
Nominal Techniques
or, How Not to be Intimidated by the

Variable Convention

Christian Urban (TU Munich)
http://isabelle.in.tum.de/nominal/

Variable Convention:
IfM1; : : : ;Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound
variables are chosen to be different from the free variables.

Barendregt in “The Lambda-Calculus: Its Syntax and Semantics”
Eugene, 24. July 2008 – p. 1/37

http://isabelle.in.tum.de/nominal/

Nominal Techniques
In 2000 I did my PhD on a strong normalisation
result. I had very good reviewers:

Andy Pitts Henk Barendregt

Kleene in a journal paper: “We thank T. Thacher
Robinson for showing us on August 19, 1962 by a
counterexample the existence of an error in our
handling of bound variables.”

Eugene, 24. July 2008 – p. 2/37

Nominal Techniques
In 2000 I did my PhD on a strong normalisation
result. I had very good reviewers:

Andy Pitts Henk Barendregt

Kleene in a journal paper: “We thank T. Thacher
Robinson for showing us on August 19, 1962 by a
counterexample the existence of an error in our
handling of bound variables.”

Eugene, 24. July 2008 – p. 2/37

Nominal Techniques
Xavier Leroy in his PhD: We define the set SchTyp of type
schemes, with typical element �, by the following grammar:

� ::= 8f�1::�ng:�

In this syntax, the quantified variables �1..�n are treated
as a set of variables: their relative order is not significant,
and they are assumed to be distinct. ... We identify two
type schemes that differ only by a renaming of the
variables bound by 8 (�-conversion operation), and by the
introduction or suppression of quantified variables that are
not free in the type part. More precisely, we quotient the
set of schemes by the following two equations:

8f�1::�ng:� = 8f�1::�ng:(� [�1 :=�1::�n :=�n])

8f�;�1::�ng:� = 8f�1::�ng:� if � not in fv(�)

Eugene, 24. July 2008 – p. 3/37

Nominal Techniques
Xavier Leroy in his PhD: We define the set SchTyp of type
schemes, with typical element �, by the following grammar:

� ::= 8f�1::�ng:�

In this syntax, the quantified variables �1..�n are treated
as a set of variables: their relative order is not significant,
and they are assumed to be distinct. ... We identify two
type schemes that differ only by a renaming of the
variables bound by 8 (�-conversion operation), and by the
introduction or suppression of quantified variables that are
not free in the type part. More precisely, we quotient the
set of schemes by the following two equations:

8f�1::�ng:� = 8f�1::�ng:(� [�1 :=�1::�n :=�n])

8f�;�1::�ng:� = 8f�1::�ng:� if � not in fv(�)

Eugene, 24. July 2008 – p. 3/37

8f�g:�! � =� 8f�g:�! �

Nominal Techniques
Moral of my PhD: The reviewers did not find any
errors, also the reviewers of a conference and
journal paper.

The result was correct, but I did find errors in
the proof (in quite central lemmas).

Starting from around 2000, Andy Pitts
introduced many ideas about the proper handling
of bound names. One central idea of him is:

Use permutations instead of
renaming substitutions.

Eugene, 24. July 2008 – p. 4/37

Nominal Techniques
Moral of my PhD: The reviewers did not find any
errors, also the reviewers of a conference and
journal paper.

The result was correct, but I did find errors in
the proof (in quite central lemmas).

Starting from around 2000, Andy Pitts
introduced many ideas about the proper handling
of bound names. One central idea of him is:

Use permutations instead of
renaming substitutions.

Eugene, 24. July 2008 – p. 4/37

Nominal Techniques
Moral of my PhD: The reviewers did not find any
errors, also the reviewers of a conference and
journal paper.

The result was correct, but I did find errors in
the proof (in quite central lemmas).

Starting from around 2000, Andy Pitts
introduced many ideas about the proper handling
of bound names. One central idea of him is:

Use permutations instead of
renaming substitutions.

Eugene, 24. July 2008 – p. 4/37

Plan of the Lectures
1.) Thursday: How to deal with the variable

convention: “Can always pick bound variables to
avoid clashes with other variables”.

2.) Friday: How to deal with stetaments such as
“Expressions differing only in names of bound
variables are equivalent”.

3.) Saturday: The Real Thing: I hope to walk you
through a formalisation of a small CK Machine.

I will show you formalised proofs, but the
lectures won’t be hands-on. If you need help, I
am here until Thursday. Please ask me!!

Eugene, 24. July 2008 – p. 5/37

Plan of the Lectures
1.) Thursday: How to deal with the variable

convention: “Can always pick bound variables to
avoid clashes with other variables”.

2.) Friday: How to deal with stetaments such as
“Expressions differing only in names of bound
variables are equivalent”.

3.) Saturday: The Real Thing: I hope to walk you
through a formalisation of a small CK Machine.

I will show you formalised proofs, but the
lectures won’t be hands-on. If you need help, I
am here until Thursday. Please ask me!!

Eugene, 24. July 2008 – p. 5/37

Plan
We will have a look at the substitution and
weakening lemma.

I will show you an example where the variable
convention leads to faulty reasoning.

We derive a structural induction principle for
lambda-terms that is safe and has the variable
convention already built in.

The main point of nominal techniques is to make
sense out of informal reasoning.

Eugene, 24. July 2008 – p. 6/37

Plan
We will have a look at the substitution and
weakening lemma.

I will show you an example where the variable
convention leads to faulty reasoning.

We derive a structural induction principle for
lambda-terms that is safe and has the variable
convention already built in.

The main point of nominal techniques is to make
sense out of informal reasoning.

Eugene, 24. July 2008 – p. 6/37

Substitution Lemma: If x 6� y and x 62 fv(L), then
M [x := N][y := L] �M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .
Case 1: M is a variable.
Case 1.1. M � x. Then both sides equal N [y := L] since

x 6� y.
Case 1.2.M � y. Then both sides equal L, for x 62 fv(L)

implies L[x := : : :] � L.
Case 1.3.M � z 6� x; y. Then both sides equal z.

Case 2: M � �z:M1. By the variable convention we may
assume that z 6� x; y and z is not free inN;L.
(�z:M1)[x :=N][y :=L]� �z:(M1[x :=N][y :=L])

� �z:(M1[y :=L][x :=N [y :=L]])
� (�z:M1)[y :=L][x :=N [y :=L]].

Case 3: M �M1M2. The statement follows again from
the induction hypothesis. �

Eugene, 24. July 2008 – p. 7/37

Remember only if y 6= x and x 62 fv(N) then

(�y:M)[x := N] = �y:(M [x := N])

(�z:M1)[x := N][y := L]

� (�z:(M1[x := N]))[y := L]
1

� �z:(M1[x := N][y := L])
2

� �z:(M1[y := L][x := N [y := L]]) IH

� (�z:(M1[y := L]))[x := N [y := L]])
2

! !

� (�z:M1)[y := L][x := N [y := L]]. 1

!

Substitution Lemma: If x 6� y and x 62 fv(L), then
M [x := N][y := L] �M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .
Case 1: M is a variable.
Case 1.1. M � x. Then both sides equal N [y := L] since

x 6� y.
Case 1.2.M � y. Then both sides equal L, for x 62 fv(L)

implies L[x := : : :] � L.
Case 1.3.M � z 6� x; y. Then both sides equal z.

Case 2: M � �z:M1. By the variable convention we may
assume that z 6� x; y and z is not free inN;L.
(�z:M1)[x :=N][y :=L]� �z:(M1[x :=N][y :=L])

� �z:(M1[y :=L][x :=N [y :=L]])
� (�z:M1)[y :=L][x :=N [y :=L]].

Case 3: M �M1M2. The statement follows again from
the induction hypothesis. �

Eugene, 24. July 2008 – p. 7/37

Remember only if y 6= x and x 62 fv(N) then

(�y:M)[x := N] = �y:(M [x := N])

(�z:M1)[x := N][y := L]

� (�z:(M1[x := N]))[y := L]
1

� �z:(M1[x := N][y := L])
2

� �z:(M1[y := L][x := N [y := L]]) IH

� (�z:(M1[y := L]))[x := N [y := L]])
2

! !

� (�z:M1)[y := L][x := N [y := L]]. 1

!

Substitution Lemma: If x 6� y and x 62 fv(L), then
M [x := N][y := L] �M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .
Case 1: M is a variable.
Case 1.1. M � x. Then both sides equal N [y := L] since

x 6� y.
Case 1.2.M � y. Then both sides equal L, for x 62 fv(L)

implies L[x := : : :] � L.
Case 1.3.M � z 6� x; y. Then both sides equal z.

Case 2: M � �z:M1. By the variable convention we may
assume that z 6� x; y and z is not free inN;L.
(�z:M1)[x :=N][y :=L]� �z:(M1[x :=N][y :=L])

� �z:(M1[y :=L][x :=N [y :=L]])
� (�z:M1)[y :=L][x :=N [y :=L]].

Case 3: M �M1M2. The statement follows again from
the induction hypothesis. �

Eugene, 24. July 2008 – p. 7/37

Remember only if y 6= x and x 62 fv(N) then

(�y:M)[x := N] = �y:(M [x := N])

(�z:M1)[x := N][y := L]

� (�z:(M1[x := N]))[y := L]
1

� �z:(M1[x := N][y := L])
2

� �z:(M1[y := L][x := N [y := L]]) IH

� (�z:(M1[y := L]))[x := N [y := L]])
2

! !

� (�z:M1)[y := L][x := N [y := L]]. 1

!

Substitution Lemma: If x 6� y and x 62 fv(L), then
M [x := N][y := L] �M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .
Case 1: M is a variable.
Case 1.1. M � x. Then both sides equal N [y := L] since

x 6� y.
Case 1.2.M � y. Then both sides equal L, for x 62 fv(L)

implies L[x := : : :] � L.
Case 1.3.M � z 6� x; y. Then both sides equal z.

Case 2: M � �z:M1. By the variable convention we may
assume that z 6� x; y and z is not free inN;L.
(�z:M1)[x :=N][y :=L]� �z:(M1[x :=N][y :=L])

� �z:(M1[y :=L][x :=N [y :=L]])
� (�z:M1)[y :=L][x :=N [y :=L]].

Case 3: M �M1M2. The statement follows again from
the induction hypothesis. �

Eugene, 24. July 2008 – p. 7/37

Remember only if y 6= x and x 62 fv(N) then

(�y:M)[x := N] = �y:(M [x := N])

(�z:M1)[x := N][y := L]

� (�z:(M1[x := N]))[y := L]
1

� �z:(M1[x := N][y := L])
2

� �z:(M1[y := L][x := N [y := L]]) IH

� (�z:(M1[y := L]))[x := N [y := L]])
2

! !

� (�z:M1)[y := L][x := N [y := L]]. 1

!

Substitution Lemma: If x 6� y and x 62 fv(L), then
M [x := N][y := L] �M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .
Case 1: M is a variable.
Case 1.1. M � x. Then both sides equal N [y := L] since

x 6� y.
Case 1.2.M � y. Then both sides equal L, for x 62 fv(L)

implies L[x := : : :] � L.
Case 1.3.M � z 6� x; y. Then both sides equal z.

Case 2: M � �z:M1. By the variable convention we may
assume that z 6� x; y and z is not free inN;L.
(�z:M1)[x :=N][y :=L]� �z:(M1[x :=N][y :=L])

� �z:(M1[y :=L][x :=N [y :=L]])
� (�z:M1)[y :=L][x :=N [y :=L]].

Case 3: M �M1M2. The statement follows again from
the induction hypothesis. �

Eugene, 24. July 2008 – p. 7/37

Remember only if y 6= x and x 62 fv(N) then

(�y:M)[x := N] = �y:(M [x := N])

(�z:M1)[x := N][y := L]

� (�z:(M1[x := N]))[y := L]
1

� �z:(M1[x := N][y := L])
2

� �z:(M1[y := L][x := N [y := L]]) IH

� (�z:(M1[y := L]))[x := N [y := L]])
2

! !

� (�z:M1)[y := L][x := N [y := L]]. 1

!

Nominal Datatypes
Define lambda-terms as:

atom_decl name
nominal_datatype lam =

Var "name"
j App "lam" "lam"
j Lam "«name»lam" ("Lam [_]._")

These are named alpha-equivalence classes, for
example

Lam [a].(Var a) = Lam [b].(Var b)

Eugene, 24. July 2008 – p. 8/37

lemma forget:
assumes a: "x # L"
shows "L[x::=P] = L"

using a by (nominal_induct L avoiding: x P rule: lam.strong_induct)
(auto simp add: abs_fresh fresh_atm)

lemma fresh_fact:
fixes z::"name"
assumes a: "z # N" "z # L"
shows "z # N[y::=L]"

using a by (nominal_induct N avoiding: z y L rule: lam.strong_induct)
(auto simp add: abs_fresh fresh_atm)

lemma substitution_lemma:
assumes a: "x 6= y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a
by (nominal_induct M avoiding: x y N L rule: lam.strong_induct)

(auto simp add: fresh_fact forget) Eugene, 24. July 2008 – p. 9/37

lemma forget:
assumes a: "x # L"
shows "L[x::=P] = L"

using a by (nominal_induct L avoiding: x P rule: lam.strong_induct)
(auto simp add: abs_fresh fresh_atm)

lemma fresh_fact:
fixes z::"name"
assumes a: "z # N" "z # L"
shows "z # N[y::=L]"

using a by (nominal_induct N avoiding: z y L rule: lam.strong_induct)
(auto simp add: abs_fresh fresh_atm)

lemma substitution_lemma:
assumes a: "x 6= y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a
by (nominal_induct M avoiding: x y N L rule: lam.strong_induct)

(auto simp add: fresh_fact forget) Eugene, 24. July 2008 – p. 9/37

stands for x 62 fv(L)
reads as “x fresh for L”

lemma forget:
assumes a: "x # L"
shows "L[x::=P] = L"

using a by (nominal_induct L avoiding: x P rule: lam.strong_induct)
(auto simp add: abs_fresh fresh_atm)

lemma fresh_fact:
fixes z::"name"
assumes a: "z # N" "z # L"
shows "z # N[y::=L]"

using a by (nominal_induct N avoiding: z y L rule: lam.strong_induct)
(auto simp add: abs_fresh fresh_atm)

lemma substitution_lemma:
assumes a: "x 6= y" "x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a
by (nominal_induct M avoiding: x y N L rule: lam.strong_induct)

(auto simp add: fresh_fact forget) Eugene, 24. July 2008 – p. 9/37

(Weak) Induction Principles
The usual induction principle is as follows:

8x: P x

8t1 t2: P t1 ^ P t2) P (t1 t2)

8x t: P t) P (�x:t)

P t

It requires us in the lambda-case to show the
property P for all binders x.
(This nearly always requires renamings and they
can be tricky to automate.)

Eugene, 24. July 2008 – p. 10/37

Strong Induction Principles
Therefore we will use the following strong
induction principle:

8x c: P c x

8t1 t2 c: (8d: Pd t1) ^ (8d:P d t2)) P c (t1 t2)

8x t c: x # c ^ (8d:P d t)) P c (�x:t)

P c t

Eugene, 24. July 2008 – p. 11/37

Strong Induction Principles
Therefore we will use the following strong
induction principle:

8x c: P c x

8t1 t2 c: (8d: Pd t1) ^ (8d:P d t2)) P c (t1 t2)

8x t c: x # c ^ (8d:P d t)) P c (�x:t)

P c t

Eugene, 24. July 2008 – p. 11/37

The variable over which the induction proceeds:
“. . . By induction over the structure of M . . . ”

Strong Induction Principles
Therefore we will use the following strong
induction principle:

8x c: P c x

8t1 t2 c: (8d: Pd t1) ^ (8d:P d t2)) P c (t1 t2)

8x t c: x # c ^ (8d:P d t)) P c (�x:t)

P c t

Eugene, 24. July 2008 – p. 11/37

The context of the induction; i.e. what the binder
should be fresh for) (x; y;N; L):
“. . . By the variable convention we can assume
z 6� x; y and z not free in N,L. . . ”

Strong Induction Principles
Therefore we will use the following strong
induction principle:

8x c: P c x

8t1 t2 c: (8d: Pd t1) ^ (8d:P d t2)) P c (t1 t2)

8x t c: x # c ^ (8d:P d t)) P c (�x:t)

P c t

Eugene, 24. July 2008 – p. 11/37

The property to be proved by induction:

�(x;y;N;L): �M: x 6= y ^ x # L)

M [x :=N][y :=L] = M [y :=L][x :=N [y :=L]]

Eugene, 24. July 2008 – p. 12/37

proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume "z=x"
have "(1)": "?LHS = N[y::=L]" using ‘z=x‘ by simp
have "(2)": "?RHS = N[y::=L]" using ‘z=x‘ ‘x6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z=y" and "z6=x"
have "(1)": "?LHS = L" using ‘z6=x‘ ‘z=y‘ by simp
have "(2)": "?RHS = L[x::=N[y::=L]]" using ‘z=y‘ by simp
have "(3)": "L[x::=N[y::=L]] = L" using ‘x#L‘ by (simp add: forget)
from "(1)" "(2)" "(3)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z6=x" and "z6=y"
have "(1)": "?LHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
have "(2)": "?RHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

ultimately show "?LHS = ?RHS" by blast
qed

next : : :

Eugene, 24. July 2008 – p. 12/37

proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume "z=x"
have "(1)": "?LHS = N[y::=L]" using ‘z=x‘ by simp
have "(2)": "?RHS = N[y::=L]" using ‘z=x‘ ‘x6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z=y" and "z6=x"
have "(1)": "?LHS = L" using ‘z6=x‘ ‘z=y‘ by simp
have "(2)": "?RHS = L[x::=N[y::=L]]" using ‘z=y‘ by simp
have "(3)": "L[x::=N[y::=L]] = L" using ‘x#L‘ by (simp add: forget)
from "(1)" "(2)" "(3)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z6=x" and "z6=y"
have "(1)": "?LHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
have "(2)": "?RHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

ultimately show "?LHS = ?RHS" by blast
qed

next : : :

Eugene, 24. July 2008 – p. 12/37

proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume "z=x"
have "(1)": "?LHS = N[y::=L]" using ‘z=x‘ by simp
have "(2)": "?RHS = N[y::=L]" using ‘z=x‘ ‘x6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z=y" and "z6=x"
have "(1)": "?LHS = L" using ‘z6=x‘ ‘z=y‘ by simp
have "(2)": "?RHS = L[x::=N[y::=L]]" using ‘z=y‘ by simp
have "(3)": "L[x::=N[y::=L]] = L" using ‘x#L‘ by (simp add: forget)
from "(1)" "(2)" "(3)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z6=x" and "z6=y"
have "(1)": "?LHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
have "(2)": "?RHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

ultimately show "?LHS = ?RHS" by blast
qed

next : : :

Eugene, 24. July 2008 – p. 12/37

proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume "z=x"
have "(1)": "?LHS = N[y::=L]" using ‘z=x‘ by simp
have "(2)": "?RHS = N[y::=L]" using ‘z=x‘ ‘x6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z=y" and "z6=x"
have "(1)": "?LHS = L" using ‘z6=x‘ ‘z=y‘ by simp
have "(2)": "?RHS = L[x::=N[y::=L]]" using ‘z=y‘ by simp
have "(3)": "L[x::=N[y::=L]] = L" using ‘x#L‘ by (simp add: forget)
from "(1)" "(2)" "(3)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z6=x" and "z6=y"
have "(1)": "?LHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
have "(2)": "?RHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

ultimately show "?LHS = ?RHS" by blast
qed

next : : :

Eugene, 24. July 2008 – p. 12/37

proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume "z=x"
have "(1)": "?LHS = N[y::=L]" using ‘z=x‘ by simp
have "(2)": "?RHS = N[y::=L]" using ‘z=x‘ ‘x6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z=y" and "z6=x"
have "(1)": "?LHS = L" using ‘z6=x‘ ‘z=y‘ by simp
have "(2)": "?RHS = L[x::=N[y::=L]]" using ‘z=y‘ by simp
have "(3)": "L[x::=N[y::=L]] = L" using ‘x#L‘ by (simp add: forget)
from "(1)" "(2)" "(3)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z6=x" and "z6=y"
have "(1)": "?LHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
have "(2)": "?RHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

ultimately show "?LHS = ?RHS" by blast
qed

next : : :

Eugene, 24. July 2008 – p. 12/37

proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume "z=x"
have "(1)": "?LHS = N[y::=L]" using ‘z=x‘ by simp
have "(2)": "?RHS = N[y::=L]" using ‘z=x‘ ‘x6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z=y" and "z6=x"
have "(1)": "?LHS = L" using ‘z6=x‘ ‘z=y‘ by simp
have "(2)": "?RHS = L[x::=N[y::=L]]" using ‘z=y‘ by simp
have "(3)": "L[x::=N[y::=L]] = L" using ‘x#L‘ by (simp add: forget)
from "(1)" "(2)" "(3)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z6=x" and "z6=y"
have "(1)": "?LHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
have "(2)": "?RHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

ultimately show "?LHS = ?RHS" by blast
qed

next : : :

Eugene, 24. July 2008 – p. 12/37

proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume "z=x"
have "(1)": "?LHS = N[y::=L]" using ‘z=x‘ by simp
have "(2)": "?RHS = N[y::=L]" using ‘z=x‘ ‘x6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z=y" and "z6=x"
have "(1)": "?LHS = L" using ‘z6=x‘ ‘z=y‘ by simp
have "(2)": "?RHS = L[x::=N[y::=L]]" using ‘z=y‘ by simp
have "(3)": "L[x::=N[y::=L]] = L" using ‘x#L‘ by (simp add: forget)
from "(1)" "(2)" "(3)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z6=x" and "z6=y"
have "(1)": "?LHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
have "(2)": "?RHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

ultimately show "?LHS = ?RHS" by blast
qed

next : : :

Eugene, 24. July 2008 – p. 12/37

proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume "z=x"
have "(1)": "?LHS = N[y::=L]" using ‘z=x‘ by simp
have "(2)": "?RHS = N[y::=L]" using ‘z=x‘ ‘x6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z=y" and "z6=x"
have "(1)": "?LHS = L" using ‘z6=x‘ ‘z=y‘ by simp
have "(2)": "?RHS = L[x::=N[y::=L]]" using ‘z=y‘ by simp
have "(3)": "L[x::=N[y::=L]] = L" using ‘x#L‘ by (simp add: forget)
from "(1)" "(2)" "(3)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z6=x" and "z6=y"
have "(1)": "?LHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
have "(2)": "?RHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

ultimately show "?LHS = ?RHS" by blast
qed

next : : :

Eugene, 24. July 2008 – p. 12/37

proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume "z=x"
have "(1)": "?LHS = N[y::=L]" using ‘z=x‘ by simp
have "(2)": "?RHS = N[y::=L]" using ‘z=x‘ ‘x6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z=y" and "z6=x"
have "(1)": "?LHS = L" using ‘z6=x‘ ‘z=y‘ by simp
have "(2)": "?RHS = L[x::=N[y::=L]]" using ‘z=y‘ by simp
have "(3)": "L[x::=N[y::=L]] = L" using ‘x#L‘ by (simp add: forget)
from "(1)" "(2)" "(3)" have "?LHS = ?RHS" by simp }

moreover
{ assume "z6=x" and "z6=y"
have "(1)": "?LHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
have "(2)": "?RHS = Var z" using ‘z6=x‘ ‘z6=y‘ by simp
from "(1)" "(2)" have "?LHS = ?RHS" by simp }

ultimately show "?LHS = ?RHS" by blast
qed

next : : :

Eugene, 24. July 2008 – p. 13/37

next
case (Lam z M1)
have ih: "[[x6=y; x#L]] =) M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "x#L" by fact
have vc: "z#x" "z#y" "z#N" "z#L" by fact+
then have "z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = Lam [z].(M1[x::=N][y::=L])" using vc by simp
also from ih have "::: = Lam [z].(M1[y::=L][x::=N[y::=L]])" using ‘x6=y‘ ‘x#L‘ by simp
also have "::: = (Lam [z].(M1[y::=L]))[x::=N[y::=L]]" using ‘z#x‘ ‘z#N[y::=L]‘ by simp
also have "::: = ?RHS" using ‘z#y‘ ‘z#L‘ by simp
finally show "?LHS = ?RHS" .

qed
next
case (App M1 M2)
then show "(App M1 M2)[x::=N][y::=L] = (App M1 M2)[y::=L][x::=N[y::=L]]" by simp
qed

Eugene, 24. July 2008 – p. 13/37

next
case (Lam z M1)
have ih: "[[x6=y; x#L]] =) M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "x#L" by fact
have vc: "z#x" "z#y" "z#N" "z#L" by fact+
then have "z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = Lam [z].(M1[x::=N][y::=L])" using vc by simp
also from ih have "::: = Lam [z].(M1[y::=L][x::=N[y::=L]])" using ‘x6=y‘ ‘x#L‘ by simp
also have "::: = (Lam [z].(M1[y::=L]))[x::=N[y::=L]]" using ‘z#x‘ ‘z#N[y::=L]‘ by simp
also have "::: = ?RHS" using ‘z#y‘ ‘z#L‘ by simp
finally show "?LHS = ?RHS" .

qed
next
case (App M1 M2)
then show "(App M1 M2)[x::=N][y::=L] = (App M1 M2)[y::=L][x::=N[y::=L]]" by simp
qed

Eugene, 24. July 2008 – p. 13/37

next
case (Lam z M1)
have ih: "[[x6=y; x#L]] =) M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "x#L" by fact
have vc: "z#x" "z#y" "z#N" "z#L" by fact+
then have "z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = Lam [z].(M1[x::=N][y::=L])" using vc by simp
also from ih have "::: = Lam [z].(M1[y::=L][x::=N[y::=L]])" using ‘x6=y‘ ‘x#L‘ by simp
also have "::: = (Lam [z].(M1[y::=L]))[x::=N[y::=L]]" using ‘z#x‘ ‘z#N[y::=L]‘ by simp
also have "::: = ?RHS" using ‘z#y‘ ‘z#L‘ by simp
finally show "?LHS = ?RHS" .

qed
next
case (App M1 M2)
then show "(App M1 M2)[x::=N][y::=L] = (App M1 M2)[y::=L][x::=N[y::=L]]" by simp
qed

Eugene, 24. July 2008 – p. 13/37

next
case (Lam z M1)
have ih: "[[x6=y; x#L]] =) M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "x#L" by fact
have vc: "z#x" "z#y" "z#N" "z#L" by fact+
then have "z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = Lam [z].(M1[x::=N][y::=L])" using vc by simp
also from ih have "::: = Lam [z].(M1[y::=L][x::=N[y::=L]])" using ‘x6=y‘ ‘x#L‘ by simp
also have "::: = (Lam [z].(M1[y::=L]))[x::=N[y::=L]]" using ‘z#x‘ ‘z#N[y::=L]‘ by simp
also have "::: = ?RHS" using ‘z#y‘ ‘z#L‘ by simp
finally show "?LHS = ?RHS" .

qed
next
case (App M1 M2)
then show "(App M1 M2)[x::=N][y::=L] = (App M1 M2)[y::=L][x::=N[y::=L]]" by simp
qed

Eugene, 24. July 2008 – p. 13/37

next
case (Lam z M1)
have ih: "[[x6=y; x#L]] =) M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "x#L" by fact
have vc: "z#x" "z#y" "z#N" "z#L" by fact+
then have "z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = Lam [z].(M1[x::=N][y::=L])" using vc by simp
also from ih have "::: = Lam [z].(M1[y::=L][x::=N[y::=L]])" using ‘x6=y‘ ‘x#L‘ by simp
also have "::: = (Lam [z].(M1[y::=L]))[x::=N[y::=L]]" using ‘z#x‘ ‘z#N[y::=L]‘ by simp
also have "::: = ?RHS" using ‘z#y‘ ‘z#L‘ by simp
finally show "?LHS = ?RHS" .

qed
next
case (App M1 M2)
then show "(App M1 M2)[x::=N][y::=L] = (App M1 M2)[y::=L][x::=N[y::=L]]" by simp
qed

Eugene, 24. July 2008 – p. 13/37

next
case (Lam z M1)
have ih: "[[x6=y; x#L]] =) M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "x#L" by fact
have vc: "z#x" "z#y" "z#N" "z#L" by fact+
then have "z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = Lam [z].(M1[x::=N][y::=L])" using vc by simp
also from ih have "::: = Lam [z].(M1[y::=L][x::=N[y::=L]])" using ‘x6=y‘ ‘x#L‘ by simp
also have "::: = (Lam [z].(M1[y::=L]))[x::=N[y::=L]]" using ‘z#x‘ ‘z#N[y::=L]‘ by simp
also have "::: = ?RHS" using ‘z#y‘ ‘z#L‘ by simp
finally show "?LHS = ?RHS" .

qed
next
case (App M1 M2)
then show "(App M1 M2)[x::=N][y::=L] = (App M1 M2)[y::=L][x::=N[y::=L]]" by simp
qed

Eugene, 24. July 2008 – p. 13/37

next
case (Lam z M1)
have ih: "[[x6=y; x#L]] =) M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "x#L" by fact
have vc: "z#x" "z#y" "z#N" "z#L" by fact+
then have "z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = Lam [z].(M1[x::=N][y::=L])" using vc by simp
also from ih have "::: = Lam [z].(M1[y::=L][x::=N[y::=L]])" using ‘x6=y‘ ‘x#L‘ by simp
also have "::: = (Lam [z].(M1[y::=L]))[x::=N[y::=L]]" using ‘z#x‘ ‘z#N[y::=L]‘ by simp
also have "::: = ?RHS" using ‘z#y‘ ‘z#L‘ by simp
finally show "?LHS = ?RHS" .

qed
next
case (App M1 M2)
then show "(App M1 M2)[x::=N][y::=L] = (App M1 M2)[y::=L][x::=N[y::=L]]" by simp
qed

Eugene, 24. July 2008 – p. 13/37

next
case (Lam z M1)
have ih: "[[x6=y; x#L]] =) M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "x#L" by fact
have vc: "z#x" "z#y" "z#N" "z#L" by fact+
then have "z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = Lam [z].(M1[x::=N][y::=L])" using vc by simp
also from ih have "::: = Lam [z].(M1[y::=L][x::=N[y::=L]])" using ‘x6=y‘ ‘x#L‘ by simp
also have "::: = (Lam [z].(M1[y::=L]))[x::=N[y::=L]]" using ‘z#x‘ ‘z#N[y::=L]‘ by simp
also have "::: = ?RHS" using ‘z#y‘ ‘z#L‘ by simp
finally show "?LHS = ?RHS" .

qed
next
case (App M1 M2)
then show "(App M1 M2)[x::=N][y::=L] = (App M1 M2)[y::=L][x::=N[y::=L]]" by simp
qed

Eugene, 24. July 2008 – p. 13/37

next
case (Lam z M1)
have ih: "[[x6=y; x#L]] =) M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "x#L" by fact
have vc: "z#x" "z#y" "z#N" "z#L" by fact+
then have "z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = Lam [z].(M1[x::=N][y::=L])" using vc by simp
also from ih have "::: = Lam [z].(M1[y::=L][x::=N[y::=L]])" using ‘x6=y‘ ‘x#L‘ by simp
also have "::: = (Lam [z].(M1[y::=L]))[x::=N[y::=L]]" using ‘z#x‘ ‘z#N[y::=L]‘ by simp
also have "::: = ?RHS" using ‘z#y‘ ‘z#L‘ by simp
finally show "?LHS = ?RHS" .

qed
next
case (App M1 M2)
then show "(App M1 M2)[x::=N][y::=L] = (App M1 M2)[y::=L][x::=N[y::=L]]" by simp
qed

Eugene, 24. July 2008 – p. 13/37

next
case (Lam z M1)
have ih: "[[x6=y; x#L]] =) M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "x#L" by fact
have vc: "z#x" "z#y" "z#N" "z#L" by fact+
then have "z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = Lam [z].(M1[x::=N][y::=L])" using vc by simp
also from ih have "::: = Lam [z].(M1[y::=L][x::=N[y::=L]])" using ‘x6=y‘ ‘x#L‘ by simp
also have "::: = (Lam [z].(M1[y::=L]))[x::=N[y::=L]]" using ‘z#x‘ ‘z#N[y::=L]‘ by simp
also have "::: = ?RHS" using ‘z#y‘ ‘z#L‘ by simp
finally show "?LHS = ?RHS" .

qed
next
case (App M1 M2)
then show "(App M1 M2)[x::=N][y::=L] = (App M1 M2)[y::=L][x::=N[y::=L]]" by simp
qed

An Isar Proof . . .

Eugene, 24. July 2008 – p. 14/37

The Isar proof language has been conceived by Markus
Wenzel, the main developer behind Isabelle.

An Isar Proof . . .

Eugene, 24. July 2008 – p. 14/37

The Isar proof language has been conceived by Markus
Wenzel, the main developer behind Isabelle.

goal

stepping stones

...

stepping stones

assumptions

Strong Induction Principles

8x c: P c x

8t1 t2 c: (8d: Pd t1) ^ (8d:P d t2)) P c (t1 t2)

8x t c: x # c ^ (8d:P d t)) P c (�x:t)

P c t

Eugene, 24. July 2008 – p. 15/37

There is a condition for when Barendregt’s variable
convention is applicable—it is almost always
satisfied, but not always:
The induction context c needs to be finitely
supported (is not allowed to mention all names as
free).

Strong Induction Principles

8x c: P c x

8t1 t2 c: (8d: Pd t1) ^ (8d:P d t2)) P c (t1 t2)

8x t c: x # c ^ (8d:P d t)) P c (�x:t)

P c t

In the case of the substitution lemma:

Eugene, 24. July 2008 – p. 15/37

proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
: : :

Same Problem with Rule Inductions
We can specify typing-rules for lambda-terms as:

(x :�) 2 � valid �
� ` x : �

� ` t1 : �!� � ` t2 : �
� ` t1 t2 : �

x # � (x :�) ::� ` t : �
� ` �x:t : �!�

valid []
x # � valid �
valid (x :�) ::�

If �1 ` t : � and valid �2, �1 � �2 then �2 ` t : � .
Eugene, 24. July 2008 – p. 16/37

Same Problem with Rule Inductions
We can specify typing-rules for lambda-terms as:

(x :�) 2 � valid �
� ` x : �

� ` t1 : �!� � ` t2 : �
� ` t1 t2 : �

x # � (x :�) ::� ` t : �
� ` �x:t : �!�

valid []
x # � valid �
valid (x :�) ::�

If �1 ` t : � and valid �2, �1 � �2 then �2 ` t : � .
Eugene, 24. July 2008 – p. 16/37

The proof of the weakening lemma is said to be
trivial / obvious / routine /. . . in many places.
(I am actually still looking for a place in the lit-
erature where a trivial / obvious / routine /. . .
proof is spelled out — I know of proofs by Gal-
lier, McKinna & Pollack and Pitts, but I would not
call them trivial / obvious / routine /. . .)

Recall: Rule Inductions

prem1 : : : premn scs
concl rule

Rule Inductions:
1.) Assume the property for the premises.

Assume the side-conditions.
2.) Show the property for the conclusion.

Eugene, 24. July 2008 – p. 17/37

Induction Principle for Typing
The induction principle that comes with the
typing definition is as follows:

8� x �: (x :�) 2 � ^ valid�) P � (x) �

8� t1 t2 � �:

P � t1 (�!�) ^ P � t2 �) P � (t1 t2) �

8� x t � �:

x # � ^ P ((x :�) ::�) t �) P � (�x:t) (�!�)

� ` t : �) P � t �

Eugene, 24. July 2008 – p. 18/37

Note the quantifiers!

Proof of Weakening Lemma
x # � (x :�) ::� ` t : �

� ` �x:t : �!�

If �1` t :� then 8�2: valid�2 ^ �1��2)�2` t :�

For all �1, x, t, � and � :

We know:
8�2: valid�2 ^ (x :�) ::�1��2) �2 ` t :�
x # �1

valid�2 ^ �1��2

valid�2 ^ �1��2)

We have to show:

Eugene, 24. July 2008 – p. 19/37

Proof of Weakening Lemma
x # � (x :�) ::� ` t : �

� ` �x:t : �!�

If �1` t :� then 8�2: valid�2 ^ �1��2)�2` t :�

For all �1, x, t, � and � :

We know:
8�2: valid�2 ^ (x :�) ::�1��2) �2 ` t :�
x # �1

valid�2 ^ �1��2

valid�2 ^ �1��2)

We have to show:
8�2: valid�2 ^ �1��2) �2`�x:t :�!�

Eugene, 24. July 2008 – p. 19/37

Proof of Weakening Lemma
x # � (x :�) ::� ` t : �

� ` �x:t : �!�

If �1` t :� then 8�2: valid�2 ^ �1��2)�2` t :�

For all �1, x, t, � and � :

We know:
8�2: valid�2 ^ (x :�) ::�1��2) �2 ` t :�
x # �1

valid�2 ^ �1��2

valid�2 ^ �1��2)

We have to show:
�2`�x:t :�!�

Eugene, 24. July 2008 – p. 19/37

Proof of Weakening Lemma
x # � (x :�) ::� ` t : �

� ` �x:t : �!�

If �1` t :� then 8�2: valid�2 ^ �1��2)�2` t :�

For all �1, x, t, � and � :

We know:
8�2: valid�2 ^ (x :�) ::�1��2) �2 ` t :�
x # �1

valid�2 ^ �1��2

valid�2 ^ �1��2)

We have to show:
�2`�x:t :�!�

Eugene, 24. July 2008 – p. 19/37

Proof of Weakening Lemma
x # � (x :�) ::� ` t : �

� ` �x:t : �!�

If �1` t :� then 8�2: valid�2 ^ �1��2)�2` t :�

For all �1, x, t, � and � :

We know:
8�2: valid�2 ^ (x :�) ::�1��2) �2 ` t :�
x # �1

valid�2 ^ �1��2

valid�2 ^ �1��2)

We have to show:
�2`�x:t :�!�

Eugene, 24. July 2008 – p. 19/37

�2 7! (x :�) ::�2

Proof of Weakening Lemma
x # � (x :�) ::� ` t : �

� ` �x:t : �!�

If �1` t :� then 8�2: valid�2 ^ �1��2)�2` t :�

For all �1, x, t, � and � :

We know:
8�2: valid�2 ^ (x :�) ::�1��2) �2 ` t :�
x # �1

valid�2 ^ �1��2) (x :�) ::�1� (x :�) ::�2

valid�2 ^ �1��2)

We have to show:
�2`�x:t :�!�

Eugene, 24. July 2008 – p. 19/37

�2 7! (x :�) ::�2

Proof of Weakening Lemma
x # � (x :�) ::� ` t : �

� ` �x:t : �!�

If �1` t :� then 8�2: valid�2 ^ �1��2)�2` t :�

For all �1, x, t, � and � :

We know:
8�2: valid�2 ^ (x :�) ::�1��2) �2 ` t :�
x # �1

valid�2 ^ �1��2) (x :�) ::�1� (x :�) ::�2

valid�2 ^ �1��2) valid (x :�) ::�2 ???
We have to show:
�2`�x:t :�!�

Eugene, 24. July 2008 – p. 19/37

�2 7! (x :�) ::�2

Eugene, 24. July 2008 – p. 20/37

The usual proof of strong normalisation for simply-
typed lambda-terms establishes first:
Lemma: If for all reducible s, t[x :=s] is reducible,
then �x:t is reducible.

Then one shows for a closing (simultaneous)
substitution:
Theorem: If � ` t : � , then for all closing sub-
stitutions � containing reducible terms only, �(t) is
reducible.

Lambda-Case: By ind. we know (x 7!s [�)(t) is
reducible with s being reducible. This is equal� to
(�(t))[x :=s]. Therefore, we can apply the lemma and
get �x:(�(t)) is reducible. Because this is equal� to
�(�x:t), we are done. �you have to take a deep breath

Strong Induction Principle

Eugene, 24. July 2008 – p. 21/37

Instead we are going to use the strong induction
principle and set up the induction so that it
“avoids” �2 (in case of the weakening lemma) and
� (in case of SN).

Proof of Weakening Lemma
x # � (x :�) ::� ` t : �

� ` �x:t : �!�

If �1` t :� then valid�2 ^ �1��2)�2` t :�

For all �1, x, t, � and � :

We know:
8�2: valid�2 ^ (x :�) ::�1��2)�2` t :�
x # �1

valid�2 ^ �1��2

x # �2

We have to show:
�2`�x:t :�!�

Eugene, 24. July 2008 – p. 22/37

Proof of Weakening Lemma
x # � (x :�) ::� ` t : �

� ` �x:t : �!�

If �1` t :� then valid�2 ^ �1��2)�2` t :�

For all �1, x, t, � and � :

We know:
8�2: valid�2 ^ (x :�) ::�1��2)�2` t :�
x # �1

valid�2 ^ �1��2) (x :�) ::�1� (x :�) ::�2

x # �2) valid (x :�) ::�2

We have to show:
�2`�x:t :�!�

Eugene, 24. July 2008 – p. 22/37

In Nominal Isabelle
abbreviation
"sub_ctx" :: "(name�ty) list) (name�ty) list) bool" ("_� _")

where
"� 1 � � 2 � 8 x T. (x,T) 2 set � 1 �! (x,T) 2 set � 2"

lemma weakening_lemma:
fixes � 1 � 2::"(name�ty) list"
assumes a: "� 1 ` t : T"
and b: "valid � 2"
and c: "� 1 � � 2"
shows "� 2 ` t : T"

using a b c
by (nominal_induct � 1 t T avoiding: � 2 rule: typing.strong_induct)

(auto simp add: atomize_all atomize_imp)

Eugene, 24. July 2008 – p. 23/37

SN (Again)
Theorem: If � ` t : � , then for all closing sub-
stitutions � containing reducible terms only, �(t)
is reducible.

Since we say that the strong induction should
avoid �, we get the assumption x # � then:
Lambda-Case: By ind. we know (x 7!s [�)(t) is
reducible with s being reducible. This is equal to
(�(t))[x :=s]. Therefore, we can apply the
lemma and get �x:(�(t)) is reducible. Because
this is equal to �(�x:t), we are done.
x # �) (x 7!s [�)(t) = (�(t))[x :=s]

�(�x:t) = �x:(�(t))
Eugene, 24. July 2008 – p. 24/37

So Far So Good
A Faulty Lemma with the Variable Convention?

Variable Convention:
IfM1; : : : ;Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound
variables are chosen to be different from the free variables.

Barendregt in “The Lambda-Calculus: Its Syntax and Semantics”

Inductive Definitions:

prem1 : : : premn
scs

concl

Rule Inductions:
1.) Assume the property for

the premises. Assume
the side-conditions.

2.) Show the property for
the conclusion.

Eugene, 24. July 2008 – p. 25/37

Faulty Reasoning
Consider the two-place relation foo:

x 7! x t1 t2 7! t1 t2
t 7! t0

�x:t 7! t0

The lemma we going to prove:

Let t 7! t0. If y # t then y # t0.

Eugene, 24. July 2008 – p. 26/37

Faulty Reasoning
Consider the two-place relation foo:

x 7! x t1 t2 7! t1 t2
t 7! t0

�x:t 7! t0

The lemma we going to prove:

Let t 7! t0. If y # t then y # t0.

Eugene, 24. July 2008 – p. 26/37

Faulty Reasoning
Consider the two-place relation foo:

x 7! x t1 t2 7! t1 t2
t 7! t0

�x:t 7! t0

The lemma we going to prove:

Let t 7! t0. If y # t then y # t0.

Cases 1 and 2 are trivial:

If y # x then y # x.
If y # t1 t2 then y # t1 t2.

Eugene, 24. July 2008 – p. 26/37

Faulty Reasoning
Consider the two-place relation foo:

x 7! x t1 t2 7! t1 t2
t 7! t0

�x:t 7! t0

The lemma we going to prove:

Let t 7! t0. If y # t then y # t0.

Case 3:
We know y # �x:t. We have to show y # t0.
The IH says: if y # t then y # t0.

So we have y # t. Hence y # t0 by IH. Done!

Eugene, 24. July 2008 – p. 26/37

Faulty Reasoning
Consider the two-place relation foo:

x 7! x t1 t2 7! t1 t2
t 7! t0

�x:t 7! t0

The lemma we going to prove:

Let t 7! t0. If y # t then y # t0.

Case 3:
We know y # �x:t. We have to show y # t0.
The IH says: if y # t then y # t0.

So we have y # t. Hence y # t0 by IH. Done!

Eugene, 24. July 2008 – p. 26/37

Variable Convention:
If M1; : : : ;Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound vari-
ables are chosen to be different from the free variables.

In our case:

The free variables are y and t0; the bound one is x.

By the variable convention we conclude that x 6= y.

Faulty Reasoning
Consider the two-place relation foo:

x 7! x t1 t2 7! t1 t2
t 7! t0

�x:t 7! t0

The lemma we going to prove:

Let t 7! t0. If y # t then y # t0.

Case 3:
We know y # �x:t. We have to show y # t0.
The IH says: if y # t then y # t0.

So we have y # t. Hence y # t0 by IH. Done!

Eugene, 24. July 2008 – p. 26/37

y 62fv(�x:t)() y 62fv(t)�fxg x 6=y
() y 62fv(t)

Variable Convention:
If M1; : : : ;Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound vari-
ables are chosen to be different from the free variables.

In our case:

The free variables are y and t0; the bound one is x.

By the variable convention we conclude that x 6= y.

Faulty Reasoning
Consider the two-place relation foo:

x 7! x t1 t2 7! t1 t2
t 7! t0

�x:t 7! t0

The lemma we going to prove:

Let t 7! t0. If y # t then y # t0.

Case 3:
We know y # �x:t. We have to show y # t0.
The IH says: if y # t then y # t0.
So we have y # t. Hence y # t0 by IH. Done!

Eugene, 24. July 2008 – p. 26/37

y 62fv(�x:t)() y 62fv(t)�fxg x 6=y
() y 62fv(t)

Variable Convention:
If M1; : : : ;Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound vari-
ables are chosen to be different from the free variables.

In our case:

The free variables are y and t0; the bound one is x.

By the variable convention we conclude that x 6= y.

Faulty Reasoning
Consider the two-place relation foo:

x 7! x t1 t2 7! t1 t2
t 7! t0

�x:t 7! t0

The lemma we going to prove:

Let t 7! t0. If y # t then y # t0.

Case 3:
We know y # �x:t. We have to show y # t0.
The IH says: if y # t then y # t0.
So we have y # t. Hence y # t0 by IH. Done!

Eugene, 24. July 2008 – p. 26/37

VC-Compatibility
We introduced two conditions that make the VC
safe to use in rule inductions:

the relation needs to be equivariant, and
the binder is not allowed to occur in the
support of the conclusion (not free in the
conclusion)

Once a relation satisfies these two conditions,
then Nominal Isabelle derives the strong
induction principle automatically.

Eugene, 24. July 2008 – p. 27/37

VC-Compatibility
We introduced two conditions that make the VC
safe to use in rule inductions:

the relation needs to be equivariant, and
the binder is not allowed to occur in the
support of the conclusion (not free in the
conclusion)

Once a relation satisfies these two conditions,
then Nominal Isabelle derives the strong
induction principle automatically.

Eugene, 24. July 2008 – p. 27/37

A relation R is equivariant iff

8� t1 : : : tn
R t1 : : : tn) R(��t1) : : : (��tn)

This means the relation has to be invariant under
permutative renaming of variables.
(This property can be checked automatically if the inductive
definition is composed of equivariant “things”.)

VC-Compatibility
We introduced two conditions that make the VC
safe to use in rule inductions:

the relation needs to be equivariant, and
the binder is not allowed to occur in the
support of the conclusion (not free in the
conclusion)

Once a relation satisfies these two conditions,
then Nominal Isabelle derives the strong
induction principle automatically.

Eugene, 24. July 2008 – p. 27/37

Honest Toil, No Theft!
The sacred principle of HOL:

“The method of ‘postulating’ what we want has
many advantages; they are the same as the
advantages of theft over honest toil.”

B. Russell, Introduction of Mathematical Philosophy

I will show next that the weak structural
induction principle implies the strong structural
induction principle.

(I am only going to show the lambda-case.)

Eugene, 24. July 2008 – p. 28/37

Permutations
A permutation acts on variable names as follows:

[]�a
def
= a

((a1 a2) ::�)�a
def
=

8><
>:

a1 if ��a = a2

a2 if ��a = a1

��a otherwise

[] stands for the empty list (the identity
permutation), and

(a1 a2) ::� stands for the permutation �
followed by the swapping (a1 a2).

Eugene, 24. July 2008 – p. 29/37

Permutations on Lambda-Terms
Permutations act on lambda-terms as follows:

��x
def
= “action on variables”

�� (t1 t2)
def
= (��t1) (��t2)

��(�x:t)
def
= �(��x):(��t)

Alpha-equivalence can be defined as:

t1 = t2
�x:t1 = �x:t2

x 6= y t1 = (x y)�t2 x # t2
�x:t1 = �y:t2

Eugene, 24. July 2008 – p. 30/37

Permutations on Lambda-Terms
Permutations act on lambda-terms as follows:

��x
def
= “action on variables”

�� (t1 t2)
def
= (��t1) (��t2)

��(�x:t)
def
= �(��x):(��t)

Alpha-equivalence can be defined as:

t1 = t2
�x:t1 = �x:t2

x 6= y t1 = (x y)�t2 x # t2
�x:t1 = �y:t2

Eugene, 24. July 2008 – p. 30/37

Notice, I wrote equality here!

My Claim
8x: P x

8t1 t2: P t1 ^ P t2) P (t1 t2)

8x t: P t) P (�x:t)

P t

implies

8x c: Pc x

8t1 t2 c: (8d: Pd t1) ^ (8d: Pd t2)) Pc (t1 t2)

8x t c: x # c ^ (8d: Pd t)) Pc (�x:t)

Pc t
Eugene, 24. July 2008 – p. 31/37

Proof for the Strong Induction Principle

Eugene, 24. July 2008 – p. 32/37

We prove Pc t by induction on t.

I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t)) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2

Proof for the Strong Induction Principle

Eugene, 24. July 2008 – p. 32/37

We prove 8� c: Pc (��t) by induction on t.

I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t)) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2

Proof for the Strong Induction Principle

Eugene, 24. July 2008 – p. 32/37

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc (��(�x:t)).

We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t)) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2

Proof for the Strong Induction Principle

Eugene, 24. July 2008 – p. 32/37

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).

We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t)) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2

Proof for the Strong Induction Principle

Eugene, 24. July 2008 – p. 32/37

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.

Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t)) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2

Proof for the Strong Induction Principle

Eugene, 24. July 2008 – p. 32/37

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t)) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2

Proof for the Strong Induction Principle

Eugene, 24. July 2008 – p. 32/37

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t)) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).

Now we can use 8c: Pc ((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2

Proof for the Strong Induction Principle

Eugene, 24. July 2008 – p. 32/37

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t)) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc (((y ��x) ::�)�t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2

Proof for the Strong Induction Principle

Eugene, 24. July 2008 – p. 32/37

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t)) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2

Proof for the Strong Induction Principle

Eugene, 24. July 2008 – p. 32/37

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t)) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t) to infer

P c�y:((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2

Proof for the Strong Induction Principle

Eugene, 24. July 2008 – p. 32/37

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t)) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t) to infer

P c�y:((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2

Proof for the Strong Induction Principle

Eugene, 24. July 2008 – p. 32/37

We prove 8� c: Pc (��t) by induction on t.
I.e., we have to show Pc�(��x):(��t).
We have 8� c: Pc (��t) by induction.
Our weaker precondition says that:

8x t c: x # c ^ (8c: Pc t)) Pc (�x:t)

We choose a fresh y such that y # (��x; ��t; c).
Now we can use 8c: Pc ((y ��x)���t) to infer

P c�y:((y ��x)���t)

However
�y:((y ��x)���t) = �(��x):(��t)

Therefore P c�(��x):(��t) and we are done.

x 6= y t1 = (x y)�t2 y # t2
�y:t1 = �x:t2

This Proof in Isabelle

Eugene, 24. July 2008 – p. 33/37

lemma lam_strong_induct:
fixes c::"’a::fs_name"
assumes h1: "

V
x c. P c (Var x)"

and h2: "
V
t1 t2 c. [[8 d. P d t1; 8 d. P d t2]] =) P c (App t1 t2)"

and h3: "
V
x t c. [[x#c; 8 d. P d t]] =) P c (Lam [x].t)"

shows "P c t"
proof -

have "8 (�::name prm) c. P c (��t)" : : :
interesting bit

then have "P c (([]::name prm)�t)" by blast
then show "P c t" by simp

qed

Interesting Bit

Eugene, 24. July 2008 – p. 34/37

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :

Interesting Bit

Eugene, 24. July 2008 – p. 34/37

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :

Interesting Bit

Eugene, 24. July 2008 – p. 34/37

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :

Interesting Bit

Eugene, 24. July 2008 – p. 34/37

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :

Interesting Bit

Eugene, 24. July 2008 – p. 34/37

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :

Interesting Bit

Eugene, 24. July 2008 – p. 34/37

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :

Interesting Bit

Eugene, 24. July 2008 – p. 34/37

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :

Interesting Bit

Eugene, 24. July 2008 – p. 34/37

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :

Interesting Bit

Eugene, 24. July 2008 – p. 34/37

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :

Interesting Bit

Eugene, 24. July 2008 – p. 34/37

h3: “
V
x t c. [[x # c; 8 d. P d t]] =) P c Lam [x].t”

: : :

have "8 (�::name prm) c. P c (��t)"
proof (induct t rule: lam.induct)
case (Lam x t)
have ih: "8 (�::name prm) c. P c (��t)" by fact
{ fix �::"name prm" and c::"’a::fs_name"
obtain y::"name" where fc: "y#(��x,��t,c)"
by (rule exists_fresh) (auto simp add: fs_name1)

from ih have "8 c. P c (([(y,��x)]@�)�t)" by simp
then have "8 c. P c ([(y,��x)]�(��t))" by (auto simp only: pt_name2)
with h3 have "P c (Lam [y].[(y,��x)]�(��t))" using fc by (simp add: fresh_prod)
moreover
have "Lam [y].[(y,��x)]�(��t) = Lam [(��x)].(��t)"
using fc by (simp add: lam.inject alpha fresh_atm fresh_prod)

ultimately have "P c (Lam [(��x)].(��t))" by simp
}
then have "8 (�::name prm) c. P c (Lam [(��x)].(��t))" by simp
then show "8 (�::name prm) c. P c (��(Lam [x].t))" by simp

qed (auto intro: h1 h2)
: : :

Some Examples
x # � (x, T1)::� ` t : T2
� ` Lam [x].t : T1! T2

t 7! t’
Lam [x].t 7! t’

� `� A1 : Type (x, A1)::� `� M2 : A2 x # (� , A1)
� `� Lam [x:A1].M2 : �[x:A1].A2

(x, � 1)::� `� App M (Var x), App N (Var x) : � 2
x # (�, M, N)

� `� M, N : � 1! � 2

Eugene, 24. July 2008 – p. 35/37

Some Examples
x # � (x, T1)::� ` t : T2
� ` Lam [x].t : T1! T2

t 7! t’
Lam [x].t 7! t’

� `� A1 : Type (x, A1)::� `� M2 : A2 x # (� , A1)
� `� Lam [x:A1].M2 : �[x:A1].A2

(x, � 1)::� `� App M (Var x), App N (Var x) : � 2
x # (�, M, N)

� `� M, N : � 1! � 2

Eugene, 24. July 2008 – p. 35/37

Some Examples
x # � (x, T1)::� ` t : T2
� ` Lam [x].t : T1! T2

t 7! t’
Lam [x].t 7! t’

� `� A1 : Type (x, A1)::� `� M2 : A2 x # (� , A1)
� `� Lam [x:A1].M2 : �[x:A1].A2

(x, � 1)::� `� App M (Var x), App N (Var x) : � 2
x # (�, M, N)

� `� M, N : � 1! � 2

Eugene, 24. July 2008 – p. 35/37

Some Examples
x # � (x, T1)::� ` t : T2
� ` Lam [x].t : T1! T2

t 7! t’
Lam [x].t 7! t’

� `� A1 : Type (x, A1)::� `� M2 : A2 x # (� , A1)
� `� Lam [x:A1].M2 : �[x:A1].A2

(x, � 1)::� `� App M (Var x), App N (Var x) : � 2
x # (�, M, N)

� `� M, N : � 1! � 2

Eugene, 24. July 2008 – p. 35/37

Some Examples
x # � (x, T1)::� ` t : T2
� ` Lam [x].t : T1! T2

t 7! t’
Lam [x].t 7! t’

� `� A1 : Type (x, A1)::� `� M2 : A2 x # (� , A1)
� `� Lam [x:A1].M2 : �[x:A1].A2

(x, � 1)::� `� App M (Var x), App N (Var x) : � 2
x # (�, M, N)

� `� M, N : � 1! � 2

Eugene, 24. July 2008 – p. 35/37

boundbound

free

Some Examples
x # � (x, T1)::� ` t : T2
� ` Lam [x].t : T1! T2

t 7! t’
Lam [x].t 7! t’

� `� A1 : Type (x, A1)::� `� M2 : A2 x # (� , A1)
� `� Lam [x:A1].M2 : �[x:A1].A2

(x, � 1)::� `� App M (Var x), App N (Var x) : � 2
x # (�, M, N)

� `� M, N : � 1! � 2

Eugene, 24. July 2008 – p. 35/37

freefreefree

Some Examples
x # � (x, T1)::� ` t : T2
� ` Lam [x].t : T1! T2

t 7! t’
Lam [x].t 7! t’

� `� A1 : Type (x, A1)::� `� M2 : A2 x # (� , A1)
� `� Lam [x:A1].M2 : �[x:A1].A2

(x, � 1)::� `� App M (Var x), App N (Var x) : � 2
x # (�, M, N)

� `� M, N : � 1! � 2

Eugene, 24. July 2008 – p. 35/37

Conclusions
The Nominal Isabelle automatically derives the
strong structural induction principle for all
nominal datatypes (not just the lambda-calculus);
also for rule inductions (though they have to
satisfy a vc-condition).
They are easy to use: you just have to think
carefully what the variable convention should be.
We can explore the dark corners of the variable
convention: when and where it can actually be
used.

Main Point: Actually these proofs using the
variable convention are all trivial / obvious /
routine. . . provided you use Nominal Isabelle. ;o)

Eugene, 24. July 2008 – p. 36/37

Conclusions
The Nominal Isabelle automatically derives the
strong structural induction principle for all
nominal datatypes (not just the lambda-calculus);
also for rule inductions (though they have to
satisfy a vc-condition).
They are easy to use: you just have to think
carefully what the variable convention should be.
We can explore the dark corners of the variable
convention: when and where it can actually be
used.
Main Point: Actually these proofs using the
variable convention are all trivial / obvious /
routine. . . provided you use Nominal Isabelle. ;o)

Eugene, 24. July 2008 – p. 36/37

Next

How do we deal with statements such as
“Expressions differing only in names of bound
variables are equivalent”.

�x:x = �y:y

Exercise: Find a short proof for the weakening
lemma that does not rely on the variable
convention.

Eugene, 24. July 2008 – p. 37/37

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	anm0:

