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ABSTRACT. Nominal Isabelle is a definitional extension of the Isabelle/HOL theorem prover. It
provides a proving infrastructure for reasoning about programming language calculi involving named
bound variables (as opposed to de-Bruijn indices). In this paper we present an extension of Nominal
Isabelle for dealing with general bindings, that means term constructors where multiple variables are
bound at once. Such general bindings are ubiquitous in programming language research and only
very poorly supported with single binders, such as lambda-abstractions. Our extension includes new
definitions of alpha-equivalence and establishes automatically the reasoning infrastructure for alpha-
equated terms. We also prove strong induction principles that have the usual variable convention
already built in.

1. INTRODUCTION

So far, Nominal Isabelle provided a mechanism for constructing alpha-equated terms, for example
lambda-terms

t ::= x | t t | λx. t

where free and bound variables have names. For such alpha-equated terms, Nominal Isabelle derives
automatically a reasoning infrastructure that has been used successfully in formalisations of an
equivalence checking algorithm for LF [27], Typed Scheme [24], several calculi for concurrency
[3] and a strong normalisation result for cut-elimination in classical logic [30]. It has also been used
by Pollack for formalisations in the locally-nameless approach to binding [20].

However, Nominal Isabelle has fared less well in a formalisation of the algorithm W [29], where
types and type-schemes are, respectively, of the form

T ::= x | T → T S ::= ∀ {x1,. . . , xn}. T (1.1)
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and the ∀ -quantification binds a finite (possibly empty) set of type-variables. While it is possible
to implement this kind of more general binders by iterating single binders, like ∀ x1.∀ x2...∀ xn.T,
this leads to a rather clumsy formalisation of W. For example, the usual definition when a type is an
instance of a type-scheme requires in the iterated version the following auxiliary unbinding relation

T ↪→ ([],T)

S ↪→ (xs,T)

∀x.S ↪→ (x ::xs,T)

which relates a type-scheme with a list of type-variables and a type. The point of this definition
is: given a type-scheme S, how to get access to the bound type-variables and the type-part of this
type-scheme? The unbinding relation gives an answer, though in general we will only get access to
some type-variables and some type that are “alpha-equivalent” to S. This is because unbinding is a
relation; it cannot be a function for alpha-equated type-schemes. Still, with this definition in place
we can formally define when a type is an instance of a type-scheme as

T ≺ S
def
= ∃ xs T ′ σ. S ↪→ (xs, T ′) ∧ dom σ = set xs ∧ σ(T ′) = T

meaning there exists a list of type-variables xs and a type T ′ to which the type-scheme S unbinds,
and there exists a substitution whose domain is xs (seen as set) such that σ(T ′) = T. The problem
with this definition is that we cannot follow the usual proofs that are by induction on the type-part of
the type-scheme (since it is under an existential quantifier and only an alpha-variant). The represen-
tation of type-schemes using iterations of single binders prevents us from directly “unbinding” the
bound type-variables and the type-part. The purpose of this paper is to introduce general binders,
which allow us to represent type-schemes so that they can bind multiple variables at once and as
a result solve this problem. The need of iterating single binders is also one reason why Nominal
Isabelle and similar theorem provers that only provide mechanisms for binding single variables have
so far not fared very well with the more advanced tasks in the POPLmark challenge [2], because
also there one would like to bind multiple variables at once.

Binding multiple variables has interesting properties that cannot be captured easily by iterating
single binders. For example in the case of type-schemes we do not want to make a distinction about
the order of the bound variables. Therefore we would like to regard in (1.2) below the first pair of
type-schemes as alpha-equivalent, but assuming that x, y and z are distinct variables, the second pair
should not be alpha-equivalent:

∀ {x, y}. x→ y ≈α ∀ {x, y}. y→ x ∀ {x, y}. x→ y 6≈α ∀ {z}. z→ z (1.2)

Moreover, we like to regard type-schemes as alpha-equivalent, if they differ only on vacuous binders,
such as

∀ {x}. x→ y ≈α ∀ {x, z}. x→ y (1.3)

where z does not occur freely in the type. In this paper we will give a general binding mechanism and
associated notion of alpha-equivalence that can be used to faithfully represent this kind of binding in
Nominal Isabelle. The difficulty of finding the right notion for alpha-equivalence can be appreciated
in this case by considering that the definition given for type-schemes by Leroy in [13, Page 18–19]
is incorrect (it omits a side-condition).
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However, the notion of alpha-equivalence that is preserved by vacuous binders is not always
wanted. For example in terms like

let x = 3 and y = 2 in x − y end (1.4)

we might not care in which order the assignments x = 3 and y = 2 are given, but it would be often
unusual (particularly in strict languages) to regard (1.4) as alpha-equivalent with

let x = 3 and y = 2 and z = foo in x − y end

Therefore we will also provide a separate binding mechanism for cases in which the order of binders
does not matter, but the ‘cardinality’ of the binders has to agree.

However, we found that this is still not sufficient for dealing with language constructs frequently
occurring in programming language research. For example in lets containing patterns like

let (x, y) = (3, 2) in x − y end (1.5)

we want to bind all variables from the pattern inside the body of the let, but we also care about the
order of these variables, since we do not want to regard (1.5) as alpha-equivalent with

let (y, x) = (3, 2) in x − y end

As a result, we provide three general binding mechanisms each of which binds multiple variables at
once, and let the user choose which one is intended when formalising a term-calculus.

By providing these general binding mechanisms, however, we have to work around a problem
that has been pointed out by Pottier [19] and Cheney [7]: in let-constructs of the form

let x1 = t1 and . . . and xn = tn in s end

we care about the information that there are as many bound variables xi as there are ti. We lose this
information if we represent the let-constructor by something like

let (λx1. . . xn . s) [t1,. . . ,tn]

where the notation λ . indicates that the list of xi becomes bound in s. In this representation the
term let (λx . s) [t1, t2] is a perfectly legal instance, but the lengths of the two lists do not agree.
To exclude such terms, additional predicates about well-formed terms are needed in order to ensure
that the two lists are of equal length. This can result in very messy reasoning (see for example [3]).
To avoid this, we will allow type specifications for lets as follows

trm ::= . . .
| let as::assn s::trm binds bn(as) in s

assn ::= anil

| acons name trm assn
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where assn is an auxiliary type representing a list of assignments and bn an auxiliary function
identifying the variables to be bound by the let. This function can be defined by recursion over
assn as follows

bn(anil) = ∅ bn(acons x t as) = {x} ∪ bn(as)

The scope of the binding is indicated by labels given to the types, for example s::trm, and a binding
clause, in this case binds bn(as) in s. This binding clause states that all the names the function
bn(as) returns should be bound in s. This style of specifying terms and bindings is heavily inspired
by the syntax of the Ott-tool [22]. Our work extends Ott in several aspects: one is that we support
three binding modes—Ott has only one, namely the one where the order of binders matters. Another
is that our reasoning infrastructure, like strong induction principles and the notion of free variables,
is derived from first principles within the Isabelle/HOL theorem prover.

However, we will not be able to cope with all specifications that are allowed by Ott. One reason
is that Ott lets the user specify ‘empty’ types like t ::= t t | λx. t where no clause for variables is
given. Arguably, such specifications make some sense in the context of Coq’s type theory (which
Ott supports), but not at all in a HOL-based environment where every datatype must have a non-
empty set-theoretic model [4]. Another reason is that we establish the reasoning infrastructure for
alpha-equated terms. In contrast, Ott produces a reasoning infrastructure in Isabelle/HOL for non-
alpha-equated, or ‘raw’, terms. While our alpha-equated terms and the ‘raw’ terms produced by Ott
use names for bound variables, there is a key difference: working with alpha-equated terms means,
for example, that the two type-schemes

∀ {x}. x→ y = ∀ {x, z}. x→ y

are not just alpha-equal, but actually equal! As a result, we can only support specifications that
make sense on the level of alpha-equated terms (offending specifications, which for example bind a
variable according to a variable bound somewhere else, are not excluded by Ott, but we have to).

Our insistence on reasoning with alpha-equated terms comes from the wealth of experience
we gained with the older version of Nominal Isabelle: for non-trivial properties, reasoning with
alpha-equated terms is much easier than reasoning with ‘raw’ terms. The fundamental reason for
this is that the HOL-logic underlying Nominal Isabelle allows us to replace ‘equals-by-equals’. In
contrast, replacing ‘alpha-equals-by-alpha-equals’ in a representation based on ‘raw’ terms requires
a lot of extra reasoning work.

Although in informal settings a reasoning infrastructure for alpha-equated terms is nearly al-
ways taken for granted, establishing it automatically in Isabelle/HOL is a rather non-trivial task.
For every specification we will need to construct type(s) containing as elements the alpha-equated
terms. To do so, we use the standard HOL-technique of defining a new type by identifying a non-
empty subset of an existing type. The construction we perform in Isabelle/HOL can be illustrated
by the following picture:

α-
classes

α-eq.
terms

existing
type
(sets of raw terms)

non-empty
subset

new
type isomorphism

(1.6)
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We take as the starting point a definition of raw terms (defined as a datatype in Isabelle/HOL);
then identify the alpha-equivalence classes in the type of sets of raw terms according to our alpha-
equivalence relation, and finally define the new type as these alpha-equivalence classes (the non-
emptiness requirement is always satisfied whenever the raw terms are definable as datatype in Is-
abelle/HOL and our relation for alpha-equivalence is an equivalence relation).

The fact that we obtain an isomorphism between the new type and the non-empty subset shows
that the new type is a faithful representation of alpha-equated terms. That is not the case for example
for terms using the locally nameless representation of binders [14]: in this representation there are
‘junk’ terms that need to be excluded by reasoning about a well-formedness predicate.

The problem with introducing a new type in Isabelle/HOL is that in order to be useful, a rea-
soning infrastructure needs to be ‘lifted’ from the underlying subset to the new type. This is usually
a tricky and arduous task. To ease it, we re-implemented in Isabelle/HOL [10] the quotient package
described by Homeier [8] for the HOL4 system. This package allows us to lift definitions and the-
orems involving raw terms to definitions and theorems involving alpha-equated terms. For example
if we define the free-variable function over raw lambda-terms as follows

fv(x)
def
= {x}

fv(t1 t2)
def
= fv(t1) ∪ fv(t2)

fv(λx.t)
def
= fv(t) − {x}

then with the help of the quotient package we can obtain a function fvα operating on quotients, that
is alpha-equivalence classes of lambda-terms. This lifted function is characterised by the equations

fvα(x) = {x}
fvα(t1 t2) = fvα(t1) ∪ fvα(t2)
fvα(λx.t) = fvα(t) − {x}

(Note that this means also the term-constructors for variables, applications and lambda are lifted
to the quotient level.) This construction, of course, only works if alpha-equivalence is indeed an
equivalence relation, and the ‘raw’ definitions and theorems are respectful w.r.t. alpha-equivalence.
For example, we will not be able to lift a bound-variable function. Although this function can be
defined for raw terms, it does not respect alpha-equivalence and therefore cannot be lifted. To sum
up, every lifting of theorems to the quotient level needs proofs of some respectfulness properties (see
[8]). In the paper we show that we are able to automate these proofs and as a result can automatically
establish a reasoning infrastructure for alpha-equated terms.

The examples we have in mind where our reasoning infrastructure will be helpful include the
term language of Core-Haskell (see Figure 1). This term language involves patterns that have lists
of type-, coercion- and term-variables, all of which are bound in case-expressions. In these patterns
we do not know in advance how many variables need to be bound. Another example is the algorithm
W, which includes multiple binders in type-schemes.

Contributions: We provide three new definitions for when terms involving general binders are
alpha-equivalent. These definitions are inspired by earlier work of Pitts [17]. By means of automati-
cally-generated proofs, we establish a reasoning infrastructure for alpha-equated terms, including
properties about support, freshness and equality conditions for alpha-equated terms. We are also
able to automatically derive strong induction principles that have the variable convention already
built in. For this we simplify the earlier automated proofs by using the proving tools from the
function package [11] of Isabelle/HOL. The method behind our specification of general binders
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Type Kinds
κ ::= ? | κ1→ κ2

Coercion Kinds
ι ::= σ1 ∼ σ2

Types
σ ::= a | T | σ1 σ2 | Sn σn | ∀ a:κ. σ | ι⇒ σ

Coercion Types
γ ::= c | C | γ1 γ2 | Sn γn | ∀ c:ι. γ | ι⇒ γ | refl σ | sym γ | γ1 ◦ γ2

| γ @ σ | left γ | right γ | γ1 ∼ γ2 | rightc γ | leftc γ | γ1 . γ2
Terms

e ::= x | K | Λa:κ. e | Λc:ι. e | e σ | e γ | λx:σ. e | e1 e2
| let x:σ = e1 in e2 | case e1 of p→ e2 | e . γ

Patterns
p ::= K a:κ c:ι x:σ

Constants
C coercion constants
T value type constructors

Sn n-ary type functions (which need to be fully applied)
K data constructors

Variables
a type variables
c coercion variables
x term variables

Figure 1: The System FC [23], also often referred to as Core-Haskell. In this version of FC we
made a modification by separating the grammars for type kinds and coercion kinds, as
well as for types and coercion types. For this paper the interesting term-constructor is
case, which binds multiple type-, coercion- and term-variables (the overlines stand for
lists).

is taken from the Ott-tool, but we introduce crucial restrictions, and also extensions, so that our
specifications make sense for reasoning about alpha-equated terms. The main improvement over Ott
is that we introduce three binding modes (only one is present in Ott), provide formalised definitions
for alpha-equivalence and for free variables of our terms, and also derive a reasoning infrastructure
for our specifications from ‘first principles’ inside a theorem prover.

2. A SHORT REVIEW OF THE NOMINAL LOGIC WORK

At its core, Nominal Isabelle is an adaptation of the nominal logic work by Pitts [18]. This adapta-
tion for Isabelle/HOL is described in [9] (including proofs). We shall briefly review this work to aid
the description of what follows.

Two central notions in the nominal logic work are sorted atoms and sort-respecting permuta-
tions of atoms. We will use the letters a, b, c, . . . to stand for atoms and π, π1, . . . to stand for
permutations, which in Nominal Isabelle have type perm. The purpose of atoms is to represent
variables, be they bound or free. The sorts of atoms can be used to represent different kinds of
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variables, such as the term-, coercion- and type-variables in Core-Haskell. It is assumed that there
is an infinite supply of atoms for each sort. In the interest of brevity, we shall restrict ourselves in
what follows to only one sort of atoms.

Permutations are bijective functions from atoms to atoms that are the identity everywhere ex-
cept on a finite number of atoms. There is a two-place permutation operation written · and
having the type perm⇒ β ⇒ β where the generic type β is the type of the object over which the
permutation acts. In Nominal Isabelle, the identity permutation is written as 0, the composition of
two permutations π1 and π2 as π1 + π2, and the inverse permutation of π as − π. The permutation
operation is defined over Isabelle/HOL’s type-hierarchy [9]; for example permutations acting on
atoms, products, lists, permutations, sets, functions and booleans are given by:

π ·a
def
= π a

π · (x, y)
def
= (π ·x, π ·y)

π · []
def
= []

π · (x::xs)
def
= (π ·x)::(π ·xs)

π ·π ′ def
= π + π ′− π

π ·X
def
= {π ·x | x ∈ X}

π · f
def
= λx. π · (f (− π ·x))

π ·b
def
= b

(2.1)

Concrete permutations in Nominal Isabelle are built up from swappings, written as (a b), which are
permutations that behave as follows:

(a b) = λc. if a = c then b else if b = c then a else c

The most original aspect of the nominal logic work of Pitts is a general definition for the notion
of the ‘set of free variables of an object x’. This notion, written supp x, is general in the sense that
it applies not only to lambda-terms (alpha-equated or not), but also to lists, products, sets and even
functions. Its definition depends only on the permutation operation and on the notion of equality
defined for the type of x, namely:

supp x
def
= {a | infinite {b | (a b)·x 6= x}} (2.2)

There is also the derived notion for when an atom a is fresh for an x, defined as

a # x
def
= a /∈ supp x

We use for sets of atoms the abbreviation as #∗ x, defined as ∀ a∈as. a # x. A striking consequence
of these definitions is that we can prove without knowing anything about the structure of x that
swapping two fresh atoms, say a and b, leaves x unchanged, namely

Proposition 2.1. If a # x and b # x then (a b)·x = x.

While often the support of an object can be relatively easily described, for example for atoms,
products, lists, function applications, booleans and permutations as follows

supp a = {a}
supp (x, y) = supp x ∪ supp y

supp [] = ∅
supp (x::xs) = supp x ∪ supp xs

supp (f x) ⊆ supp f ∪ supp x
supp b = ∅
supp π = {a | π ·a 6= a}

(2.3)
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in some cases it can be difficult to characterise the support precisely, and only an approximation can
be established (as for function applications above). Reasoning about such approximations can be
simplified with the notion supports, defined as follows:

Definition 2.2. A set S supports x, if for all atoms a and b not in S we have (a b)·x = x.

The main point of supports is that we can establish the following two properties.

Proposition 2.3. Given a set bs of atoms.
(i) If bs supports x and finite bs then supp x ⊆ bs.
(ii) (supp x) supports x.

Another important notion in the nominal logic work is equivariance. For a function f to be
equivariant it is required that every permutation leaves f unchanged, that is

∀π. π · f = f . (2.4)

If a function is of type α⇒ β, say, this definition is equivalent to the fact that a permutation applied
to the application f x can be moved to the argument x. That means for such functions, we have for
all permutations π:

π · f = f if and only if ∀ x. π · (f x) = f (π ·x) . (2.5)

There is also a similar property for relations, which are in HOL functions of type α⇒ β ⇒ bool.
Suppose a relation R, then for all permutations π:

π ·R = R if and only if ∀ x y. x R y implies (π ·x) R (π ·y) .

Note that from property (2.4) and the definition of supp, we can easily deduce that for a function
being equivariant is equivalent to having empty support.

Using freshness, the nominal logic work provides us with general means for renaming binders.
While in the older version of Nominal Isabelle, we used extensively Proposition 2.1 to rename single
binders, this property proved too unwieldy for dealing with multiple binders. For such binders the
following generalisations turned out to be easier to use.

Proposition 2.4. If supp x #∗ π then π ·x = x.

Proposition 2.5. For a finite set as and a finitely supported x with as #∗ x and also a finitely
supported c, there exists a permutation π such that π ·as #∗ c and supp x #∗ π.

The idea behind the second property is that given a finite set as of binders (being bound, or fresh,
in x is ensured by the assumption as #∗ x), then there exists a permutation π such that the renamed
binders π · as avoid c (which can be arbitrarily chosen as long as it is finitely supported) and also
π does not affect anything in the support of x (that is supp x #∗ π). The last fact and Property 2.4
allow us to ‘rename’ just the binders as in x, because π ·x = x.

Note that supp x #∗ π is equivalent with supp π #∗ x, which means we could also formulate
Propositions 2.4 and 2.5 in the other ‘direction’; however the reasoning infrastructure of Nominal
Isabelle is set up so that it provides more automation for the formulation given above.

Most properties given in this section are described in detail in [9] and all are formalised in
Isabelle/HOL. In the next sections we will make use of these properties in order to define alpha-
equivalence in the presence of multiple binders.
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3. ABSTRACTIONS

In Nominal Isabelle, the user is expected to write down a specification of a term-calculus and then
a reasoning infrastructure is automatically derived from this specification (remember that Nominal
Isabelle is a definitional extension of Isabelle/HOL, which does not introduce any new axioms).

In order to keep our work with deriving the reasoning infrastructure manageable, we will wher-
ever possible state definitions and perform proofs on the ‘user-level’ of Isabelle/HOL, as opposed to
writing custom ML-code that generates them anew for each specification. To that end, we will con-
sider first pairs (as, x) of type (atom set) × β. These pairs are intended to represent the abstraction,
or binding, of the set of atoms as in the body x.

The first question we have to answer is when two pairs (as, x) and (bs, y) are alpha-equivalent?
(For the moment we are interested in the notion of alpha-equivalence that is not preserved by adding
vacuous binders.) To answer this question, we identify four conditions: (i) given a free-atom func-
tion fa of type β ⇒ atom set, then (as, x) and (bs, y) need to have the same set of free atoms;
moreover there must be a permutation π such that (ii) π leaves the free atoms of (as, x) and (bs, y)
unchanged, but (iii) ‘moves’ their bound names so that we obtain modulo a relation, say R , two
equivalent terms. We also require that (iv) π makes the sets of abstracted atoms as and bs equal.
The requirements (i) to (iv) can be stated formally as:

Definition 3.1 (Alpha-Equivalence for Set-Bindings).
(as, x) ≈ set

R, fa (bs, y)
def
= if there exists a π such that:

(i) fa x − as = fa y − bs
(ii) fa x − as #∗ π

(iii) (π ·x) R y
(iv) π ·as = bs

Note that the relation is dependent on a free-atom function fa and a relation R. The reason for this
extra generality is that we will use ≈R,fa

set for both raw terms and alpha-equated terms. In the latter
case, R will be replaced by equality = and we will prove that fa is equal to supp.

Definition 3.1 does not make any distinction between the order of abstracted atoms. If we want
this, then we can define alpha-equivalence for pairs of the form (as, x) with type (atom list) × β as
follows

Definition 3.2 (Alpha-Equivalence for List-Bindings).
(as, x) ≈ list

R, fa (bs, y)
def
= if there exists a π such that:

(i) fa x − set as = fa y − set bs
(ii) fa x − set as #∗ π

(iii) (π ·x) R y
(iv) π ·as = bs

where set is the function that coerces a list of atoms into a set of atoms. Now the last clause ensures
that the order of the binders matters (since as and bs are lists of atoms).

If we do not want to make any difference between the order of binders and also allow vacuous
binders, that means according to Pitts [17] restrict atoms, then we keep sets of binders, but drop
condition (iv) in Definition 3.1:

Definition 3.3 (Alpha-Equivalence for Set+-Bindings).
(as, x) ≈ set+

R, fa (bs, y)
def
= if there exists a π such that:

(i) fa x − as = fa y − bs
(ii) fa x − as #∗ π

(iii) (π ·x) R y
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It might be useful to consider first some examples how these definitions of alpha-equivalence
pan out in practice. For this consider the case of abstracting a set of atoms over types (as in type-
schemes). We set R to be the usual equality = and for fa(T) we define

fa(x)
def
= {x} fa(T1→ T2)

def
= fa(T1) ∪ fa(T2)

Now recall the examples shown in (1.2) and (1.3). It can be easily checked that ({x, y}, x→ y) and
({x, y}, y → x) are alpha-equivalent according to ≈ set and ≈ set+ by taking π to be the swapping
(x y). In case of x 6= y, then ([x, y], x→ y) 6≈ list ([y, x], x→ y) since there is no permutation that
makes the lists [x, y] and [y, x] equal, and also leaves the type x→ y unchanged. Another example is
({x}, x)≈ set+ ({x, y}, x) which holds by taking π to be the identity permutation. However, if x 6= y,
then ({x}, x) 6≈ set ({x, y}, x) since there is no permutation that makes the sets {x} and {x, y} equal
(similarly for≈ list). It can also relatively easily be shown that all three notions of alpha-equivalence
coincide, if we only abstract a single atom. In this case they also agree with the alpha-equivalence
used in older versions of Nominal Isabelle [26].1

In the rest of this section we are going to show that the alpha-equivalences really lead to ab-
stractions where some atoms are bound (or more precisely removed from the support). For this we
will consider three abstraction types that are quotients of the relations

(as, x) ≈ set
=, supp (bs, y)

(as, x) ≈ set+
=, supp (bs, y)

(as, x) ≈ list
=, supp (bs, y)

(3.1)

Note that in these relations we replaced the free-atom function fa with supp and the relation R with
equality. We can show the following two properties:

Lemma 3.4. The relations ≈=,supp
set , ≈=,supp

set+ and ≈=,supp
list are equivalence relations and equivariant.

Proof. Reflexivity is by taking π to be 0. For symmetry we have a permutation π and for the
proof obligation take −π. In case of transitivity, we have two permutations π1 and π2, and for the
proof obligation use π1 + π2. Equivariance means (π · as, π · x) ≈ set

=, supp (π · bs, π · y) holds
provided (as, x) ≈ set

=, supp (bs, y) holds. From the assumption we have a permutation π ′ and for the
proof obligation use π ·π ′. To show equivariance, we need to ‘pull out’ the permutations, which is
possible since all operators, namely as #∗, −, =, ·, set and supp, are equivariant (see [9]). Finally,
we apply the permutation operation on booleans.

Recall the picture shown in (1.6) about new types in HOL. The lemma above allows us to use our
quotient package for introducing new types β absset, β absset+ and β abslist representing alpha-
equivalence classes of pairs of type (atom set) × β (in the first two cases) and of type (atom list) ×
β (in the third case). The elements in these types will be, respectively, written as

[as]set.x [as]set+.x [as]list.x

indicating that a set (or list) of atoms as is abstracted in x. We will call the types abstraction
types and their elements abstractions. The important property we need to derive is the support of
abstractions, namely:

1We omit a proof of this fact since the details are hairy and not really important for the purpose of this paper.
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Theorem 3.5 (Support of Abstractions). Assuming x has finite support, then

supp [as]set.x = supp x − as
supp [as]set+.x = supp x − as
supp [as]list.x = supp x − set as

In effect, this theorem states that the atoms as are bound in the abstraction. As stated earlier, this can
be seen as a litmus test that our Definitions 3.1, 3.2 and 3.3 capture the idea of alpha-equivalence
relations. Below we will give the proof for the first equation of Theorem 3.5. The others follow by
similar arguments. By definition of the abstraction type absset we have

[as]set.x = [bs]set.y if and only if (as, x) ≈ set
=, supp (bs, y) (3.2)

and also set

π · [as]set.x
def
= [π ·as]set.(π ·x) (3.3)

With this at our disposal, we can show the following lemma about swapping two atoms in an ab-
straction.

Lemma 3.6. If a /∈ supp x − as and b /∈ supp x − as then [as]set.x = [(a b)·as]set.((a b)·x)

Proof. If a = b the lemma is immediate, since (a b) is then the identity permutation. Also in the
other case the lemma is straightforward using (3.2) and observing that the assumptions give us (a
b) · (supp x − as) = supp x − as. We therefore can use the swapping (a b) as the permutation for
the proof obligation.

This lemma together with (3.3) allows us to show

(supp x − as) supports [as]set.x (3.4)

which by Property 2.3 gives us ‘one half’ of Theorem 3.5. To establish the ‘other half’, we use a
trick from [17] and first define an auxiliary function aux, taking an abstraction as argument

aux ([as]set.x)
def
= supp x − as

Using the second equation in (2.5), we can show that aux is equivariant (since π · (supp x − as) =
supp (π ·x) − π ·as) and therefore has empty support. This in turn means

supp (aux ([as]set.x)) ⊆ supp [as]set.x

using the fact about the support of function applications in (2.3). Assuming supp x − as is a finite
set, we further obtain

supp x − as ⊆ supp [as]set.x (3.5)
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This is because for every finite set of atoms, say bs, we have supp bs = bs.2 Finally, taking (3.4)
and (3.5) together establishes the first equation of Theorem 3.5. The others are similar.

Recall the definition of support given in (2.2), and note the difference between the support of a
raw pair and an abstraction

supp (as, x) = supp as ∪ supp x supp [as]set.x = supp x − as

While the permutation operations behave in both cases the same (a permutation is just moved to the
arguments), the notion of equality is different for pairs and abstractions. Therefore we have different
supports. In case of abstractions, we have established in Theorem 3.5 that bound atoms are removed
from the support of the abstractions’ bodies.

The method of first considering abstractions of the form [as]set.x etc is motivated by the fact
that we can conveniently establish at the Isabelle/HOL level properties about them. It would be
extremely laborious to write custom ML-code that derives automatically such properties for every
term-constructor that binds some atoms. Also the generality of the definitions for alpha-equivalence
will help us in the next sections.

4. SPECIFYING GENERAL BINDINGS

Our choice of syntax for specifications is influenced by the existing datatype package of Isabelle/HOL
[4] and by the syntax of the Ott-tool [22]. For us a specification of a term-calculus is a collection
of (possibly mutually recursive) type declarations, say tyα1, . . . , tyαn, and an associated collection
of binding functions, say bnα1, . . . , bnαm. The syntax in Nominal Isabelle for such specifications is
schematically as follows:

type
declaration part


nominal datatype tyα1 = . . .

and tyα2 = . . .
. . .

and tyαn = . . .

binding
function part

 binder bnα1 and . . . and bnαm
where
. . .

(4.1)

Every type declaration tyα1..n consists of a collection of term-constructors, each of which comes with
a list of labelled types that stand for the types of the arguments of the term-constructor. For example
a term-constructor Cα might be specified with

Cα label1::ty′1. . . labell::ty′l binding clauses

whereby some of the ty′1..l (or their components) can be contained in the collection of tyα1..n declared
in (4.1). In this case we will call the corresponding argument a recursive argument of Cα. The types
of such recursive arguments need to satisfy a ‘positivity’ restriction, which ensures that the type has
a set-theoretic semantics (see [4]). If the types are polymorphic, we require the type variables to
stand for types that are finitely supported and over which a permutation operation is defined. The
labels label1..l annotated on the types are optional. Their purpose is to be used in the (possibly

2Note that this is not the case for infinite sets.
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empty) list of binding clauses, which indicate the binders and their scope in a term-constructor.
They come in three modes:

binds binders in bodies
binds (set) binders in bodies
binds (set+) binders in bodies

The first mode is for binding lists of atoms (the order of bound atoms matters); the second is for
sets of binders (the order does not matter, but the cardinality does) and the last is for sets of binders
(with vacuous binders preserving alpha-equivalence). As indicated, the labels in the ‘in-part’ of a
binding clause will be called bodies; the ‘binds-part’ will be called binders. In contrast to Ott, we
allow multiple labels in binders and bodies. For example we allow binding clauses of the form:

Foo1 x::name y::name t::trm s::trm binds x y in t s
Foo2 x::name y::name t::trm s::trm binds x y in t, binds x y in s

Similarly for the other binding modes. Interestingly, in case of binds (set) and binds (set+) the bind-
ing clauses above will make a difference to the semantics of the specifications (the corresponding
alpha-equivalence will differ). We will show this later with an example.

There are also some restrictions we need to impose on our binding clauses in comparison to
Ott. The main idea behind these restrictions is that we obtain a notion of alpha-equivalence where it
is ensured that within a given scope an atom occurrence cannot be both bound and free at the same
time. The first restriction is that a body can only occur in one binding clause of a term constructor.
So for example

Foo x::name y::name t::trm binds x in t, binds y in t

is not allowed. This ensures that the bound atoms of a body cannot be free at the same time by
specifying an alternative binder for the same body.

For binders we distinguish between shallow and deep binders. Shallow binders are just labels.
The restriction we need to impose on them is that in case of binds (set) and binds (set+) the labels
must either refer to atom types or to sets of atom types; in case of binds the labels must refer to atom
types or to lists of atom types. Two examples for the use of shallow binders are the specification
of lambda-terms, where a single name is bound, and type-schemes, where a finite set of names is
bound:

nominal datatype lam =
Var name
| App lam lam
| Lam x::name t::lam binds x in t

nominal datatype ty =
TVar name
| TFun ty ty

and tsc =
TAll xs::(name fset) T::ty binds (set+) xs in T

In these specifications name refers to a (concrete) atom type, and fset to the type of finite sets. Note
that for Lam it does not matter which binding mode we use. The reason is that we bind only a single
name, in which case all three binding modes coincide. However, having binds (set) or just binds
in the second case makes a difference to the semantics of the specification (which we will define in
the next section).
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A deep binder uses an auxiliary binding function that ‘picks’ out the atoms in one argument of
the term-constructor, which can be bound in other arguments and also in the same argument (we
will call such binders recursive, see below). The binding functions are expected to return either a set
of atoms (for binds (set) and binds (set+)) or a list of atoms (for binds). They need to be defined
by recursion over the corresponding type; the equations must be given in the binding function part
of the scheme shown in (4.1). For example a term-calculus containing Lets with tuple patterns may
be specified as:

nominal datatype trm =
Var name
| App trm trm
| Lam x::name t::trm binds x in t
| Let pat p::pat trm t::trm binds bn(p) in t

and pat =
PVar name
| PTup pat pat

binder bn::pat⇒ atom list
where bn(PVar x) = [atom x]
| bn(PTup p1 p2) = bn(p1) @ bn(p2)

(4.2)

In this specification the function bn determines which atoms of the pattern p (fifth line) are bound
in the argument t. Note that in the second-last bn-clause the function atom coerces a name into the
generic atom type of Nominal Isabelle [9]. This allows us to treat binders of different atom type
uniformly.

For deep binders we allow binding clauses such as

Bar p::pat t::trm binds bn(p) in p t

where the argument of the deep binder also occurs in the body. We call such binders recursive.
To see the purpose of such recursive binders, compare ‘plain’ Lets and Let recs in the following
specification:

nominal datatype trm =
. . .
| Let as::assn t::trm binds bn(as) in t
| Let rec as::assn t::trm binds bn(as) in as t

and assn =
ANil
| ACons name trm assn

binder bn::assn⇒ atom list
where bn(ANil) = []
| bn(ACons a t as) = [atom a] @ bn(as)

(4.3)

The difference is that with Let we only want to bind the atoms bn(as) in the term t, but with Let rec
we also want to bind the atoms inside the assignment. This difference has consequences for the
associated notions of free-atoms and alpha-equivalence.

To make sure that atoms bound by deep binders cannot be free at the same time, we cannot have
more than one binding function for a deep binder. Consequently we exclude specifications such as
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Baz1 p::pat t::trm binds bn1(p) bn2(p) in t
Baz2 p::pat t1::trm t2::trm binds bn1(p) in t1, binds bn2(p) in t2

Otherwise it is possible that bn1 and bn2 pick out different atoms to become bound, respectively be
free, in p.3,4

We also need to restrict the form of the binding functions in order to ensure the bn-functions
can be defined for alpha-equated terms. The main restriction is that we cannot return an atom in
a binding function that is also bound in the corresponding term-constructor. Consider again the
specification for trm and a contrived version for assignments assn:

nominal datatype trm = . . .
and assn =

ANil ′

| ACons ′ x::name y::name t::trm assn binds y in t
binder bn::assn⇒ atom list
where bn(ANil ′) = []
| bn(ACons ′ x y t as) = [atom x] @ bn(as)

(4.4)

In this example the term constructor ACons ′ has four arguments with a binding clause involving
two of them. This constructor is also used in the definition of the binding function. The restriction
we have to impose is that the binding function can only return free atoms, that is the ones that are
not mentioned in a binding clause. Therefore y cannot be used in the binding function bn (since
it is bound in ACons ′ by the binding clause), but x can (since it is a free atom). This restriction is
sufficient for lifting the binding function to alpha-equated terms. If we would permit bn to return y,
then it would not be respectful and therefore cannot be lifted to alpha-equated lambda-terms.

In the version of Nominal Isabelle described here, we also adopted the restriction from the Ott-
tool that binding functions can only return: the empty set or empty list (as in case ANil ′), a singleton
set or singleton list containing an atom (case PVar in (4.2)), or unions of atom sets or appended
atom lists (case ACons ′). This restriction will simplify some automatic definitions and proofs later
on.

In order to simplify our definitions of free atoms and alpha-equivalence, we shall assume spec-
ifications of term-calculi are implicitly completed. By this we mean that for every argument of a
term-constructor that is not already part of a binding clause given by the user, we add implicitly a
special empty binding clause, written binds ∅ in labels. In case of the lambda-terms, the completion
produces

nominal datatype lam =
Var x::name binds ∅ in x
| App t1::lam t2::lam binds ∅ in t1 t2
| Lam x::name t::lam binds x in t

The point of completion is that we can make definitions over the binding clauses and be sure to have
captured all arguments of a term constructor.

3Although harmless, in our implementation we exlude such specifications even if bn1 and bn2 are the same binding
functions.
4Since the Ott-tool does not derive a reasoning infrastructure for alpha-equated terms with deep binders, it can permit
such specifications.
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5. ALPHA-EQUIVALENCE AND FREE ATOMS

Having dealt with all syntax matters, the problem now is how we can turn specifications into actual
type definitions in Isabelle/HOL and then establish a reasoning infrastructure for them. As Pot-
tier and Cheney pointed out [7, 19], just re-arranging the arguments of term-constructors so that
binders and their bodies are next to each other will result in inadequate representations in cases
like Let x1 = t1. . . xn = tn in s. Therefore we will first extract ‘raw’ datatype definitions from the
specification and then define explicitly an alpha-equivalence relation over them. We subsequently
construct the quotient of the datatypes according to our alpha-equivalence.

The ‘raw’ datatype definition can be obtained by stripping off the binding clauses and the labels
from the types given by the user. We also have to invent new names for the types tyα and the term-
constructors Cα. In our implementation we just use the affix “ raw”. But for the purpose of this
paper, we use the superscript α to indicate that a notion is given for alpha-equivalence classes and
leave it out for the corresponding notion given on the raw level. So for example we have tyα / ty and
Cα / C where ty is the type used in the quotient construction for tyα and C is the term-constructor
of the raw type ty, respectively Cα is the corresponding term-constructor of tyα.

The resulting datatype definition is legal in Isabelle/HOL provided the datatypes are non-empty
and the types in the constructors only occur in positive position (see [4] for an in-depth description of
the datatype package in Isabelle/HOL). We subsequently define each of the user-specified binding
functions bn1..m by recursion over the corresponding raw datatype. We also define permutation
operations by recursion so that for each term constructor C we have that

π · (C z1 . . . zn) = C (π · z1) . . . (π · zn) (5.1)

We will need this operation later when we define the notion of alpha-equivalence.
The first non-trivial step we have to perform is the generation of free-atom functions from the

specifications.5 For the raw types ty1..n we define the free-atom functions

fa ty1..n (5.2)

by recursion. We define these functions together with auxiliary free-atom functions for the binding
functions. Given raw binding functions bn1..m we define

fa bn1..m.

The reason for this setup is that in a deep binder not all atoms have to be bound, as we saw in (4.3)
with the example of ‘plain’ Lets. We need therefore functions that calculate those free atoms in deep
binders.

While the idea behind these free-atom functions is simple (they just collect all atoms that are
not bound), because of our rather complicated binding mechanisms their definitions are somewhat
involved. Given a raw term-constructor C of type ty and some associated binding clauses bc1. . . bck,
the result of fa ty (C z1 . . . zn) will be the union fa(bc1)∪ . . . ∪ fa(bck) where we will define below
what fa for a binding clause means. We only show the details for the mode binds (set) (the other
modes are similar). Suppose the binding clause bci is of the form

5Admittedly, the details of our definitions will be somewhat involved. However they are still conceptually simple in
comparison with the ‘positional’ approach taken in Ott [22, Pages 88–95], which uses the notions of occurrences and
partial equivalence relations over sets of occurrences.
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binds (set) b1. . . bp in d1. . . dq

in which the body-labels d1..q refer to types ty1..q, and the binders b1..p either refer to labels of atom
types (in case of shallow binders) or to binding functions taking a single label as argument (in case
of deep binders). Assuming D stands for the set of free atoms of the bodies, B for the set of binding
atoms in the binders and B ′ for the set of free atoms in non-recursive deep binders, then the free
atoms of the binding clause bci are

fa(bci)
def
= (D − B) ∪ B ′. (5.3)

The set D is formally defined as

D
def
= fa ty1 d1 ∪ ... ∪ fa tyq dq

where in case di refers to one of the raw types ty1..n from the specification, the function fa tyi is the

corresponding free-atom function we are defining by recursion; otherwise we set fa tyi
def
= supp.

The reason for the latter is that tyi is not a type that is part of the specification, and we assume
supp is the generic function that characterises the free variables of a type (in fact in the next section
we will show that the free-variable functions we define here, are equal to the support once lifted to
alpha-equivalence classes).

In order to formally define the set B we use the following auxiliary bn-functions for atom types
to which shallow binders may refer

bnatom a
def
= {atom a}

bnatom set as
def
= atoms as

bnatom list as
def
= atoms (set as)

(5.4)

Like the function atom, the function atoms coerces a set of atoms to a set of the generic atom type.

It is defined as atoms as
def
= {atom a | a ∈ as}. The set B in (5.3) is then formally defined as

B
def
= bn ty1 b1 ∪ ... ∪ bn typ bp (5.5)

where we use the auxiliary binding functions from (5.4) for shallow binders (that means when tyi is
of type atom, atom set or atom list).

The set B ′ in (5.3) collects all free atoms in non-recursive deep binders. Let us assume these
binders in the binding clause bci are

bn1 l1, . . . , bnr lr

with l1..r ⊆ b1..p and none of the l1..r being among the bodies d1..q. The set B ′ is defined as

B ′
def
= fa bn1 l1 ∪ ... ∪ fa bnr lr (5.6)
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This completes all clauses for the free-atom functions fa ty1..n.
Note that for non-recursive deep binders, we have to add in (5.3) the set of atoms that are left un-

bound by the binding functions bn1..m. We used for the definition of this set the functions fa bn1..m.
The definition for those functions needs to be extracted from the clauses the user provided for bn1..m
Assume the user specified a bn-clause of the form

bn (C z1 . . . zs) = rhs

where the z1..s are of types ty1..s. For each of the arguments we calculate the free atoms as follows:

• fa tyi zi provided zi does not occur in rhs
(that means nothing is bound in zi by the binding function),

• fa bni zi provided zi occurs in rhs with the recursive call bni zi
(that means whatever is ‘left over’ from the bn-function is free)

• ∅ provided zi occurs in rhs, but without a recursive call
(that means zi is supposed to become bound by the binding function)

For defining fa bn (C z1 . . . zn) we just union up all these sets.
To see how these definitions work in practice, let us reconsider the term-constructors Let and

Let rec shown in (4.3) together with the term-constructors for assignments ANil and ACons. Since
there is a binding function defined for assignments, we have three free-atom functions, namely fatrm,
faassn and fabn as follows:

fatrm (Let as t)
def
= (fatrm t − set (bn as)) ∪ fabn as

fatrm (Let rec as t)
def
= (faassn as ∪ fatrm t) − set (bn as)

faassn (ANil)
def
= ∅

faassn (ACons a t as)
def
= (supp a) ∪ (fatrm t) ∪ (faassn as)

fabn (ANil)
def
= ∅

fabn (ACons a t as)
def
= (fatrm t) ∪ (fabn as)

Recall that ANil and ACons have no binding clause in the specification. The corresponding free-
atom function faassn therefore returns all free atoms of an assignment (in case of ACons, they are
given in terms of supp, fatrm and faassn). The binding only takes place in Let and Let rec. In case of
Let, the binding clause specifies that all atoms given by set (bn as) have to be bound in t. Therefore
we have to subtract set (bn as) from fatrm t. However, we also need to add all atoms that are free
in as. This is in contrast with Let rec where we have a recursive binder to bind all occurrences of
the atoms in set (bn as) also inside as. Therefore we have to subtract set (bn as) from both fatrm t
and faassn as. Like the function bn, the function fabn traverses the list of assignments, but instead
returns the free atoms, which means in this example the free atoms in the argument t.

An interesting point in this example is that a ‘naked’ assignment (ANil or ACons) does not bind
any atoms, even if the binding function is specified over assignments. Only in the context of a Let
or Let rec, where the binding clauses are given, will some atoms actually become bound. This is a
phenomenon that has also been pointed out in [22]. For us this observation is crucial, because we
would not be able to lift the bn-functions to alpha-equated terms if they act on atoms that are bound.
In that case, these functions would not respect alpha-equivalence.
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Having the free-atom functions at our disposal, we can next define the alpha-equivalence rela-
tions for the raw types ty1..n. We write them as

≈ty1..n.

Like with the free-atom functions, we also need to define auxiliary alpha-equivalence relations

≈bn1..m

for the binding functions bn1..m, To simplify our definitions we will use the following abbreviations
for compound equivalence relations and compound free-atom functions acting on tuples.

(x1,. . . , xn) (R1,. . . , Rn) (y1,. . . , yn)
def
= x1 R1 y1 ∧ . . . ∧ xn Rn yn

(fa1,. . . , fan) (x1,. . . , xn)
def
= fa1 x1 ∪ . . . ∪ fan xn

The alpha-equivalence relations are defined as inductive predicates having a single clause for
each term-constructor. Assuming a term-constructor C is of type ty and has the binding clauses
bc1..k, then the alpha-equivalence clause has the form

prems(bc1) . . . prems(bck)
C z1 . . . zn ≈ty C z′1 . . . z′n

The task below is to specify what the premises corresponding to a binding clause are. To understand
better what the general pattern is, let us first treat the special instance where bci is the empty binding
clause of the form

binds (set) ∅ in d1. . . dq.

In this binding clause no atom is bound and we only have to ‘alpha-relate’ the bodies. For this we

build first the tuples D
def
= (d1,. . . , dq) and D ′

def
= (d′1,. . . , d′q) whereby the labels d1..q refer to

some of the arguments z1..n and respectively d′1..q to some of z′1..n of the term-constructor. In order
to relate two such tuples we define the compound alpha-equivalence relation R as follows

R
def
= (R1,. . . , Rq) (5.7)

with Ri being ≈tyi if the corresponding labels di and d′i refer to a recursive argument of C and have
type tyi; otherwise we take Ri to be the equality =. Again the latter is because tyi is not part of the
specified types and alpha-equivalence of any previously defined type is supposed to coincide with
equality. This lets us now define the premise for an empty binding clause succinctly as prems(bci)
def
= D R D ′, which can be unfolded to the series of premises

d1 R1 d′1 . . . dq Rq d′q.

We will use the unfolded version in the examples below.
Now suppose the binding clause bci is of the general form
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binds (set) b1. . . bp in d1. . . dq. (5.8)

In this case we define a premise P using the relation ≈R,fa
set given in Section 3 (similarly ≈R,fa

set+ and
≈R,fa

list for the other binding modes). As above, we first build the tuples D and D ′ for the bodies
d1..q, and the corresponding compound alpha-relation R (shown in (5.7)). For ≈R,fa

set we also need a
compound free-atom function for the bodies defined as

fa
def
= (fa ty1,. . . , fa tyq)

with the assumption that the d1..q refer to arguments of types ty1..q. The last ingredient we need are
the sets of atoms bound in the bodies. For this we take

B
def
= bn ty1 b1 ∪ . . . ∪ bn typ bp .

Similarly for B ′ using the labels b′1..p. This lets us formally define the premise P for a non-empty
binding clause as:

P
def
= (B, D) ≈ set

R, fa (B ′, D ′) .

This premise accounts for alpha-equivalence of the bodies of the binding clause. However, in case
the binders have non-recursive deep binders, this premise is not enough: we also have to ‘propagate’
alpha-equivalence inside the structure of these binders. An example is Let where we have to make
sure the right-hand sides of assignments are alpha-equivalent. For this we use relations ≈bn1..m
(which we will define shortly). Let us assume the non-recursive deep binders in bci are

bn1 l1, . . . , bnr lr.

The tuple L consists then of all these binders (l1,. . . ,lr) (similarly L ′) and the compound equivalence
relation R ′ is (≈bn1,. . . ,≈bnr). All premises for bci are then given by

prems(bci)
def
= P ∧ L R ′ L ′

The auxiliary alpha-equivalence relations≈bn1..m in R ′are defined as follows: assuming a bn-clause
is of the form

bn (C z1 . . . zs) = rhs

where the z1..s are of types ty1..s, then the corresponding alpha-equivalence clause for ≈bn has the
form

z1 R1 z′1 . . . zs Rs z′s
C z1 . . . zs ≈bn C z′1 . . . z′s

In this clause the relations R1..s are given by
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• zi ≈ty z′i provided zi does not occur in rhs and is a recursive argument of C,
• zi = z′i provided zi does not occur in rhs and is a non-recursive argument of C,
• zi ≈bni z′i provided zi occurs in rhs with the recursive call bni xi and
• True provided zi occurs in rhs but without a recursive call.

This completes the definition of alpha-equivalence. As a sanity check, we can show that the premises
of empty binding clauses are a special case of the clauses for non-empty ones (we just have to unfold
the definition of ≈R,fa

set and take 0 for the existentially quantified permutation).
Again let us take a look at a concrete example for these definitions. For the specification shown

in (4.3) we have three relations ≈trm, ≈assn and ≈bn with the following rules:

(bn as, t) ≈ list
≈trm, fatrm (bn as ′, t ′) as ≈bn as ′

Let as t ≈trm Let as ′ t ′

(bn as, (as, t)) ≈ list
(≈assn, ≈trm), (faassn, fatrm) (bn as ′, (as, t′))

Let rec as t ≈trm Let rec as ′ t ′

ANil ≈assn ANil
a = a ′ t ≈trm t ′ as ≈assn as ′

ACons a t as ≈assn ACons a ′ t ′ as

ANil ≈bn ANil
t ≈trm t ′ as ≈bn as ′

ACons a t as ≈bn ACons a ′ t ′ as

(5.9)

Notice the difference between ≈assn and ≈bn: the latter only ‘tracks’ alpha-equivalence of the com-
ponents in an assignment that are not bound. This is needed in the clause for Let (which has a
non-recursive binder). The underlying reason is that the terms inside an assignment are not meant
to be ‘under’ the binder. Such a premise is not needed in Let rec, because there all components of
an assignment are ‘under’ the binder. Note also that in case of more than one body (that is in the
Let rec-case above) we need to parametrise the relation ≈list with a compound equivalence relation
and a compound free-atom function. This is because the corresponding binding clause specifies a
binder with two bodies, namely as and t.

6. ESTABLISHING THE REASONING INFRASTRUCTURE

Having made all necessary definitions for raw terms, we can start with establishing the reasoning
infrastructure for the alpha-equated types tyα1..n, that is the types the user originally specified. We
give in this section and the next the proofs we need for establishing this infrastructure. One point of
our work is that we have completely automated these proofs in Isabelle/HOL.

First we establish that the free-variable functions, the binding functions and the alpha-equiva-
lences are equivariant.

Lemma 6.1.
(i) The functions fa ty1..n, fa bn1..m and bn1..m are equivariant.
(ii) The relations ≈ty1..n and ≈bn1..m are equivariant.
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Proof. The function package of Isabelle/HOL allows us to prove the first part by mutual induction
over the definitions of the functions.6 The second is by a straightforward induction over the rules of
≈ty1..n and ≈bn1..m using the first part.

Next we establish that the alpha-equivalence relations defined in the previous section are indeed
equivalence relations.

Lemma 6.2. The relations ≈ty1..n and ≈bn1..m are equivalence relations.

Proof. The proofs are by induction. The non-trivial cases involve premises built up by ≈set, ≈set+
and ≈list. They can be dealt with as in Lemma 3.4. However, the transitivity case needs in addition
the fact that the relations are equivariant.

We can feed the last lemma into our quotient package and obtain new types tyα1..n representing
alpha-equated terms of types ty1..n. We also obtain definitions for the term-constructors Cα1..k from
the raw term-constructors C1..k, and similar definitions for the free-atom functions fa tyα1..n and
fa bnα1..m as well as the binding functions bnα1..m. However, these definitions are not really useful
to the user, since they are given in terms of the isomorphisms we obtained by creating new types in
Isabelle/HOL (recall the picture shown in the Introduction).

The first useful property for the user is the fact that distinct term-constructors are not equal, that
is the property

Cα x1 . . . xr 6= Dα y1 . . . ys (6.1)

whenever Cα 6= Dα. In order to derive this property, we use the definition of alpha-equivalence and
establish that

C x1 . . . xr 6≈ty D y1 . . . ys (6.2)

holds for the corresponding raw term-constructors. In order to deduce (6.1) from (6.2), our quo-
tient package needs to know that the raw term-constructors C and D are respectful w.r.t. the alpha-
equivalence relations (see [8]). Given, for example, C is of type ty with argument types ty1..r,
respectfulness amounts to showing that

C x1 . . . xr ≈ty C x′1 . . . x′r

holds under the assumptions xi ≈tyi x′i whenever xi and x′i are recursive arguments of C, and xi = x′i
whenever they are non-recursive arguments (similarly for D). For this we have to show by induction
over the definitions of alpha-equivalences the following auxiliary implications

x ≈tyi x ′ implies fa tyi x = fa tyi x ′

x ≈tyl x ′ implies fa bnj x = fa bnj x ′

x ≈tyl x ′ implies bnj x = bnj x ′

x ≈tyl x ′ implies x ≈bnj x ′
(6.3)

whereby tyl is the type over which bnj is defined. Whereas the first, second and last implication are
true by how we stated our definitions, the third only holds because of our restriction imposed on the
form of the binding functions—namely not to return any bound atoms. In Ott, in contrast, the user

6We have that the free-atom functions are terminating. From this the function package derives an induction principle [11].
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may define bn1..m so that they return bound atoms and in this case the third implication is not true.
A result is that in general the lifting of the corresponding binding functions in Ott to alpha-equated
terms is impossible. Having established respectfulness for the raw term-constructors, the quotient
package is able to automatically deduce (6.1) from (6.2).

Next we can lift the permutation operations defined in (5.1). In order to make this lifting to go
through, we have to show that the permutation operations are respectful. This amounts to showing
that the alpha-equivalence relations are equivariant, which we already established in Lemma 6.2.
As a result we can add the equations

π · (Cα x1 . . . xr) = Cα (π ·x1) . . . (π ·xr) (6.4)

to our infrastructure. In a similar fashion we can lift the defining equations of the free-atom functions
fa tyα1..n and fa bnα1..m as well as of the binding functions bnα1..m and size functions size tyα1..n. The
latter are defined automatically for the raw types ty1..n by the datatype package of Isabelle/HOL.

We also need to lift the properties that characterise when two raw terms of the form

C x1 . . . xr ≈ty C x′1 . . . x′r

are alpha-equivalent. This gives us conditions when the corresponding alpha-equated terms are
equal, namely

Cα x1 . . . xr = Cα x′1 . . . x′r.

We call these conditions quasi-injectivity. They correspond to the premises in our alpha-equivalence
relations, except that the relations ≈ty1..n are all replaced by equality (and similarly the free-atom
and binding functions are replaced by their lifted counterparts). Recall the alpha-equivalence rules
for Let and Let rec shown in (5.9). For Letα and Let recα we have

(bnα as, t) ≈ list
=, faαtrm (bn as ′, t ′) as ≈αbn as ′

Letα as t = Letα as ′ t ′

(bnα as, (as, t)) ≈ list
(=, =), (faαassn, faαtrm) (bnα as ′, (as, t′))

Let recα as t = Let recα as ′ t ′

(6.5)

We can also add to our infrastructure cases lemmas and a (mutual) induction principle for the
types tyα1..n. The cases lemmas allow the user to deduce a property P by exhaustively analysing
how an element of a type, say tyαi, can be constructed (that means one case for each of the term-
constructors in tyαi ). The lifted cases lemma for the type tyαi looks as follows

∀ x1. . . xk. y = Cα1 x1 . . . xk ⇒ P
...

∀ x1. . . xl. y = Cαm x1 . . . xl ⇒ P
P (6.6)

where y is a variable of type tyαi and P is the property that is established by the case analysis.
Similarly, we have a (mutual) induction principle for the types tyα1..n, which is of the form
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∀ x1. . . xk. Pi xi ∧ . . . ∧ Pj xj ⇒ P (Cα1 x1 . . . xk)
...

∀ x1. . . xl. Pr xr ∧ . . . ∧ Ps xs⇒ P (Cαm x1 . . . xl)
P1 y1 ∧ . . . ∧ Pn yn (6.7)

whereby the P1..n are the properties established by the induction, and the y1..n are of type tyα1..n.
Note that for the term constructor Cα1 the induction principle has a hypothesis of the form

∀ x1. . . xk. Pi xi ∧ . . . ∧ Pj xj ⇒ P (Cα1 x1 . . . xk)

in which the xi..j ⊆ x1..k are the recursive arguments of this term constructor (similarly for the other
term-constructors).

Recall the lambda-calculus with Let-patterns shown in (4.2). The cases lemmas and the induc-
tion principle shown in (6.6) and (6.7) boil down in that example to the following three inference
rules:

cases lemmas:
∀ x. y = Varα x⇒ Ptrm
∀ x1 x2. y = Appα x1 x2⇒ Ptrm
∀ x1 x2. y = Lamα x1 x2⇒ Ptrm
∀ x1 x2 x3. y = Let patα x1 x2 x3⇒ Ptrm

Ptrm

∀ x. y = PVarα x⇒ Ppat
∀ x1 x2. y = PTupα x1 x2⇒ Ppat

Ppat

induction principle:
∀ x. Ptrm (Varα x)
∀ x1 x2. Ptrm x1 ∧ Ptrm x2⇒ Ptrm (Appα x1 x2)
∀ x1 x2. Ptrm x2⇒ Ptrm (Lamα x1 x2)
∀ x1 x2 x3. Ppat x1 ∧ Ptrm x2 ∧ Ptrm x3⇒ Ptrm (Let patα x1 x2 x3)
∀ x. Ppat (PVarα x)
∀ x1 x2. Ppat x1 ∧ Ppat x2⇒ Ppat (PTupα x1 x2)

Ptrm y1 ∧ Ppat y2

(6.8)

By working now completely on the alpha-equated level, we can first show using (6.4) and
Property 2.1 that the support of each term constructor is included in the support of its arguments,
namely

(supp x1 ∪ . . . ∪ supp xr) supports (Cα x1 . . . xr)

This allows us to prove using the induction principle for tyα1..n that every element of type tyα1..n
is finitely supported (using Proposition 2.3(i)). Similarly, we can establish by induction that the
free-atom functions and binding functions are equivariant, namely

π · (fa tyαi x) = fa tyαi (π ·x)
π · (fa bnαj x) = fa bnαj (π ·x)

π · (bnαj x) = bnαj (π ·x)
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Lastly, we can show that the support of elements in tyα1..n is the same as the free-atom functions
fa tyα1..n. This fact is important in the nominal setting where the general theory is formulated in
terms of support and freshness, but also provides evidence that our notions of free-atoms and alpha-
equivalence ‘match up’ correctly.

Theorem 6.3. For x1..n with type tyα1..n, we have supp xi = fa tyαi xi.

Proof. The proof is by induction on x1..n. In each case we unfold the definition of supp, move
the swapping inside the term-constructors and then use the quasi-injectivity lemmas in order to
complete the proof. For the abstraction cases we use then the facts derived in Theorem 3.5, for
which we have to know that every body of an abstraction is finitely supported. This, we have proved
earlier.

Consequently, we can replace the free-atom functions by supp in our quasi-injection lemmas. In the
examples shown in (6.5), for instance, we obtain for Letα and Let recα

(bnα as, t) ≈ list
=, supp (bnα as ′, t ′) as ≈αbn as ′

Letα as t = Letα as ′ t ′

(bnα as, (as, t)) ≈ list
(=, =), (supp, supp) (bnα as ′, (as, t′))

Let recα as t = Let recα as ′ t ′

Taking into account that the compound equivalence relation (=, =) and the compound free-atom
function (supp, supp) are by definition equal to = and supp, respectively, the above rules simplify
further to

[bnα as]list.t = [bnα as ′]list.t ′ as ≈αbn as ′

Letα as t = Letα as ′ t ′

[bnα as]list.(as, t) = [bnα as ′]list.(as, t′)
Let recα as t = Let recα as ′ t ′

which means we can characterise equality between term-constructors (on the alpha-equated level)
in terms of equality between the abstractions defined in Section 3. From this we can deduce the
support for Letα and Let recα, namely

supp (Letα as t) = (supp t − set (bnα as)) ∪ faαbn as
supp (Let recα as t) = (supp t ∪ supp as) − set (bnα as)

using the support of abstractions derived in Theorem 3.5.
To sum up this section, we have established a reasoning infrastructure for the types tyα1..n by

first lifting definitions from the ‘raw’ level to the quotient level and then by proving facts about
these lifted definitions. All necessary proofs are generated automatically by custom ML-code.
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7. STRONG INDUCTION PRINCIPLES

In the previous section we derived induction principles for alpha-equated terms (see (6.7) for the
general form and (6.8) for an example). This was done by lifting the corresponding inductions
principles for ‘raw’ terms. We already employed these induction principles for deriving several facts
about alpha-equated terms, including the property that the free-atom functions and the notion of
support coincide. Still, we call these induction principles weak, because for a term-constructor, say
Cα x1. . . xr, the induction hypothesis requires us to establish (under some assumptions) a property
P (Cα x1. . . xr) for all x1..r. The problem with this is that in the presence of binders we cannot make
any assumptions about the atoms that are bound—for example assuming the variable convention.
One obvious way around this problem is to rename bound atoms. Unfortunately, this leads to very
clunky proofs and makes formalisations grievous experiences (especially in the context of multiple
bound atoms).

For the older versions of Nominal Isabelle we described in [26] a method for automatically
strengthening weak induction principles. These stronger induction principles allow the user to make
additional assumptions about bound atoms. The advantage of these assumptions is that they make in
most cases any renaming of bound atoms unnecessary. To explain how the strengthening works, we
use as running example the lambda-calculus with Let-patterns shown in (4.2). Its weak induction
principle is given in (6.8). The stronger induction principle is as follows:

∀ x c. Ptrm c (Varα x)
∀ x1 x2 c. (∀ d. Ptrm d x1) ∧ (∀ d. Ptrm d x2)⇒ Ptrm c (Appα x1 x2)
∀ x1 x2 c. atom x1 # c ∧ (∀ d. Ptrm d x2)⇒ Ptrm c (Lamα x1 x2)
∀ x1 x2 x3 c. (set (bnα x1)) #∗ c ∧

(∀ d. Ppat d x1) ∧ (∀ d. Ptrm d x2) ∧ (∀ d. Ptrm d x3)⇒ Ptrm c (Let patα x1 x2 x3)
∀ x c. Ppat c (PVarα x)
∀ x1 x2 c. (∀ d. Ppat d x1) ∧ (∀ d. Ppat d x2)⇒ Ppat c (PTupα x1 x2)

Ptrm c y1 ∧ Ppat c y2
(7.1)

Notice that instead of establishing two properties of the form Ptrm y1 ∧ Ppat y2, as the weak one
does, the stronger induction principle establishes the properties of the form Ptrm c y1 ∧ Ppat c y2 in
which the additional parameter c is assumed to be of finite support. The purpose of c is to ‘control’
which freshness assumptions the binders should satisfy in the Lamα and Let patα cases: for Lamα

we can assume the bound atom x1 is fresh for c (third line); for Let patα we can assume all bound
atoms from an assignment are fresh for c (fourth line). In order to see how an instantiation for c
in the conclusion ‘controls’ the premises, one has to take into account that Isabelle/HOL is a typed
logic. That means if c is instantiated with, for example, a pair, then this type-constraint will be
propagated to the premises. The main point is that if c is instantiated appropriately, then the user
can mimic the usual ‘pencil-and-paper’ reasoning employing the variable convention about bound
and free variables being distinct [26].

In what follows we will show that the weak induction principle in (6.8) implies the strong
one (7.1). This fact was established for single binders in [26] by some quite involved, nevertheless
automated, induction proof. In this paper we simplify the proof by leveraging the automated proving
tools from the function package of Isabelle/HOL [11]. The reasoning principle behind these tools is
well-founded induction. To use them in our setting, we have to discharge two proof obligations: one
is that we have well-founded measures (one for each type tyα1..n) that decrease in every induction
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step and the other is that we have covered all cases in the induction principle. Once these two proof
obligations are discharged, the reasoning infrastructure of the function package will automatically
derive the stronger induction principle. This way of establishing the stronger induction principle is
considerably simpler than the earlier work presented in [26].

As measures we can use the size functions size tyα1..n, which we lifted in the previous section
and which are all well-founded. It is straightforward to establish that the sizes decrease in every
induction step. What is left to show is that we covered all cases. To do so, we have to derive
stronger cases lemmas, which look in our running example as follows:

∀ x. y = Varα x⇒ Ptrm
∀ x1 x2. y = Appα x1 x2⇒ Ptrm
∀ x1 x2. atom x1 # c ∧ y = Lamα x1 x2⇒ Ptrm
∀ x1 x2 x3. set (bnα x1) #∗ c ∧ y = Let patα x1 x2 x3⇒ Ptrm

Ptrm

∀ x. y = PVarα x⇒ Ppat
∀ x1 x2. y = PTupα x1 x2⇒ Ppat

Ppat

They are stronger in the sense that they allow us to assume in the Lamα and Let patα cases that the
bound atoms avoid, or are fresh for, a context c (which is assumed to be finitely supported).

These stronger cases lemmas can be derived from the ‘weak’ cases lemmas given in (6.8). This
is trivial in case of patterns (the one on the right-hand side) since the weak and strong cases lemma
coincide (there is no binding in patterns). Interesting are only the cases for Lamα and Let patα,
where we have some binders and therefore have an additional assumption about avoiding c. Let us
first establish the case for Lamα. By the weak cases lemma (6.8) we can assume that

y = Lamα x1 x2 (7.2)

holds, and need to establish Ptrm. The stronger cases lemma has the corresponding implication

∀ x1 x2. atom x1 # c ∧ y = Lamα x1 x2⇒ Ptrm (7.3)

which we must use in order to infer Ptrm. Clearly, we cannot use this implication directly, because
we have no information whether or not x1 is fresh for c. However, we can use Properties 2.4 and 2.5
to rename x1. We know by Theorem 6.3 that {atom x1}#∗ Lamα x1 x2 (since its support is supp x2
− {atom x1}). Property 2.5 provides us then with a permutation π, such that {atom (π · x1)} #∗ c
and supp (Lamα x1 x2) #∗ π hold. By using Property 2.4, we can infer from the latter that

Lamα (π ·x1) (π ·x2) = Lamα x1 x2

holds. We can use this equation in the assumption (7.2), and hence use the implication (7.3) with
the renamed π ·x1 and π ·x2 for concluding this case.

The Let patα-case involving a deep binder is slightly more complicated. We have the assump-
tion

y = Let patα x1 x2 x3 (7.4)

and the implication from the stronger cases lemma
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∀ x1 x2 x3. set (bnα x1) #∗ c ∧ y = Let patα x1 x2 x3⇒ Ptrm (7.5)

The reason that this case is more complicated is that we cannot directly apply Property 2.5 for
obtaining a renaming permutation. Property 2.5 requires that the binders are fresh for the term in
which we want to perform the renaming. But this is not true in terms such as (using an informal
notation)

Let (x, y) := (x, y) in (x, y)

where x and y are bound in the term, but are also free in the right-hand side of the assignment. We
can, however, obtain such a renaming permutation, say π, for the abstraction [bnα x1]list.x3. As a
result we have set (bnα (π ·x1)) #∗ c and [bnα (π · x1)]list.(π · x3) = [bnα x1]list.x3 (remember set
and bnα are equivariant). Now the quasi-injective property for Let patα states that

[bnα p]list. t2 = [bnα p ′]list. t′2 p ≈αbn p′ t1 = t′1
Let patα p t1 t2 = Let patα p′t′1 t′2

Since all atoms in a pattern are bound by Let patα, we can infer that (π ·x1) ≈αbn x1 holds for every
π. Therefore we have that

Let patα (π ·x1) x2 (π ·x3) = Let patα x1 x2 x3

Taking the left-hand side in the assumption shown in (7.4), we can use the implication (7.5) from
the stronger cases lemma to infer Ptrm, as needed.

The remaining difficulty is when a deep binder contains some atoms that are bound and some
that are free. An example is Letα in (4.3). In such cases (π·x1)≈αbn x1 does not hold in general. The
idea however is that π only renames atoms that become bound. In this way π does not affect ≈αbn
(which only tracks alpha-equivalence of terms that are not under the binder). However, the problem
is that the permutation operation π · x1 applies to all atoms in x1. To avoid this we introduce an
auxiliary permutation operations, written ·bn , for deep binders that only permutes bound atoms
(or more precisely the atoms specified by the bn-functions) and leaves the other atoms unchanged.
Like the functions fa bn1..m, we can define these permutation operations over raw terms analysing
how the functions bn1..m are defined. Assuming the user specified a clause

bn (C x1 . . . xr) = rhs

we define π ·bn (C x1 . . . xr)
def
= C y1 . . . yr with yi determined as follows:

• yi
def
= xi provided xi does not occur in rhs

• yi
def
= π ·bn xi provided bn xi is in rhs

• yi
def
= π ·xi otherwise

Using again the quotient package we can lift the auxiliary permutation operations ·bn to alpha-
equated terms. Moreover we can prove the following two properties:
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Lemma 7.1. Given a binding function bnα and auxiliary equivalence ≈αbn then for all π
(i) π · (bnα x) = bnα (π ·αbn x) and
(ii) (π ·αbn x) ≈αbn x.

Proof. By induction on x. The properties follow by unfolding of the definitions.

The first property states that a permutation applied to a binding function is equivalent to first per-
muting the binders and then calculating the bound atoms. The second states that ·αbn preserves
≈αbn. The main point of the auxiliary permutation functions is that they allow us to rename just the
bound atoms in a term, without changing anything else.

Having the auxiliary permutation function in place, we can now solve all remaining cases. For
the Letα term-constructor, for example, we can by Property 2.5 obtain a π such that

(π · (set (bnα x1)) #∗ c π · [bnα x1]list. x2 = [bnα x1]list. x2

hold. Using the first part of Lemma 7.1, we can simplify this to set (bnα (π ·αbn x1)) #∗ c and
[bnα (π ·αbn x1)]list. (π ·x2) = [bnα x1]list. x2. Since (π ·αbn x1) ≈αbn x1 holds by the second part, we
can infer that

Letα (π ·αbn x1) (π ·x2) = Letα x1 x2

holds. This allows us to use the implication from the strong cases lemma, and we are done.
Consequently, we can discharge all proof-obligations about having covered all cases. This com-

pletes the proof establishing that the weak induction principles imply the strong induction principles.
These strong induction principles have already proved being very useful in practice, particularly for
proving properties about capture-avoiding substitution [26].

8. RELATED WORK

To our knowledge the earliest usage of general binders in a theorem prover is described by Nara-
schewski and Nipkow [15] with a formalisation of the algorithm W. This formalisation implements
binding in type-schemes using a de-Bruijn indices representation. Since type-schemes in W contain
only a single place where variables are bound, different indices do not refer to different binders
(as in the usual de-Bruijn representation), but to different bound variables. A similar idea has
been recently explored for general binders by Charguéraud [5] in the locally nameless approach
to binding. There, de-Bruijn indices consist of two numbers, one referring to the place where a
variable is bound, and the other to which variable is bound. The reasoning infrastructure for both
representations of bindings comes for free in theorem provers like Isabelle/HOL and Coq, since the
corresponding term-calculi can be implemented as ‘normal’ datatypes. However, in both approaches
it seems difficult to achieve our fine-grained control over the ‘semantics’ of bindings (i.e. whether
the order of binders should matter, or vacuous binders should be taken into account). To do so, one
would require additional predicates that filter out unwanted terms. Our guess is that such predicates
result in rather intricate formal reasoning. We are not aware of any formalisation of a non-trivial
language that uses Charguéraud’s idea.

Another technique for representing binding is higher-order abstract syntax (HOAS), which for
example is implemented in the Twelf system [16]. This representation technique supports very
elegantly many aspects of single binding, and impressive work by Lee et al [12] has been done
that uses HOAS for mechanising the metatheory of SML. We are, however, not aware how multiple
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binders of SML are represented in this work. Judging from the submitted Twelf-solution for the
POPLmark challenge, HOAS cannot easily deal with binding constructs where the number of bound
variables is not fixed. For example, in the second part of this challenge, Lets involve patterns that
bind multiple variables at once. In such situations, HOAS seems to have to resort to the iterated-
single-binders-approach with all the unwanted consequences when reasoning about the resulting
terms.

Two formalisations involving general binders have been performed in older versions of Nomi-
nal Isabelle (one about Psi-calculi and one about algorithm W [3, 29]). Both use the approach based
on iterated single binders. Our experience with the latter formalisation has been disappointing. The
major pain arose from the need to ‘unbind’ variables. This can be done in one step with our general
binders described in this paper, but needs a cumbersome iteration with single binders. The resulting
formal reasoning turned out to be rather unpleasant.

The most closely related work to the one presented here is the Ott-tool by Sewell et al [22]
and the Cαml language by Pottier [19]. Ott is a nifty front-end for creating LATEX documents from
specifications of term-calculi involving general binders. For a subset of the specifications Ott can
also generate theorem prover code using a ‘raw’ representation of terms, and in Coq also a locally
nameless representation. The developers of this tool have also put forward (on paper) a definition
for alpha-equivalence and free variables for terms that can be specified in Ott. This definition is
rather different from ours, not using any nominal techniques. To our knowledge there is no concrete
mathematical result concerning this notion of alpha-equivalence and free variables. We have proved
that our definitions lead to alpha-equated terms, whose support is as expected (that means bound
atoms are removed from the support). We also showed that our specifications lift from ‘raw’ types
to types of alpha-equivalence classes. For this we have established (automatically) that every term-
constructor and function defined for ‘raw’ types is respectful w.r.t. alpha-equivalence.

Although we were heavily inspired by the syntax of Ott, its definition of alpha-equivalence
is unsuitable for our extension of Nominal Isabelle. First, it is far too complicated to be a basis
for automated proofs implemented on the ML-level of Isabelle/HOL. Second, it covers cases of
binders depending on other binders, which just do not make sense for our alpha-equated terms (the
corresponding fa-functions would not lift). Third, it allows empty types that have no meaning in
a HOL-based theorem prover. We also had to generalise slightly Ott’s binding clauses. In Ott one
specifies binding clauses with a single body; we allow more than one. We have to do this, because
this makes a difference for our notion of alpha-equivalence in case of binds (set) and binds (set+).
Consider the examples

Foo1 xs::name fset t::trm s::trm binds (set) xs in t s
Foo2 xs::name fset t::trm s::trm binds (set) xs in t, binds (set) xs in s

In the first term-constructor we have a single body that happens to be ‘spread’ over two arguments;
in the second term-constructor we have two independent bodies in which the same variables are
bound. As a result we have7

Foo1 {a, b} (a, b) (a, b) 6= Foo1 {a, b} (a, b) (b, a)

but
7Assuming a 6= b, there is no permutation that can make (a, b) equal with both (a, b) and (b, a), but there are two
permutations so that we can make (a, b) and (a, b) equal with one permutation, and (a, b) and (b, a) with the other.
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Foo2 {a, b} (a, b) (a, b) = Foo2 {a, b} (a, b) (b, a)

and therefore need the extra generality to be able to distinguish between both specifications. Because
of how we set up our definitions, we also had to impose some restrictions (like a single binding
function for a deep binder) that are not present in Ott. Our expectation is that we can still cover
many interesting term-calculi from programming language research, for example the Core-Haskell
language from the Introduction. With the work presented in this paper we can define it formally
as shown in Figure 2 and then Nominal Isabelle derives automatically a corresponding reasoning
infrastructure. However we have found out that telescopes seem to not easily representable in our
framework. The reason is that we need to be able to lift our bn-function to alpha-equated lambda-
terms. This requires restrictions, which class with the ‘global’ scope of binders in telescopes. They
can be represented in the framework described in [31] using an extension of the usual locally-
nameless representation.

Pottier presents a programming language, called Cαml, for representing terms with general
binders inside OCaml [19]. This language is implemented as a front-end that can be translated to
OCaml with the help of a library. He presents a type-system in which the scope of general binders
can be specified using special markers, written inner and outer. It seems our and his specifications
can be inter-translated as long as ours use the binding mode binds only. However, we have not
proved this. Pottier gives a definition for alpha-equivalence, which also uses a permutation operation
(like ours). Still, this definition is rather different from ours and he only proves that it defines
an equivalence relation. A complete reasoning infrastructure is well beyond the purposes of his
language. Similar work for Haskell with similar results was reported by Cheney [6] and more
recently by Weirich et al [31].

In a slightly different domain (programming with dependent types), Altenkirch et al [1] present
a calculus with a notion of alpha-equivalence related to our binding mode binds (set+). Their
definition is similar to the one by Pottier, except that it has a more operational flavour and calculates
a partial (renaming) map. In this way, the definition can deal with vacuous binders. However, to our
best knowledge, no concrete mathematical result concerning this definition of alpha-equivalence has
been proved.

9. CONCLUSION

We have presented an extension of Nominal Isabelle for dealing with general binders, that is where
term-constructors have multiple bound atoms. For this extension we introduced new definitions of
alpha-equivalence and automated all necessary proofs in Isabelle/HOL. To specify general binders
we used the syntax from Ott, but extended it in some places and restricted it in others so that the
definitions make sense in the context of alpha-equated terms. We also introduced two binding modes
(set and set+) that do not exist in Ott. We have tried out the extension with calculi such as Core-
Haskell, type-schemes and approximately a dozen of other typical examples from programming
language research [21]. The code will eventually become part of the Isabelle distribution.8

We have left out a discussion about how functions can be defined over alpha-equated terms
involving general binders. In earlier versions of Nominal Isabelle this turned out to be a thorny
issue. We hope to do better this time by using the function package [11] that has recently been

8It can be downloaded already from http://isabelle.in.tum.de/nominal/download.

http://isabelle.in.tum.de/nominal/download
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atom decl var cvar tvar
nominal datatype tkind = KStar | KFun tkind tkind
and ckind = CKSim ty ty
and ty = TVar tvar | T string | TApp ty ty
| TFun string ty list | TAll tv::tvar tkind ty::ty binds tv in ty
| TArr ckind ty
and ty lst = TNil | TCons ty ty lst
and cty = CVar cvar | C string | CApp cty cty | CFun string co lst
| CAll cv::cvar ckind cty::cty binds cv in cty
| CArr ckind cty | CRefl ty | CSym cty | CCirc cty cty
| CAt cty ty | CLeft cty | CRight cty | CSim cty cty
| CRightc cty | CLeftc cty | Coerce cty cty
and co lst = CNil | CCons cty co lst
and trm = Var var | K string
| LAM ty tv::tvar tkind t::trm binds tv in t
| LAM cty cv::cvar ckind t::trm binds cv in t
| App ty trm ty | App cty trm cty | App trm trm
| Lam v::var ty t::trm binds v in t
| Let x::var ty trm t::trm binds x in t
| Case trm assoc lst | Cast trm co
and assoc lst = ANil | ACons p::pat t::trm assoc lst binds bv p in t
and pat = Kpat string tvtk lst tvck lst vt lst
and vt lst = VTNil | VTCons var ty vt lst
and tvtk lst = TVTKNil | TVTKCons tvar tkind tvtk lst
and tvck lst = TVCKNil | TVCKCons cvar ckind tvck lst
binder
bv :: pat⇒ atom list and
bv1 :: vt lst⇒ atom list and
bv2 :: tvtk lst⇒ atom list and
bv3 :: tvck lst⇒ atom list
where

bv (K s tvts tvcs vs) = (bv3 tvts) @ (bv2 tvcs) @ (bv1 vs)
| bv1 VTNil = []
| bv1 (VTCons x ty tl) = (atom x)::(bv1 tl)
| bv2 TVTKNil = []
| bv2 (TVTKCons a ty tl) = (atom a)::(bv2 tl)
| bv3 TVCKNil = []
| bv3 (TVCKCons c cty tl) = (atom c)::(bv3 tl)

Figure 2: A definition for Core-Haskell in Nominal Isabelle. For the moment we do not support
nested types; therefore we explicitly have to unfold the lists co lst, assoc lst and so on.
Apart from that limitation, the definition follows closely the original shown in Figure 1.
The point of our work is that having made such a definition in Nominal Isabelle, one
obtains automatically a reasoning infrastructure for Core-Haskell.
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implemented in Isabelle/HOL and also by restricting function definitions to equivariant functions
(for them we can provide more automation).

There are some restrictions we imposed in this paper that can be lifted using a recent reim-
plementation [25] of the datatype package for Isabelle/HOL, which is however not yet part of the
stable distribution. This reimplementation allows nested datatype definitions would allow one to
specify, for instance, the function kinds in Core-Haskell as TFun string (ty list) instead of the un-
folded version TFun string ty list (see Figure 2). We can also use it to represent the Let-terms from
the Introduction where the order of let-assignments does not matter. This means we can represent
Lets such that the following two terms are equal

Let x1 = t1 and x2 = t2 in s = Let x2 = t2 and x1 = t1 in s

For this we have to represent the let-assignments as finite sets of pair and a binding function that
picks out the left components to be bound in s.

One line of investigation is whether we can go beyond the simple-minded form of binding
functions that we adopted from Ott. At the moment, binding functions can only return the empty
set, a singleton atom set or unions of atom sets (similarly for lists). It remains to be seen whether
properties like

fa ty x = bn x ∪ fa bn x

allow us to support more interesting binding functions.
We have also not yet played with other binding modes. For example we can imagine that there

is need for a binding mode where instead of usual lists, we abstract lists of distinct elements (the
corresponding type dlist already exists in the library of Isabelle/HOL). We expect the presented
work can be extended to accommodate such binding modes.
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