
Quiz
Assuming that a and b are distinct variables,
is it possible to find λ-terms M1 to M7 that
make the following pairs α-equivalent?

λa.λb.(M1 b) and λb.λa.(a M1)

λa.λb.(M2 b) and λb.λa.(a M3)

λa.λb.(b M4) and λb.λa.(a M5)

λa.λb.(b M6) and λa.λa.(a M7)

If there is one solution for a pair, can you
describe all its solutions?

Amsterdam, 3. June 2003 – p.1

Nominal Unification

Christian Urban
Andrew Pitts
Jamie Gabbay

University of Cambridge

Amsterdam, 3. June 2003 – p.2

Nominal Unification
Why?

First-order unification is simple, but
cannot be used for terms involving
binders.

Higher-order unification is (more)
complicated — e.g. Huet’s algorithms or
Lλ by Miller — and not satisfactory from
a pragmatic point of view (not always
decidable, not always MGUs or applies
only to a restricted class of terms).

Amsterdam, 3. June 2003 – p.3

. . . and Substitution
Higher-order: capture-avoiding substitution
But often one wants to use possibly-capturing
substitution (or context-substitution)

for example:

app(fn a.Y, X) ⇓ V

let a = X inY ⇓ V

Amsterdam, 3. June 2003 – p.4

. . . and Substitution
Higher-order: capture-avoiding substitution
But often one wants to use possibly-capturing
substitution (or context-substitution)

for example:

app(fn a. a, 1) ⇓ 1

let a = 1 in a ⇓ 1

let a = 1 in a ⇓ 1 [Y := a; X, V :=1]

Amsterdam, 3. June 2003 – p.4

. . . and Substitution
Higher-order: capture-avoiding substitution
But often one wants to use possibly-capturing
substitution (or context-substitution)

for example:

app(fn a. b, 1) ⇓ 1

let b = 1 in b ⇓ 1
error!

let a = 1 in a ⇓ 1 [Y := a; X, V :=1]

let b = 1 in b ⇓ 1 [Y := b; X, V :=1]

Amsterdam, 3. June 2003 – p.4

. . . and Substitution
Higher-order: capture-avoiding substitution
But often one wants to use possibly-capturing
substitution (or context-substitution)

for example:

app(fn λa.Fa) X ⇓ V

let X(λa.Fa) ⇓ V

Amsterdam, 3. June 2003 – p.4

. . . and Substitution
Higher-order: capture-avoiding substitution
But often one wants to use possibly-capturing
substitution (or context-substitution)

for example:

app(fn F) X ⇓ V

let X F ⇓ V

let 1 λa.a ⇓ 1 or let 1 λb.b ⇓ 1

Amsterdam, 3. June 2003 – p.4

. . . and Substitution
Higher-order: capture-avoiding substitution
But often one wants to use possibly-capturing
substitution (or context-substitution)

for example:

app(fn F) X ⇓ V

let X F ⇓ V

let 1 λa.a ⇓ 1 or let 1 λb.b ⇓ 1

Does it have to be so? No!

Amsterdam, 3. June 2003 – p.4

Swappings
Problem: substitution does not respect
α-equivalence, e.g.

[b := a]fn a.b [b := a]fn c.b
fn a.a fn c.a

Amsterdam, 3. June 2003 – p.5

Swappings
Problem: substitution does not respect
α-equivalence, e.g.

[b := a]fn a.b [b := a]fn c.b
= fn a.a = fn c.a

Amsterdam, 3. June 2003 – p.5

Swappings
Problem: substitution does not respect
α-equivalence, e.g.

[b := a]fn a.b [b := a]fn c.b
= fn a.a = fn c.a

Traditional Solution: replace [b := a]t by a
more complicated, ‘capture-avoiding’ form
of substitution.

Amsterdam, 3. June 2003 – p.5

Swappings
Problem: substitution does not respect
α-equivalence, e.g.

(b a)· fn a.b (b a)· fn c.b
= fn b.a = fn c.a

Nice Alternative: use a less complicated
operation for renaming

(b a)·t
def
= swap all occurrences of

b and a in t

Amsterdam, 3. June 2003 – p.5

Swappings
Problem: substitution does not respect
α-equivalence, e.g.

(b a)· fn a.b (b a)· fn c.b
= fn b.a = fn c.a

Nice Alternative: use a less complicated
operation for renaming

(b a)·t
def
= swap all occurrences of

b and a in t

be they free, bound or binding

Amsterdam, 3. June 2003 – p.5

Swappings
Problem: substitution does not respect
α-equivalence, e.g.

(b a)· fn a.b (b a)· fn c.b
= fn b.a = fn c.a

Nice Alternative: use a less complicated
operation for renaming

(b a)·t
def
= swap all occurrences of

b and a in t

Unlike for [b :=a](−), for (b a)·(−) we do
have if t =α t′ then (b a)·t =α (b a)·t′.

Amsterdam, 3. June 2003 – p.5

Swappings
Problem: substitution does not respect
α-equivalence, e.g.

(b a)· fn a.b (b a)· fn c.b
= fn b.a = fn c.a

Nice Alternative: use a less complicated
operation for renaming

(b a)·t
def
= swap all occurrences of

b and a in t

Unlike for [b :=a](−), for (b a)·(−) we do
have if t =α t′ then (b a)·t =α (b a)·t′.

Preview:
In the next few slides we shall extend
‘swappings’ to ‘lists of swappings’

(a1 b1) . . . (an bn),

also called permutations.

Amsterdam, 3. June 2003 – p.5

Terms
〈〉 Units

〈t, t′〉 Pairs

F t Funct.

Amsterdam, 3. June 2003 – p.6

Terms
〈〉 Units a Atoms

〈t, t′〉 Pairs

F t Funct.

Amsterdam, 3. June 2003 – p.6

Terms
〈〉 Units a Atoms

〈t, t′〉 Pairs a.t Abstractions

F t Funct.

Amsterdam, 3. June 2003 – p.6

Terms
〈〉 Units a Atoms

〈t, t′〉 Pairs a.t Abstractions

F t Funct.
pλa.aq 7→ fn a.a

constructions like fn X.X
are not allowed

Amsterdam, 3. June 2003 – p.6

Terms
〈〉 Units a Atoms

〈t, t′〉 Pairs a.t Abstractions

F t Funct. π·X Suspensions

Amsterdam, 3. June 2003 – p.6

Terms
〈〉 Units a Atoms

〈t, t′〉 Pairs a.t Abstractions

F t Funct. π·X Suspensions

π is an explicit permutation,
which is a list of swappings
(a1 b1) . . . (an bn), waiting
to be applied to the term
that is substituted for X

X is a meta-level
variable, standing
for an unknown
term

Amsterdam, 3. June 2003 – p.6

Permutations
a permutation applied to a term:

[]·a
def
= a

(b c) ::π ·a
def
=

c if π·a = b
b if π·a = c
π·a otherwise

Amsterdam, 3. June 2003 – p.7

Permutations
a permutation applied to a term:

[]·a
def
= a

(b c) ::π ·a
def
=

c if π·a = b
b if π·a = c
π·a otherwise

π·a.t
def
= π·a.π·t

Amsterdam, 3. June 2003 – p.7

Permutations
a permutation applied to a term:

[]·a
def
= a

(b c) ::π ·a
def
=

c if π·a = b
b if π·a = c
π·a otherwise

π·a.t
def
= π·a.π·t

π·π′·X
def
= (π@π′)·X

Amsterdam, 3. June 2003 – p.7

Permutations
a permutation applied to a term:

[]·a
def
= a

(b c) ::π ·a
def
=

c if π·a = b
b if π·a = c
π·a otherwise

π·a.t
def
= π·a.π·t

π·π′·X
def
= (π@π′)·X

Permutations on atoms are bijections!
π·a = b iff a = (π−1)·b

Amsterdam, 3. June 2003 – p.7

Freshness Relation
We will identify

fn a.X ≈ fn b.(a b)·X

provided that ‘b is fresh for X — (b # X)’,
i.e., does not occur freely in any ground term
that might be substituted for X .

Amsterdam, 3. June 2003 – p.8

Freshness Relation
We will identify

fn a.X ≈ fn b.(a b)·X

provided that ‘b is fresh for X — (b # X)’,
i.e., does not occur freely in any ground term
that might be substituted for X .

explicit permutation —
waits to be applied to the
term that is substituted
for X

Amsterdam, 3. June 2003 – p.8

Freshness Relation
We will identify

fn a.X ≈ fn b.(a b)·X

provided that ‘b is fresh for X — (b # X)’,
i.e., does not occur freely in any ground term
that might be substituted for X .

Amsterdam, 3. June 2003 – p.8

Freshness Relation
We will identify

fn a.X ≈ fn b.(a b)·X

provided that ‘b is fresh for X — (b # X)’,
i.e., does not occur freely in any ground term
that might be substituted for X .

If we know more about X , e.g., if we knew
that a # X and b # X , then we can replace
(a b)·X by X .

Amsterdam, 3. June 2003 – p.8

Freshness Assumptions
Our equality is not just

∇ ` t ≈ t′ α-equivalence

∇ ` a # t

Amsterdam, 3. June 2003 – p.9

Freshness Assumptions
but judgements

∇ ` t ≈ t′ α-equivalence

∇ ` a # t
where

∇ = {a1 # X1, . . . , an # Xn}

is a finite set of freshness assumptions.

Amsterdam, 3. June 2003 – p.9

Freshness Assumptions
but judgements

∇ ` t ≈ t′ α-equivalence

∇ ` a # t
where

∇ = {a1 # X1, . . . , an # Xn}

is a finite set of freshness assumptions.

{a # X, b # X} ` fn a.X ≈ fn b.X

Amsterdam, 3. June 2003 – p.9

Freshness Assumptions
but judgements

∇ ` t ≈ t′ α-equivalence

∇ ` a # t freshness
where

∇ = {a1 # X1, . . . , an # Xn}

is a finite set of freshness assumptions.

{a # X, b # X} ` fn a.X ≈ fn b.X

Amsterdam, 3. June 2003 – p.9

Rules for Equivalence

Excerpt
(i.e. only the interesting rules)

Amsterdam, 3. June 2003 – p.10

Rules for Equivalence

∇ ` t ≈ t′

∇ ` a.t ≈ a.t′

a 6= b ∇ ` t ≈ (a b)·t′ ∇ ` a # t′

∇ ` a.t ≈ b.t′

Amsterdam, 3. June 2003 – p.10

Rules for Equivalence
(a # X) ∈ ∇

for all a with π·a 6= π′·a

∇ ` π·X ≈ π′·X

Amsterdam, 3. June 2003 – p.10

Rules for Equivalence
(a # X) ∈ ∇

for all a with π·a 6= π′·a

∇ ` π·X ≈ π′·X
for example

{a #X, b #X} ` X ≈ (a b)·X

Amsterdam, 3. June 2003 – p.10

Rules for Equivalence
(a # X) ∈ ∇

for all a with π·a 6= π′·a

∇ ` π·X ≈ π′·X
for example

{a #X, c #X} ` (a c)(a b)·X ≈ (b c)·X

because (a c)(a b): a 7→ b (b c): a 7→ a
b 7→ c b 7→ c
c 7→ a c 7→ b

disagree at a and c.

Amsterdam, 3. June 2003 – p.10

Rules for Freshness

Excerpt
(again only the interesting rules)

Amsterdam, 3. June 2003 – p.11

Rules for Freshness
a 6= b

∇ ` a # b

∇ ` a # a.t
a 6= b ∇ ` a # t

∇ ` a # b.t

(π−1·a # X) ∈ ∇
∇ ` a # π·X

Amsterdam, 3. June 2003 – p.11

≈ is an Equivalence

Theorem: ≈ is an equivalence relation.

(Reflexivity) ∇ ` t ≈ t

(Symmetry) if ∇ ` t1 ≈ t2 then ∇ ` t2 ≈ t1

(Transitivity) if ∇ ` t1 ≈ t2 and ∇ ` t2 ≈ t3
then ∇ ` t1 ≈ t3

Amsterdam, 3. June 2003 – p.12

≈ is an Equivalence

Theorem: ≈ is an equivalence relation.

because ≈ has very good properties:

∇ ` t ≈ t′ then ∇ ` π·t ≈ π·t′

∇ ` a # t then ∇ ` π·a # π·t

Amsterdam, 3. June 2003 – p.12

≈ is an Equivalence

Theorem: ≈ is an equivalence relation.

because ≈ has very good properties:

∇ ` t ≈ t′ then ∇ ` π·t ≈ π·t′

∇ ` a # t then ∇ ` π·a # π·t

∇ ` t ≈ π·t′ then ∇ ` (π−1)·t ≈ t′

∇ ` a # π·t then ∇ ` (π−1)·a # t

Amsterdam, 3. June 2003 – p.12

≈ is an Equivalence

Theorem: ≈ is an equivalence relation.

because ≈ has very good properties:

∇ ` t ≈ t′ then ∇ ` π·t ≈ π·t′

∇ ` a # t then ∇ ` π·a # π·t

∇ ` t ≈ π·t′ then ∇ ` (π−1)·t ≈ t′

∇ ` a # π·t then ∇ ` (π−1)·a # t

∇ ` a # t and ∇ ` t ≈ t′ then
∇ ` a # t′

Amsterdam, 3. June 2003 – p.12

Comparison with =α
Traditionally =α is defined as

least congruence which identifies a.t with
b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences
of a by b in t.

Amsterdam, 3. June 2003 – p.13

Comparison with =α
Traditionally =α is defined as

least congruence which identifies a.t with
b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences
of a by b in t.

For ground terms:

Theorem: t =α t′ iff ∅ ` t ≈ t′

a 6∈ FA(t) iff ∅ ` a # t

Amsterdam, 3. June 2003 – p.13

Comparison with =α
Traditionally =α is defined as

least congruence which identifies a.t with
b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences
of a by b in t.

In general =α and ≈ are distinct!

a.X =α b.X but not

∅ ` a.X ≈ b.X (a 6= b)

Amsterdam, 3. June 2003 – p.13

Comparison with =α
Traditionally =α is defined as

least congruence which identifies a.t with
b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences
of a by b in t.

In general =α and ≈ are distinct!

a.X =α b.X but not

∅ ` a.X ≈ b.X (a 6= b)

That is a crucial point: if we had

∅ ` a.X ≈ b.X ,

then applying [X := a], [X := b], . . .
give two terms that are not α-equivalent.

The freshness constraints a # X and
b # X rule out the problematic
substitutions. Therefore

{a # X, b # X} ` a.X ≈ b.X

does hold.

Amsterdam, 3. June 2003 – p.13

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X otherwise

Amsterdam, 3. June 2003 – p.14

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X otherwise

for example

⇒ a.(a b)·X [X := 〈b, Y 〉]

Amsterdam, 3. June 2003 – p.14

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X otherwise

for example

⇒ a.(a b)·X [X := 〈b, Y 〉]

⇒ a.(a b)·X[X := 〈b, Y 〉]

Amsterdam, 3. June 2003 – p.14

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X otherwise

for example

⇒ a.(a b)·X [X := 〈b, Y 〉]

⇒ a.(a b)·X[X := 〈b, Y 〉]

⇒ a.(a b)·〈b, Y 〉

Amsterdam, 3. June 2003 – p.14

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X otherwise

for example

⇒ a.(a b)·X [X := 〈b, Y 〉]

⇒ a.(a b)·X[X := 〈b, Y 〉]

⇒ a.(a b)·〈b, Y 〉

⇒ a.〈a, (a b)·Y 〉
Amsterdam, 3. June 2003 – p.14

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X otherwise

if ∇ ` t ≈ t′ and ∇′ ` σ(∇)

then ∇′ ` σ(t) ≈ σ(t′)

Amsterdam, 3. June 2003 – p.14

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X otherwise

if ∇ ` t ≈ t′ and ∇′ ` σ(∇)

then ∇′ ` σ(t) ≈ σ(t′)
this means
∇′ ` a # σ(X)
holds for all
(a # X) ∈ ∇

Amsterdam, 3. June 2003 – p.14

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X otherwise

if ∇ ` t ≈ t′ and ∇′ ` σ(∇)

then ∇′ ` σ(t) ≈ σ(t′)

Amsterdam, 3. June 2003 – p.14

Substitutions
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{

π · σ(X) if σ(X) 6= X
π·X otherwise

if ∇ ` t ≈ t′ and ∇′ ` σ(∇)

then ∇′ ` σ(t) ≈ σ(t′)

σ(π·t) = π·σ(t)

Amsterdam, 3. June 2003 – p.14

Equational Problems
An equational problem

t ≈? t′

is solved by

a substitution σ (terms for variables)

and a set of freshness assumptions ∇

so that ∇ ` σ(t) ≈ σ(t′).

Amsterdam, 3. June 2003 – p.15

Unifying equations may entail solving freshness
problems.

E.g. assuming that a 6= a′, then

a.t ≈? a′.t′

can only be solved if

t ≈? (a a′)·t′ and a #? t′

can be solved.

Amsterdam, 3. June 2003 – p.16

Freshness Problems
A freshness problem

a #? t

is solved by

a substitution σ

and a set of freshness assumptions ∇

so that ∇ ` a # σ(t).

Amsterdam, 3. June 2003 – p.17

Existence of MGUs
Theorem: there is an algorithm which, given a
nominal unification problem P , decides
whether or not it has a solution (σ, ∇), and
returns a most general one if it does.

Amsterdam, 3. June 2003 – p.18

Existence of MGUs
Theorem: there is an algorithm which, given a
nominal unification problem P , decides
whether or not it has a solution (σ, ∇), and
returns a most general one if it does.

straightforward definition:
“iff there exists a τ such that . . . ”

Amsterdam, 3. June 2003 – p.18

Existence of MGUs
Theorem: there is an algorithm which, given a
nominal unification problem P , decides
whether or not it has a solution (σ, ∇), and
returns a most general one if it does.

Proof: one can reduce all the equations to
‘solved form’ first (creating a substitution), and
then solve the freshness problems (easy).

Amsterdam, 3. June 2003 – p.18

Remember the Quiz?
Assuming that a and b are distinct variables,
is it possible to find λ-terms M1 to M7 that
make the following pairs α-equivalent?

λa.λb.(M1 b) and λb.λa.(a M1)

λa.λb.(M2 b) and λb.λa.(a M3)

λa.λb.(b M4) and λb.λa.(a M5)

λa.λb.(b M6) and λa.λa.(a M7)

If there is one solution for a pair, can you
describe all its solutions?

Amsterdam, 3. June 2003 – p.19

Answers to the Quiz
ε

=⇒ λa.λb.(M1 b) and λb.λa.(a M1)

Amsterdam, 3. June 2003 – p.20

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉

Amsterdam, 3. June 2003 – p.20

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉
ε

=⇒ b.〈M1, b〉 ≈? (a b)·a.〈a, M1〉 , a #? a.〈a, M1〉

Amsterdam, 3. June 2003 – p.20

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉
ε

=⇒ b.〈M1, b〉 ≈? b.〈b, (a b)·M1〉 , a #? a.〈a, M1〉

Amsterdam, 3. June 2003 – p.20

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉
ε

=⇒ b.〈M1, b〉 ≈? b.〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ 〈M1, b〉 ≈? 〈b, (a b)·M1〉 , a #? a.〈a, M1〉

Amsterdam, 3. June 2003 – p.20

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉
ε

=⇒ b.〈M1, b〉 ≈? b.〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ 〈M1, b〉 ≈? 〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ M1 ≈? b , b ≈? (a b)·M1 , a #? a.〈a, M1〉

Amsterdam, 3. June 2003 – p.20

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉
ε

=⇒ b.〈M1, b〉 ≈? b.〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ 〈M1, b〉 ≈? 〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ M1 ≈? b , b ≈? (a b)·M1 , a #? a.〈a, M1〉
[M1:=b]
=⇒ b ≈? (a b)·b , a #? a.〈a, b〉

Amsterdam, 3. June 2003 – p.20

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉
ε

=⇒ b.〈M1, b〉 ≈? b.〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ 〈M1, b〉 ≈? 〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ M1 ≈? b , b ≈? (a b)·M1 , a #? a.〈a, M1〉
[M1:=b]
=⇒ b ≈? a , a #? a.〈a, b〉

Amsterdam, 3. June 2003 – p.20

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉
ε

=⇒ b.〈M1, b〉 ≈? b.〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ 〈M1, b〉 ≈? 〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ M1 ≈? b , b ≈? (a b)·M1 , a #? a.〈a, M1〉
[M1:=b]
=⇒ b ≈? a , a #? a.〈a, b〉

=⇒ FAIL

Amsterdam, 3. June 2003 – p.20

Answers to the Quiz
ε

=⇒ a.b.〈M1, b〉 ≈? b.a.〈a, M1〉
ε

=⇒ b.〈M1, b〉 ≈? b.〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ 〈M1, b〉 ≈? 〈b, (a b)·M1〉 , a #? a.〈a, M1〉
ε

=⇒ M1 ≈? b , b ≈? (a b)·M1 , a #? a.〈a, M1〉
[M1:=b]
=⇒ b ≈? a , a #? a.〈a, b〉

=⇒ FAIL

ε

=⇒ λa.λb.(M1 b) =α λb.λa.(a M1) has no solution

Amsterdam, 3. June 2003 – p.20

Answers to the Quiz
ε

=⇒ λa.λb.(b M6) and λa.λa.(a M7)

Amsterdam, 3. June 2003 – p.21

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉

Amsterdam, 3. June 2003 – p.21

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉

Amsterdam, 3. June 2003 – p.21

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉
ε

=⇒ 〈b, M6〉 ≈? 〈b, (b a)·M7〉 , b #? 〈a, M7〉

Amsterdam, 3. June 2003 – p.21

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉
ε

=⇒ 〈b, M6〉 ≈? 〈b, (b a)·M7〉 , b #? 〈a, M7〉
ε

=⇒ b ≈? b , M6 ≈? (b a)·M7 , b #? 〈a, M7〉

Amsterdam, 3. June 2003 – p.21

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉
ε

=⇒ 〈b, M6〉 ≈? 〈b, (b a)·M7〉 , b #? 〈a, M7〉
ε

=⇒ b ≈? b , M6 ≈? (b a)·M7 , b #? 〈a, M7〉
ε

=⇒ M6 ≈? (b a)·M7 , b #? 〈a, M7〉

Amsterdam, 3. June 2003 – p.21

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉
ε

=⇒ 〈b, M6〉 ≈? 〈b, (b a)·M7〉 , b #? 〈a, M7〉
ε

=⇒ b ≈? b , M6 ≈? (b a)·M7 , b #? 〈a, M7〉
ε

=⇒ M6 ≈? (b a)·M7 , b #? 〈a, M7〉
[M6:=(b a)·M7]
=⇒ b #? 〈a, M7〉

Amsterdam, 3. June 2003 – p.21

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉
ε

=⇒ 〈b, M6〉 ≈? 〈b, (b a)·M7〉 , b #? 〈a, M7〉
ε

=⇒ b ≈? b , M6 ≈? (b a)·M7 , b #? 〈a, M7〉
ε

=⇒ M6 ≈? (b a)·M7 , b #? 〈a, M7〉
[M6:=(b a)·M7]
=⇒ b #? 〈a, M7〉

∅

=⇒ b #? a , b #? M7

Amsterdam, 3. June 2003 – p.21

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉
ε

=⇒ 〈b, M6〉 ≈? 〈b, (b a)·M7〉 , b #? 〈a, M7〉
ε

=⇒ b ≈? b , M6 ≈? (b a)·M7 , b #? 〈a, M7〉
ε

=⇒ M6 ≈? (b a)·M7 , b #? 〈a, M7〉
[M6:=(b a)·M7]
=⇒ b #? 〈a, M7〉

∅

=⇒ b #? a , b #? M7

∅

=⇒ b #? M7

Amsterdam, 3. June 2003 – p.21

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉
ε

=⇒ 〈b, M6〉 ≈? 〈b, (b a)·M7〉 , b #? 〈a, M7〉
ε

=⇒ b ≈? b , M6 ≈? (b a)·M7 , b #? 〈a, M7〉
ε

=⇒ M6 ≈? (b a)·M7 , b #? 〈a, M7〉
[M6:=(b a)·M7]
=⇒ b #? 〈a, M7〉

∅

=⇒ b #? a , b #? M7

∅

=⇒ b #? M7

{b#M7}
=⇒ ∅

Amsterdam, 3. June 2003 – p.21

Answers to the Quiz
ε

=⇒ a.b.〈b, M6〉 ≈? a.a.〈a, M7〉
ε

=⇒ b.〈b, M6〉 ≈? a.〈a, M7〉
ε

=⇒ 〈b, M6〉 ≈? 〈b, (b a)·M7〉 , b #? 〈a, M7〉
ε

=⇒ b ≈? b , M6 ≈? (b a)·M7 , b #? 〈a, M7〉
ε

=⇒ M6 ≈? (b a)·M7 , b #? 〈a, M7〉
[M6:=(b a)·M7]
=⇒ b #? 〈a, M7〉

∅

=⇒ b #? a , b #? M7

∅

=⇒ b #? M7

{b#M7}
=⇒ ∅

λa.λb.(b M6) =α λa.λa.(a M7)

we can take M7 to be any λ-term that
does not contain free occurrences of b,
so long as we take M6 to be the result
of swapping all occurrences of b and a
throughout M7

Amsterdam, 3. June 2003 – p.21

Conclusion
used a permutation operation for
renaming (has much nicer properties)

Amsterdam, 3. June 2003 – p.22

Conclusion
used a permutation operation for
renaming (has much nicer properties) !!!

Amsterdam, 3. June 2003 – p.22

Conclusion
used a permutation operation for
renaming (has much nicer properties) !!!

have concrete names for binders (nominal
unification) and not de-Bruijn indices

Amsterdam, 3. June 2003 – p.22

Conclusion
used a permutation operation for
renaming (has much nicer properties) !!!

have concrete names for binders (nominal
unification) and not de-Bruijn indices

it is a completely first-order language

Amsterdam, 3. June 2003 – p.22

Conclusion
used a permutation operation for
renaming (has much nicer properties) !!!

have concrete names for binders (nominal
unification) and not de-Bruijn indices

it is a completely first-order language

computed with freshness assumptions;
this allowed us to define ≈ so that
substitution respects α-equivalence

Amsterdam, 3. June 2003 – p.22

Conclusion
used a permutation operation for
renaming (has much nicer properties) !!!

have concrete names for binders (nominal
unification) and not de-Bruijn indices

it is a completely first-order language

computed with freshness assumptions;
this allowed us to define ≈ so that
substitution respects α-equivalence

verified everything in Isabelle

Amsterdam, 3. June 2003 – p.22

Is it useful?
applications to logic programming (w. J. Cheney)

x :A ∈ Γ

Γ . x :A
Γ . M :A ⊃ B Γ . N :A

Γ . M N :B

x :A, Γ . M :B

Γ . λx.M :A ⊃ B

Amsterdam, 3. June 2003 – p.23

Is it useful?
applications to logic programming (w. J. Cheney)

x :A ∈ Γ

Γ . x :A
Γ . M :A ⊃ B Γ . N :A

Γ . M N :B

x :A, Γ . M :B

Γ . λx.M :A ⊃ B

type Gamma (var X) A :- member (pair X A) Gamma.

type Gamma (app M N) B :- type Gamma M (arrow A B),
type Gamma N A.

type Gamma (lam x.M) (arrow A B) / x#Gamma :-
type (pair x A)::Gamma M B.

member A A::Tail.

member A B::Tail :- member A Tail.

Amsterdam, 3. June 2003 – p.23

Is it useful?
applications to logic programming (w. J. Cheney)

x :A ∈ Γ

Γ . x :A
Γ . M :A ⊃ B Γ . N :A

Γ . M N :B

x :A, Γ . M :B

Γ . λx.M :A ⊃ B

term-rewriting (Knuth-Bendix)

Roughly: given a rewrite system, which
reduction need to be added in order to
get confluence.

No such algorithm for rewriting with binders.

Amsterdam, 3. June 2003 – p.23

The End

Paper and Isabelle scripts at:

www.cl.cam.ac.uk/∼cu200/Unification

Amsterdam, 3. June 2003 – p.24

Most General Unifiers
Definition: for a unification problem P , a
solution (σ1, ∇1) is more general than another
solution (σ2, ∇2), iff there exists a
substitution σ with

∇2 ` σ(∇1)

∇2 ` σ2 ≈ σ ◦ σ1

Amsterdam, 3. June 2003 – p.25

Most General Unifiers
Definition: for a unification problem P , a
solution (σ1, ∇1) is more general than another
solution (σ2, ∇2), iff there exists a
substitution σ with

∇2 ` σ(∇1)

∇2 ` a # σ(X)
holds for all
(a # X) ∈ ∇1

∇2 ` σ2 ≈ σ ◦ σ1

Amsterdam, 3. June 2003 – p.25

Most General Unifiers
Definition: for a unification problem P , a
solution (σ1, ∇1) is more general than another
solution (σ2, ∇2), iff there exists a
substitution σ with

∇2 ` σ(∇1)

∇2 ` σ2 ≈ σ ◦ σ1

∇2 ` σ2(X) ≈ σ(σ1(X))
holds for all
X ∈
dom(σ2) ∪ dom(σ ◦ σ1)

Amsterdam, 3. June 2003 – p.25

	Quiz
	Nominal Unification
	Nominal Unification
	ldots and Substitution
	Swappings
	Terms
	Permutations
	Freshness Relation
	Freshness Assumptions
	Rules for Equivalence
	Rules for Freshness
	$eq $ is an Equivalence
	Comparison with $aeq $
	Substitutions
	Equational Problems
	
	Freshness Problems
	Existence of MGUs
	Remember the Quiz?
	Answers to the Quiz
	Answers to the Quiz
	Conclusion
	Is it useful?
	The End
	Most General Unifiers

