Quiz

Assuming that a and b are distinct variables, is it possible to find λ -terms M_1 to M_7 that make the following pairs α -equivalent?

 $\begin{array}{c} \lambda a.\lambda b.(M_{1} \ b) \text{ and } \lambda b.\lambda a.(a \ M_{1}) \\ \lambda a.\lambda b.(M_{2} \ b) \text{ and } \lambda b.\lambda a.(a \ M_{3}) \\ \lambda a.\lambda b.(b \ M_{4}) \text{ and } \lambda b.\lambda a.(a \ M_{5}) \\ \lambda a.\lambda b.(b \ M_{6}) \text{ and } \lambda a.\lambda a.(a \ M_{7}) \end{array}$

If there is one solution for a pair, can you describe all its solutions?

Nominal Unification

Christian Urban Andrew Pitts Jamie Gabbay

University of Cambridge

Nominal Unification

Why?

First-order unification is simple, but cannot be used for terms involving binders.

Higher-order unification is (more) complicated — e.g. Huet's algorithms or L_λ by Miller — and not satisfactory from a pragmatic point of view (not always decidable, not always MGUs or applies only to a restricted class of terms).

... and Substitution

Higher-order: capture-avoiding substitution But often one wants to use possibly-capturing substitution (or context-substitution)

for example:

$$rac{ ext{app}(ext{fn} \ a.Y,X) \Downarrow V}{ ext{let} \ a = X ext{ in } Y \Downarrow V}$$

...and Substitution

Higher-order: capture-avoiding substitution But often one wants to use possibly-capturing substitution (or context-substitution)

for example:

$$rac{ ext{app}(ext{fn} a.a, 1) \Downarrow 1}{ ext{let} a = 1 ext{ in } a \Downarrow 1}$$

 \blacksquare let a = 1 in $a \Downarrow 1$ [Y := a; X, V := 1]

... and Substitution

Higher-order: capture-avoiding substitution But often one wants to use possibly-capturing substitution (or context-substitution)

for example:

$$\frac{\operatorname{app}(\operatorname{fn} a.b, 1) \Downarrow 1}{\operatorname{let} b = 1 \text{ in } b \Downarrow 1} \text{ error}$$

 $\begin{array}{l} \blacksquare \; \texttt{let}\; a = 1 \; \texttt{in}\; a \Downarrow 1 \quad [Y \mathrel{\mathop:}= a ; X, V \mathrel{\mathop:}= 1] \\ \blacksquare \; \texttt{let}\; b = 1 \; \texttt{in}\; b \Downarrow 1 \quad [Y \mathrel{\mathop:}= b ; X, V \mathrel{\mathop:}= 1] \end{array}$

...and Substitution

Higher-order: capture-avoiding substitution But often one wants to use possibly-capturing substitution (or context-substitution)

for example:

$$rac{ ext{app}(ext{fn} \, \lambda a.Fa) \, X \, \Downarrow \, V}{ ext{let} \, X(\lambda a.Fa) \, \Downarrow \, V}$$

...and Substitution

Higher-order: capture-avoiding substitution But often one wants to use possibly-capturing substitution (or context-substitution)

for example:

$$rac{ ext{app}(ext{fn} \ F) \ X \ \Downarrow \ V}{ ext{let} \ X \ F \ \Downarrow \ V}$$

 \blacksquare let $1 \; \lambda a.a \Downarrow 1$ or let $1 \; \lambda b.b \Downarrow 1$

... and Substitution

Higher-order: capture-avoiding substitution But often one wants to use possibly-capturing substitution (or context-substitution)

for example:

$$rac{ ext{app}(ext{fn} oldsymbol{F}) X \Downarrow V}{ ext{let} X oldsymbol{F} \Downarrow V}$$

let $1 \lambda a.a \Downarrow 1$ or let $1 \lambda b.b \Downarrow 1$ Does it have to be so? No!

Problem: substitution does not respect α -equivalence, e.g.

fn *a.b*

fn *c.b*

Problem: substitution does not respect α -equivalence, e.g.

Problem: substitution does not respect α -equivalence, e.g.

- <u>Traditional Solution</u>: replace [b := a]t by a more complicated, 'capture-avoiding' form of substitution.

Problem: substitution does not respect α -equivalence, e.g.

(<i>b a</i>)·fn <i>a.b</i>	(<i>b a</i>)·fn <i>c.b</i>
$= \texttt{fn} \ \boldsymbol{b.a}$	$= \operatorname{fn} c.a$

<u>Nice Alternative</u>: use a less complicated operation for renaming

 $(b a) \cdot t \stackrel{\text{def}}{=} swap all occurrences of$ b and a in t

Problem: substitution does not respect α -equivalence, e.g.

$(b a) \cdot \operatorname{fn} a.b$	(<i>b a</i>)• fn <i>c.b</i>
$= \texttt{fn} \ \boldsymbol{b.a}$	$= \operatorname{fn} c.a$

<u>Nice Alternative:</u> use a less complicated operation for renaming

 $(b a) \cdot t \stackrel{\text{def}}{=}$ swap all occurrences of b and a in t

be they free, bound or binding

Problem: substitution does not respect α -equivalence, e.g.

$(b a) \cdot \operatorname{fn} a.b$	(<i>b a</i>)• fn <i>c.b</i>
$= \texttt{fn} \ \boldsymbol{b.a}$	$= \operatorname{fn} c.a$

<u>Nice Alternative:</u> use a less complicated operation for renaming

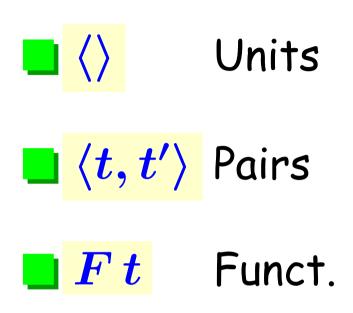
 $\frac{(b a) \cdot t}{b} \stackrel{\text{def}}{=} \frac{\text{swap all occurrences of}}{b \text{ and } a \text{ in } t}$

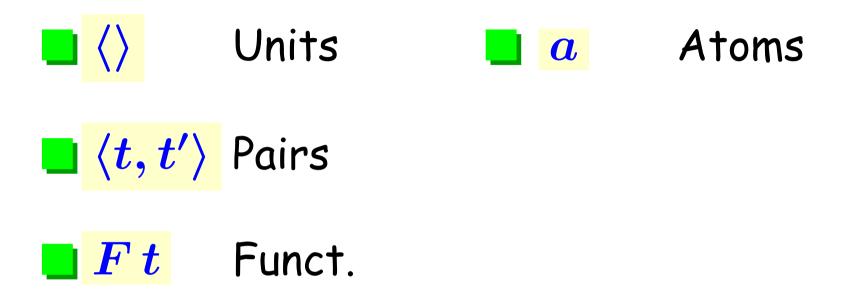
Unlike for [b:=a](-), for $(ba) \cdot (-)$ we do have if $t =_{\alpha} t'$ then $(ba) \cdot t =_{\alpha} (ba) \cdot t'$.

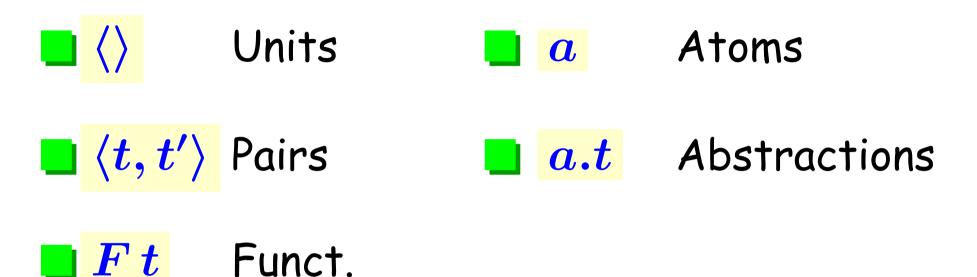
Problem: substitution does not respect α -equivalence, e.g.

$(b a) \cdot fn a.b$	(<i>b a</i>)·fn <i>c.b</i>
$= \texttt{fn} \ \boldsymbol{b.a}$	$= \operatorname{fn} c.a$

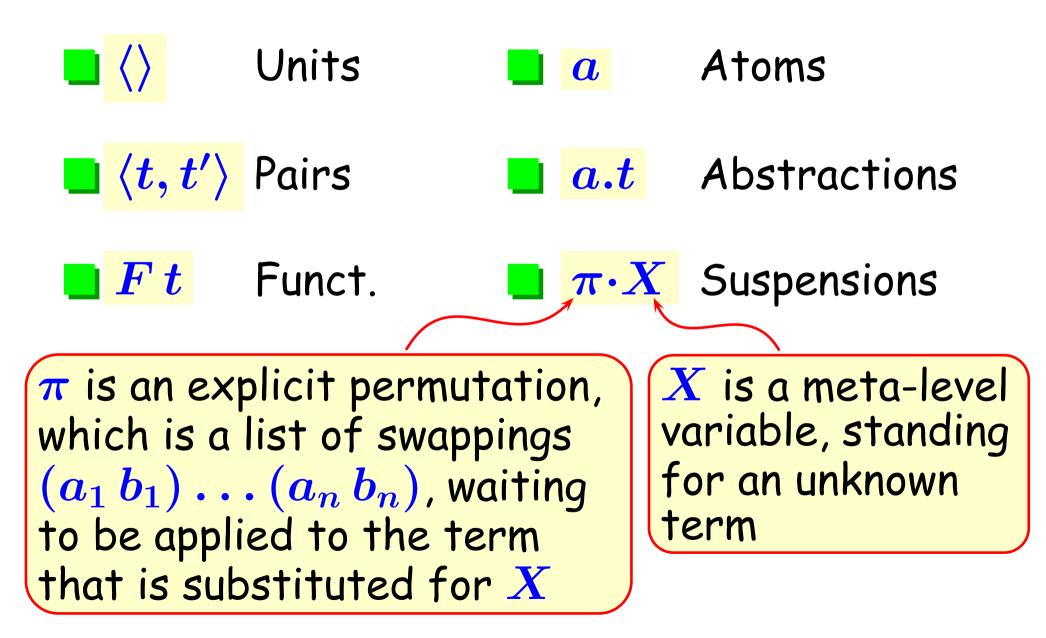
Nice Alternative: use a less complicated operation $\frac{Preview}{Preview}$. In the next few slides we shall extend 'swappings' to 'lists of swappings' $(a_1 b_1) \dots (a_n b_n)$, Unlike also called permutations. have if $t =_{\alpha} t$ ment $(0 a) \cdot t =_{\alpha} (0 a) \cdot t$.







Units Atoms \boldsymbol{a} | $\langle t, t' \rangle$ Pairs <u>a.t</u> Abstractions $\mathbf{F} \mathbf{t}$ Funct. $\lceil \lambda a.a \rceil \mapsto \operatorname{fn} a.a$ constructions like $\operatorname{fn} X.X$ are not allowed



a permutation applied to a term:

$$[] \cdot a \stackrel{\text{def}}{=} a \\ (b c) :: \pi \cdot a \stackrel{\text{def}}{=} \begin{cases} c & \text{if } \pi \cdot a = b \\ b & \text{if } \pi \cdot a = c \\ \pi \cdot a & \text{otherwise} \end{cases}$$

a permutation applied to a term:

$$[] \cdot a \stackrel{\text{def}}{=} a \\ (b c) :: \pi \cdot a \stackrel{\text{def}}{=} \begin{cases} c & \text{if } \pi \cdot a = b \\ b & \text{if } \pi \cdot a = c \\ \pi \cdot a & \text{otherwise} \end{cases} \\ \pi \cdot a \cdot t \stackrel{\text{def}}{=} \pi \cdot a \cdot \pi \cdot t$$

a permutation applied to a term:

$$\begin{array}{cccc} & & & & | \cdot a & \stackrel{\text{def}}{=} & a \\ & & & (b \, c) :: \pi \cdot a & \stackrel{\text{def}}{=} & \begin{cases} c & \text{if } \pi \cdot a = b \\ b & \text{if } \pi \cdot a = c \\ \pi \cdot a & \text{otherwise} \end{cases} \\ & & & \pi \cdot a.t & \stackrel{\text{def}}{=} & \pi \cdot a.\pi \cdot t \\ & & & & \pi \cdot \pi' \cdot X & \stackrel{\text{def}}{=} & (\pi @ \pi') \cdot X \end{array}$$

a permutation applied to a term:

 $[] \cdot a \stackrel{\mathsf{def}}{=} a$ $\begin{array}{c} \Box \\ (b c) :: \pi \cdot a \end{array} \stackrel{\text{def}}{=} \begin{cases} c & \text{if } \pi \cdot a = b \\ b & \text{if } \pi \cdot a = c \\ \pi \cdot a & \text{otherwise} \end{cases}$ $\pi \cdot a.t \stackrel{\text{def}}{=} \pi \cdot a.\pi \cdot t$ $\pi \cdot \pi' \cdot X \stackrel{\text{def}}{=} (\pi \otimes \pi') \cdot X$ Permutations on atoms are bijections!

 $\pi \cdot a = b$ iff $a = (\pi^{-1}) \cdot b$

We will identify

fn $a.X \approx fn b.(a b) \cdot X$

provided that 'b is fresh for X - (b # X)', i.e., does not occur freely in any ground term that might be substituted for X.

We will identify

 $\frac{\operatorname{fn} a.X}{\operatorname{provided that} b is} \approx \operatorname{fn} b.(ab) \cdot X$ provided that b is freeh for X - (b + Y)explicit permutation —
waits to be applied to the
term that is substituted
for X

We will identify

fn $a.X \approx fn b.(a b) \cdot X$

provided that 'b is fresh for X - (b # X)', i.e., does not occur freely in any ground term that might be substituted for X.

We will identify

 $\operatorname{fn} a.X \approx \operatorname{fn} b.(a b) \cdot X$

provided that 'b is fresh for X - (b # X)', i.e., does not occur freely in any ground term that might be substituted for X.

If we know more about X, e.g., if we knew that a # X and b # X, then we can replace $(a \ b) \cdot X$ by X.

Our equality is not just

$t \approx t'$ α -equivalence

but judgements

$\nabla \vdash t \approx t'$ α -equivalence

where

$$\nabla = \{a_1 \ \# \ X_1, \ldots, a_n \ \# \ X_n\}$$

is a finite set of freshness assumptions.

but judgements

$\nabla \vdash t \approx t'$ α -equivalence

where

$\boldsymbol{\nabla} = \{a_1 \ \# \ X_1, \ldots, a_n \ \# \ X_n\}$

is a finite set of freshness assumptions.

 $\{a \ \# \ X, b \ \# \ X\} \vdash \texttt{fn} \ a.X \approx \texttt{fn} \ b.X$

but judgements

 $\nabla \vdash t \approx t'$ α -equivalence $\nabla \vdash a \ \# t$ freshness

where

 $abla = \{a_1 \ \# \ X_1, \ldots, a_n \ \# \ X_n\}$ is a finite set of freshness assumptions.

 $\{a \ \# \ X, b \ \# \ X\} \vdash \operatorname{fn} a.X \approx \operatorname{fn} b.X$

Rules for Equivalence

Excerpt (i.e. only the interesting rules)

Rules for Equivalence

 $\frac{\nabla \vdash t \approx t'}{\nabla \vdash a.t \approx a.t'}$

$\frac{a \neq b \quad \nabla \vdash t \approx (a \ b) \cdot t' \quad \nabla \vdash a \ \# t'}{\nabla \vdash a . t \approx b . t'}$

Rules for Equivalence

 $(a \ \# \ X) \in
abla$ for all a with $\pi \cdot a
eq \pi' \cdot a$ $abla \vdash \pi \cdot X pprox \pi' \cdot X$

Rules for Equivalence

 $(a \ \# \ X) \in
abla$ for all a with $\pi {\cdot} a
eq \pi' {\cdot} a$

 $abla dash \pi \cdot X pprox \pi' \cdot X$

for example

 $\{a \ \# X, b \ \# X\} \vdash X \approx (a \ b) \cdot X$

Rules for Equivalence

$$(a \ \# \ X) \in
abla$$
 for all a with $\pi \cdot a
eq \pi' \cdot a$
 $abla \vdash \pi \cdot X pprox \pi' \cdot X$

for example

 $\{a \ \# X, c \ \# X\} \vdash (a \ c)(a \ b) \cdot X \approx (b \ c) \cdot X$ because $(a \ c)(a \ b)$: $a \mapsto b$ $(b \ c)$: $a \mapsto a$ $b \mapsto c$ $c \mapsto a$ $c \mapsto b$

disagree at *a* and *c*.

Rules for Freshness

Excerpt (again only the interesting rules)

Rules for Freshness

 $\frac{a \neq b \quad \nabla \vdash a \ \# t}{\nabla \vdash a \ \# b.t}$

$$rac{(\pi^{-1}{\cdot}a \ \# \ X) \in
abla}{
abla dasha \ \pi {\cdot} X}$$

 $\nabla \vdash a \# a.t$

Amsterdam, 3. June 2003 - p.11

Theorem: \approx is an equivalence relation.

(Reflexivity) $\nabla \vdash t \approx t$ (Symmetry) if $\nabla \vdash t_1 \approx t_2$ then $\nabla \vdash t_2 \approx t_1$ (Transitivity) if $\nabla \vdash t_1 \approx t_2$ and $\nabla \vdash t_2 \approx t_3$ then $\nabla \vdash t_1 \approx t_3$

Theorem: \approx is an equivalence relation.

because \approx has very good properties: $\nabla \vdash t \approx t'$ then $\nabla \vdash \pi \cdot t \approx \pi \cdot t'$ $\nabla \vdash a \ \# t$ then $\nabla \vdash \pi \cdot a \ \# \pi \cdot t$

Theorem: \approx is an equivalence relation.

because \approx has very good properties:

- $\Box \nabla \vdash t \approx t' \text{ then } \nabla \vdash \pi \cdot t \approx \pi \cdot t'$
- $\Box \nabla \vdash a \ \# t$ then $\nabla \vdash \pi \cdot a \ \# \pi \cdot t$
- $\nabla \vdash t \approx \pi \cdot t'$ then $\nabla \vdash (\pi^{-1}) \cdot t \approx t'$
- $\Box \nabla \vdash a \ \# \ \pi \cdot t$ then $\nabla \vdash (\pi^{-1}) \cdot a \ \# t$

Theorem: \approx is an equivalence relation.

because \approx has very good properties:

- $\nabla \vdash t \approx t' \text{ then } \nabla \vdash \pi \cdot t \approx \pi \cdot t'$ $\nabla \vdash a \ \# t \text{ then } \nabla \vdash \pi \cdot a \ \# \pi \cdot t$ $\nabla \vdash t \approx \pi \cdot t' \text{ then } \nabla \vdash (\pi^{-1}) \cdot t \approx t'$
- $\Box \nabla \vdash a \ \# \ \pi \cdot t$ then $\nabla \vdash (\pi^{-1}) \cdot a \ \# t$
- $\square \nabla \vdash a \ \# t$ and $\nabla \vdash t pprox t'$ then $\nabla \vdash a \ \# t'$

Comparison with $=_{\alpha}$

Traditionally $=_{\alpha}$ is defined as

least congruence which identifies a.t with b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences of a by b in t.

Comparison with $=_{\alpha}$

Traditionally $=_{\alpha}$ is defined as

least congruence which identifies a.t with b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences of a by b in t.

For ground terms:

$$\begin{array}{lll} \hline \text{Theorem:} & t =_{\alpha} t' & \text{iff} & \varnothing \vdash t \approx t' \\ & a \not\in FA(t) & \text{iff} & \varnothing \vdash a \ \# t \end{array}$$

Comparison with $=_{\alpha}$

Traditionally $=_{\alpha}$ is defined as

least congruence which identifies a.t with b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences of a by b in t.

In general $=_{\alpha}$ and \approx are distinct!

 $a.X =_{\alpha} b.X$ but not $\varnothing \vdash a.X \approx b.X \ (a \neq b)$

Comparison with $= \alpha$ That is a crucial point: if we had $\varnothing \vdash a.X \approx b.X$ then applying $[X := a], [X := b], \ldots$ give two terms that are **not** α -equivalent. The freshness constraints $a \ \# \ X$ and b # X rule out the problematic substitutions. Therefore $\{a \ \# \ X, b \ \# \ X\} \vdash a.X \approx b.X$ does hold.

$$\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$$

$$\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$$

$$\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$$

$$\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$$

for example

 $a.(a b) \cdot X \ [X := \langle b, Y
angle]$

$$\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$$

$$\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$$

for example

$$\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$$

$$\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$$

for example

 $egin{aligned} &a.(a \ b) \cdot X \ [X := \langle b, Y
angle] \ &\Rightarrow \ &a.(a \ b) \cdot X [X := \langle b, Y
angle] \ &\Rightarrow \ &a.(a \ b) \cdot \langle b, Y
angle \end{aligned}$

$$\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$$

$$\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$$

for example

 $\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$ $\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$ $\text{if } \nabla \vdash t \approx t' \text{ and } \nabla' \vdash \sigma(\nabla)$

then $abla' \vdash \sigma(t) pprox \sigma(t')$

 $\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$ $\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$ if $\nabla \vdash t \approx t'$ and $(\nabla' \vdash \sigma(\nabla))$ then $\nabla' \vdash \sigma(t) \approx \sigma(t')^{\checkmark}$ this means $abla^{\prime} \vdash a \ \# \ \sigma(X)$ holds for all $(a \ \# \ X) \in
abla$

 $\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$ $\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$ $\text{if } \nabla \vdash t \approx t' \text{ and } \nabla' \vdash \sigma(\nabla)$

then $abla' \vdash \sigma(t) pprox \sigma(t')$

 $\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$ $\quad \sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$ if $\nabla \vdash t \approx t'$ and $\nabla' \vdash \sigma(\nabla)$ then $\nabla' \vdash \sigma(t) \approx \sigma(t')$

Equational Problems

An equational problem

 $t \approx ? t'$

is solved by

a substitution σ (terms for variables) and a set of freshness assumptions ∇

so that $\nabla \vdash \sigma(t) \approx \sigma(t')$.

Unifying equations may entail solving freshness problems.

E.g. assuming that $a \neq a'$, then $a.t \approx ? a'.t'$

can only be solved if

 $t \approx ? (a a') \cdot t'$ and a # ? t'

can be solved.

Freshness Problems

A freshness problem

$$a \# ? t$$

is solved by

a substitution σ and a set of freshness assumptions ∇ so that $\nabla \vdash a \ \# \ \sigma(t)$.

Existence of MGUs

<u>Theorem</u>: there is an algorithm which, given a nominal unification problem P, decides whether or not it has a solution (σ, ∇) , and returns a most general one if it does.

Existence of MGUs

<u>Theorem</u>: there is an algorithm which, given a nominal unification problem P, decides whether or not it has a solution (σ, ∇) , and returns a most general one if it does.

straightforward definition: "iff there exists a τ such that ..."

Existence of MGUs

<u>Theorem</u>: there is an algorithm which, given a nominal unification problem P, decides whether or not it has a solution (σ, ∇) , and returns a most general one if it does.

Proof: one can reduce all the equations to 'solved form' first (creating a substitution), and then solve the freshness problems (easy).

Remember the Quiz?

Assuming that a and b are distinct variables, is it possible to find λ -terms M_1 to M_7 that make the following pairs α -equivalent?

 $\begin{array}{c} \blacksquare \ \lambda a.\lambda b.(M_1 \ b) & \text{and} \quad \lambda b.\lambda a.(a \ M_1) \\ \blacksquare \ \lambda a.\lambda b.(M_2 \ b) & \text{and} \quad \lambda b.\lambda a.(a \ M_3) \\ \blacksquare \ \lambda a.\lambda b.(b \ M_4) & \text{and} \quad \lambda b.\lambda a.(a \ M_5) \\ \blacksquare \ \lambda a.\lambda b.(b \ M_6) & \text{and} \quad \lambda a.\lambda a.(a \ M_7) \end{array}$

If there is one solution for a pair, can you describe all its solutions?

 $\lambda a.\lambda b.(M_1 \, b)$ and $\lambda b.\lambda a.(a \, M_1)$

 $a.b.\langle M_1,b
angle ~pprox ? b.a.\langle a,M_1
angle$

 $a.b.\langle M_1,b
angle ~pprox ? ~b.a.\langle a,M_1
angle$

 $\overset{\varepsilon}{\Longrightarrow} b.\langle M_1,b\rangle \approx ? \ (a \ b) \cdot a.\langle a,M_1\rangle \ , \ a \ \#? \ a.\langle a,M_1\rangle$

 $a.b.\langle M_1,b
angle ~pprox ? ~b.a.\langle a,M_1
angle$

 $\stackrel{arepsilon}{\Longrightarrow} b.\langle M_1,b
angle pprox ? b.\langle b,(a\,b){\cdot}M_1
angle \ , \ a \ \#? \ a.\langle a,M_1
angle$

 $a.b.\langle M_1,b
angle ~pprox ? b.a.\langle a,M_1
angle$

 $\stackrel{arepsilon}{\Longrightarrow} b.\langle M_1,b
angle pprox ? b.\langle b,(a\,b){\cdot}M_1
angle \ , \ a \ \#? \ a.\langle a,M_1
angle$

 $\stackrel{arepsilon}{\Longrightarrow} \langle M_1,b
angle pprox ? \langle b,(a\,b){\cdot}M_1
angle \ , \ a \ \#? \ a.\langle a,M_1
angle$

 $a.b.\langle M_1,b
angle ~pprox ? ~b.a.\langle a,M_1
angle$

 $\stackrel{arepsilon}{\Longrightarrow} b.\langle M_1,b
anglepprox ? b.\langle b,(a\,b)\cdot M_1
angle \ ,\ a\ \#?\ a.\langle a,M_1
angle \ \stackrel{arepsilon}{\Longrightarrow} \langle M_1,b
anglepprox ? \langle b,(a\,b)\cdot M_1
angle \ ,\ a\ \#?\ a.\langle a,M_1
angle \ \stackrel{arepsilon}{\Longrightarrow} M_1pprox ? b\ ,\ bpprox ? (a\,b)\cdot M_1\ ,\ a\ \#?\ a.\langle a,M_1
angle$

 $a.b.\langle M_1,b
angle ~pprox ? b.a.\langle a,M_1
angle$

 $\stackrel{\varepsilon}{\Longrightarrow} b.\langle M_1, b \rangle \approx ? b.\langle b, (a \ b) \cdot M_1 \rangle , \ a \ \# ? \ a.\langle a, M_1 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} \langle M_1, b \rangle \approx ? \langle b, (a \ b) \cdot M_1 \rangle , \ a \ \# ? \ a.\langle a, M_1 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} M_1 \approx ? \ b \ , \ b \approx ? \ (a \ b) \cdot M_1 \ , \ a \ \# ? \ a.\langle a, M_1 \rangle$ $\stackrel{[M_1:=b]}{\Longrightarrow} b \approx ? \ (a \ b) \cdot b \ , \ a \ \# ? \ a.\langle a, b \rangle$

 $a.b.\langle M_1,b
angle ~pprox ? b.a.\langle a,M_1
angle$

 $\stackrel{\varepsilon}{\Longrightarrow} b.\langle M_1, b \rangle \approx ? b.\langle b, (a \ b) \cdot M_1 \rangle , \ a \ \# ? \ a.\langle a, M_1 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} \langle M_1, b \rangle \approx ? \langle b, (a \ b) \cdot M_1 \rangle , \ a \ \# ? \ a.\langle a, M_1 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} M_1 \approx ? \ b \ , \ b \approx ? \ (a \ b) \cdot M_1 \ , \ a \ \# ? \ a.\langle a, M_1 \rangle$ $\stackrel{[M_1:=b]}{\Longrightarrow} b \approx ? \ a \ , \ a \ \# ? \ a.\langle a, b \rangle$

 $a.b.\langle M_1,b
angle ~pprox ? b.a.\langle a,M_1
angle$

 $\stackrel{\varepsilon}{\Longrightarrow} b.\langle M_1, b \rangle \approx ? b.\langle b, (a \ b) \cdot M_1 \rangle , \ a \ \# ? \ a.\langle a, M_1 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} \langle M_1, b \rangle \approx ? \langle b, (a \ b) \cdot M_1 \rangle , \ a \ \# ? \ a.\langle a, M_1 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} M_1 \approx ? \ b \ , \ b \approx ? \ (a \ b) \cdot M_1 \ , \ a \ \# ? \ a.\langle a, M_1 \rangle$ $\stackrel{[M_1:=b]}{\Longrightarrow} b \approx ? \ a \ , \ a \ \# ? \ a.\langle a, b \rangle$

 \implies FAIL

 $a.b.\langle M_1,b
angle ~pprox ? b.a.\langle a,M_1
angle$

 $\stackrel{\varepsilon}{\Longrightarrow} b.\langle M_1, b \rangle \approx ? b.\langle b, (a \ b) \cdot M_1 \rangle , \ a \ \# ? \ a.\langle a, M_1 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} \langle M_1, b \rangle \approx ? \langle b, (a \ b) \cdot M_1 \rangle , \ a \ \# ? \ a.\langle a, M_1 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} M_1 \approx ? \ b \ , \ b \approx ? \ (a \ b) \cdot M_1 \ , \ a \ \# ? \ a.\langle a, M_1 \rangle$ $\stackrel{[M_1:=b]}{\Longrightarrow} b \approx ? \ a \ , \ a \ \# ? \ a.\langle a, b \rangle$

 \implies FAIL

 $\lambda a.\lambda b.(M_1\,b)=_lpha\lambda b.\lambda a.(a\,M_1)$ has no solution

 $\lambda a.\lambda b.(b M_6)$ and $\lambda a.\lambda a.(a M_7)$

 $a.b.\langle b, M_6
angle ~pprox ? ~a.a.\langle a, M_7
angle$

 $a.b.\langle b, M_6
angle ~pprox ? a.a.\langle a, M_7
angle$

 $\stackrel{arepsilon}{\Longrightarrow} b.\langle b, M_6
angle pprox ? a.\langle a, M_7
angle$

 $a.b.\langle b, M_6
angle ~pprox ? ~a.a.\langle a, M_7
angle$

 $\stackrel{arepsilon}{\Longrightarrow} b.\langle b, M_6
angle pprox ? a.\langle a, M_7
angle$

 $\stackrel{\varepsilon}{\Longrightarrow} \langle b, M_6 \rangle \approx ? \langle b, (b \, a) \cdot M_7 \rangle , \ b \ \# ? \ \langle a, M_7 \rangle$

 $a.b.\langle b, M_6 \rangle \approx ? a.a.\langle a, M_7 \rangle$

 $\stackrel{arepsilon}{\Longrightarrow} b.\langle b, M_6
angle pprox ? a.\langle a, M_7
angle$

 $\stackrel{\varepsilon}{\Longrightarrow} \langle b, M_6 \rangle \approx ? \langle b, (b \, a) \cdot M_7 \rangle , \ b \ \# ? \ \langle a, M_7 \rangle$

 $\stackrel{arepsilon}{\Longrightarrow}bpprox ? b\ ,\ M_6pprox ? \ (b\,a)\cdot M_7\ ,\ b\ \#?\ \langle a,M_7
angle$

 $egin{aligned} a.b.\langle b, M_6
angle &pprox ? a.a.\langle a, M_7
angle \ &\stackrel{arepsilon}{\Longrightarrow} b.\langle b, M_6
angle &pprox ? a.\langle a, M_7
angle \ &\stackrel{arepsilon}{\Longrightarrow} b, M_6
angle &pprox ? \langle b, (b\,a) \cdot M_7
angle , \ b \ \#? \ \langle a, M_7
angle \ &\stackrel{arepsilon}{\Longrightarrow} b \ pprox ? b \ , \ M_6 \ pprox ? \ (b\,a) \cdot M_7 \ , \ b \ \#? \ \langle a, M_7
angle \ &\stackrel{arepsilon}{\Longrightarrow} M_6 \ pprox ? \ (b\,a) \cdot M_7 \ , \ b \ \#? \ \langle a, M_7
angle \end{aligned}$

 $a.b.\langle b, M_6 \rangle \approx ? a.a.\langle a, M_7 \rangle$ $\Longrightarrow b.\langle b, M_6 \rangle \approx ? a.\langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} \langle b, M_6 \rangle \approx ? \langle b, (b \, a) \cdot M_7 \rangle , \ b \ \# ? \ \langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} b \approx ? b , M_6 \approx ? (b a) \cdot M_7 , b \# ? \langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} M_6 \approx ? (b a) \cdot M_7, \ b \# ? \langle a, M_7 \rangle$ $\stackrel{[M_6:=(b\,a)\cdot M_7]}{\Longrightarrow}b \ \#? \ \langle a, M_7 \rangle$

 $a.b.\langle b, M_6 \rangle \approx ? a.a.\langle a, M_7 \rangle$ $\Longrightarrow b.\langle b, M_6 \rangle \approx ? a.\langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} \langle b, M_6 \rangle \approx ? \langle b, (b \, a) \cdot M_7 \rangle , \ b \ \# ? \ \langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} b \approx ? b , M_6 \approx ? (b a) \cdot M_7 , b \# ? \langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} M_6 \approx ? (b a) \cdot M_7, \ b \# ? \langle a, M_7 \rangle$ $\overset{[M_6:=(b\,a)\cdot M_7]}{\Longrightarrow}b~\#?~\langle a,M_7
angle$ $\implies b \# ? a , b \# ? M_7$

 $a.b.\langle b, M_6 \rangle \approx ? a.a.\langle a, M_7 \rangle$ $\Longrightarrow b.\langle b, M_6
angle pprox ? a.\langle a, M_7
angle$ $\stackrel{\varepsilon}{\Longrightarrow} \langle b, M_6 \rangle \approx ? \langle b, (b \, a) \cdot M_7 \rangle , \ b \ \# ? \ \langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} b \approx ? b , M_6 \approx ? (b a) \cdot M_7 , b \# ? \langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} M_6 \approx ? (b a) \cdot M_7, \ b \# ? \langle a, M_7 \rangle$ $\overset{[M_6:=(b\,a)\cdot M_7]}{\Longrightarrow}b~\#?~\langle a,M_7
angle$ $\implies b \# ? a , b \# ? M_7$ $\implies b \#? M_7$

 $a.b.\langle b, M_6 \rangle \approx ? a.a.\langle a, M_7 \rangle$ $\Longrightarrow b.\langle b, M_6
angle pprox ? a.\langle a, M_7
angle$ $\stackrel{\varepsilon}{\Longrightarrow} \langle b, M_6 \rangle \approx ? \langle b, (b \, a) \cdot M_7 \rangle , \ b \ \# ? \ \langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} b \approx ? b , M_6 \approx ? (b a) \cdot M_7 , b \# ? \langle a, M_7 \rangle$ $\Longrightarrow M_6 \approx ? (b a) \cdot M_7, b \#? \langle a, M_7 \rangle$ $\stackrel{[M_6:=(b\,a)\cdot M_7]}{\Longrightarrow}b \ \#? \ \langle a, M_7 \rangle$ $\implies b \# ? a , b \# ? M_7$ $\implies b \#? M_7$ $\{b \not\equiv M_7\}$

 $a.b.\langle b, M_6
angle ~pprox ? a.a.\langle a, M_7
angle$

 $\stackrel{\varepsilon}{\Longrightarrow} b.\langle b, M_6 \rangle \approx ? a.\langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\Longrightarrow} \langle b, M_6 \rangle \approx \\ \stackrel{\varepsilon}{\Longrightarrow} \langle b, M_6 \rangle \approx \\ \stackrel{\varepsilon}{\Longrightarrow} b \approx ? b, \Lambda \\ \stackrel{\varepsilon}{\Longrightarrow} M_6 \approx ? (b)$ $\stackrel{[M_6:=(b\,a)\cdot M_7]}{\Longrightarrow} b \#$ $\lambda a.\lambda b.(b\,M_6) =_{\alpha} \lambda a.\lambda a.(a\,M_7)$ $we can take <math>M_7$ to be any λ -term that does not contain free occurrences of b, so long as we take M_6 to be the result of swapping all occurrences of b and a throughout M_7

 $\stackrel{\varnothing}{\Longrightarrow} b \ \#? \ a \ , \ b \ \#? \ M_7 \\ \stackrel{\varnothing}{\Longrightarrow} b \ \#? \ M_7 \\ {}^{\{b \# M_7\}}_{\implies} \otimes$

used a permutation operation for renaming (has much nicer properties)

used a permutation operation for renaming (has much nicer properties) !!!

- used a permutation operation for renaming (has much nicer properties) !!!
- have concrete names for binders (nominal unification) and not de-Bruijn indices

- used a permutation operation for renaming (has much nicer properties) !!!
- have concrete names for binders (nominal unification) and not de-Bruijn indices
- it is a completely first-order language

- used a permutation operation for renaming (has much nicer properties) !!!
- have concrete names for binders (nominal unification) and not de-Bruijn indices
- it is a completely first-order language
- computed with freshness assumptions; this allowed us to define \approx so that substitution respects α -equivalence

- used a permutation operation for renaming (has much nicer properties) !!!
- have concrete names for binders (nominal unification) and not de-Bruijn indices
 - it is a completely first-order language
- computed with freshness assumptions; this allowed us to define \approx so that substitution respects α -equivalence

Is it useful?

applications to logic programming (w. J. Cheney)

 $\frac{x : A \in \Gamma}{\Gamma \triangleright x : A} \quad \frac{\Gamma \triangleright M : A \supset B \quad \Gamma \triangleright N : A}{\Gamma \triangleright M N : B} \quad \frac{x : A, \Gamma \triangleright M : B}{\Gamma \triangleright \lambda x . M : A \supset B}$

Is it useful?

applications to logic programming (w. J. Cheney)

 $\frac{x : A \in \Gamma}{\Gamma \triangleright x : A} \quad \frac{\Gamma \triangleright M : A \supset B}{\Gamma \triangleright M N : B} \quad \frac{\Gamma \triangleright N : A}{\Gamma \triangleright \lambda x . M : A \supset B}$

type Gamma (var X) A :- member (pair X A) Gamma.

type Gamma (app M N) B :- type Gamma M (arrow A B), type Gamma N A.

type Gamma (lam x.M) (arrow A B) / x#Gamma :type (pair x A)::Gamma M B.

member A A::Tail.

member A B::Tail :- member A Tail.

Is it useful?

applications to logic programming (w. J. Cheney)

 $\frac{x : A \in \Gamma}{\Gamma \triangleright x : A} \quad \frac{\Gamma \triangleright M : A \supset B \quad \Gamma \triangleright N : A}{\Gamma \triangleright M N : B} \quad \frac{x : A, \Gamma \triangleright M : B}{\Gamma \triangleright \lambda x . M : A \supset B}$

term-rewriting (Knuth-Bendix)

Roughly: given a rewrite system, which reduction need to be added in order to get confluence.

No such algorithm for rewriting with binders.

The End

Paper and Isabelle scripts at: www.cl.cam.ac.uk/~cu200/Unification

Most General Unifiers

<u>Definition</u>: for a unification problem P, a solution (σ_1, ∇_1) is more general than another solution (σ_2, ∇_2) , iff there exists a substitution σ with

 $\nabla_2 \vdash \sigma(\nabla_1)$ $\nabla_2 \vdash \sigma_2 \approx \sigma \circ \sigma_1$

Most General Unifiers

<u>Definition</u>: for a unification problem P, a solution (σ_1, ∇_1) is more general than another solution (σ_2, ∇_2) , iff there exists a substitution σ with $\nabla_2 \vdash a \ \# \ \sigma(X)$

holds for all

 $(a \ \# X) \in
abla_1$

$$\Box (\nabla_2 \vdash \sigma(\nabla_1)) \frown$$

 $\square \nabla_2 \vdash \sigma_2 \approx \sigma \circ \sigma_1$

Amsterdam, 3. June 2003 - p.25

Most General Unifiers

Definition: for a unification problem P, a solution (σ_1, ∇_1) is more general than another solution (σ_2, ∇_2) , iff there exists a substitution σ with $\nabla_2 \vdash \sigma_2(X) \approx \sigma(\sigma_1(X))$ holds for all $\nabla_2 \vdash \sigma(\nabla_1) \overset{X \in}{\operatorname{dom}(\sigma_2)} \cup \operatorname{dom}(\sigma \circ \sigma_1)$ $abla_2 dash \sigma_2 pprox \sigma \circ \sigma_1$