol{M}_{\mathbf{7}}$

 \varnothing $\stackrel{\sim}{\Longrightarrow} b \;\#?\; a\;,\; b \;\#?\; M_7$ \varnothing $\stackrel{\sim}{\Longrightarrow} b \;\#?\; M_7$ $\{b \# M_7\}$ ⁼⇒ ∅

used ^a permutation operation for renaming (has much nicer properties)

used ^a permutation operation for renaming (has much nicer properties) !!!

- used ^a permutation operation for renaming (has much nicer properties) !!!
- have concrete names for binders (nominal unification) and **not** de-Bruijn indices

- used ^a permutation operation for renaming (has much nicer properties) !!!
- have concrete names for binders (nominal unification) and **not** de-Bruijn indices
- it is ^a completely first-order language

- used ^a permutation operation for renaming (has much nicer properties) !!!
- have concrete names for binders (nominal unification) and **not** de-Bruijn indices
- it is ^a completely first-order language
- computed with freshness assumptions; this allowed us to define \approx so that substitution respects α -equivalence

- used ^a permutation operation for renaming (has much nicer properties) !!!
- have concrete names for binders (nominal unification) and **not** de-Bruijn indices
	- it is ^a completely first-order language
- computed with freshness assumptions; this allowed us to define \approx so that substitution respects α -equivalence

verified everything in Isabelle

Is it useful?

T applications to logic programming (w. J. Cheney)

 $x\!:\!A \in \Gamma \quad \Gamma\triangleright M\!:\!A \supset B \quad \Gamma\triangleright N\!:\!A$ $\Gamma\triangleright x\!:\!A$ $\Gamma\triangleright M$ N : B $x:A, \Gamma \triangleright M:B$ $\Gamma\triangleright\lambda x.M\colon\! A\supset B$

Is it useful?

 \Box applications to logic programming (w. J. Cheney)

 $x\!:\!A \in \Gamma \quad \Gamma\triangleright M\!:\!A \supset B \quad \Gamma\triangleright N\!:\!A$ $\Gamma\triangleright x\!:\!A$ $\Gamma\triangleright M$ N : B $x:A, \Gamma \triangleright M:B$ $\Gamma\triangleright\lambda x.M\colon\! A\supset B$

type Gamma (var X) $A :=$ member (pair X A) Gamma. type Gamma (app M N) B :- type Gamma M (arrow A B), type Gamma N A.

type Gamma (lam x.M) (arrow A B) / $x#Gamma$:type (pair ^x A)::Gamma ^M B.

member A A::Tail.

member A B::Tail :- member A Tail.

Is it useful?

I applications to logic programming (w. J. Cheney)

 $x\!:\!A \in \Gamma \quad \Gamma\triangleright M\!:\!A \supset B \quad \Gamma\triangleright N\!:\!A$ $\Gamma\triangleright x\!:\!A$ $\Gamma\triangleright M$ N : B $x:A, \Gamma \triangleright M:B$ $\Gamma\triangleright\lambda x.M\colon\! A\supset B$

T term-rewriting (Knuth-Bendix)

Roughly: given ^a rewrite system, which reduction need to be added in order to ge^t confluence.

No such algorithm for rewriting with binders.

The End

Paper and Isabelle scripts at: www.cl.cam.ac.uk/∼cu200/Unification

Most General Unifiers

Definition: for a unification problem P , a solution (σ_1, ∇_1) is more general than another solution (σ_2, ∇_2) , iff there exists a substitution *σ* with

 $\bm{\nabla}_2 \vdash \bm{\sigma}(\bm{\nabla}_1)$ $\bm{\nabla}_2 \vdash \bm{\sigma}_2 \thickapprox \bm{\sigma} \circ \bm{\sigma}_1$

Most General Unifiers

Definition: for a unification problem P , a solution (σ_1, ∇_1) is more general than another solution (σ_2, ∇_2) , iff there exists a substitution *σ* with $\boldsymbol{\nabla}_2 \vdash a \mathrel{\#} \sigma(X)$

$$
\bigcup \bigvee 2 \vdash \sigma(\nabla_1) \bigvee \qquad \text{holds for all} \qquad \qquad \bigwedge (a \# X) \in \nabla_1
$$

 $\bm{\nabla}_2 \vdash \bm{\sigma}_2 \bm{\approx} \bm{\sigma} \circ \bm{\sigma}_1$

Amsterdam, 3. June 2003 – p.25

Most General Unifiers

Definition: for a unification problem P , a solution (σ_1, ∇_1) is more general than another solution (σ_2, ∇_2) , iff there exists a substitution $\boldsymbol{\sigma}$ wit $(\boldsymbol{\nabla}_2 \vdash \sigma_2(X) \approx \sigma(\sigma_1(X))$ $\bm{\nabla}_2 \vdash \bm{\sigma}(\bm{\nabla}_1)$ $\bm{\nabla}_2 \vdash \bm{\sigma}_2 \bm{\approx} \bm{\sigma} \circ \bm{\sigma}_1$ holds for all $X \in$ ${\rm dom}(\sigma_2) \cup {\rm dom}(\sigma \circ \sigma_1)$