
Types

in Programming Languages (9)

Christian Urbanhttp://www4.in.tum.de/lehre/vorlesungen/types/WS0607/

Munich, 17. January 2007 – p.1 (1/1)

Recap from last Week

We reformulated the inference rules for
subtyping and typing so that one could read
off a typing-algorithm.

The language we considered contained
variables, applications and lambda-
abstractions (briefly also looked at casts).
Main point of subtyping is to analyse typing-
systems for object-oriented languages.

Munich, 17. January 2007 – p.2 (1/1)

Featherweight Java
small language to study Java proposed by
Igarashi, Pierce and Wadler

contains only: object creation, method
invocation, field access, casting and variables
(no side-effects, which means it behaves
almost like a functional language)

one design motivation is the type-safety
proof; for example since no assignment is
possible, one does not need an environment
to evaluate an FJ-program (still, FJ is
Turing-complete)

Munich, 17. January 2007 – p.3 (1/1)

Syntax
an FJ-program consists of

a class-table, CT , which is a collection
of class definitions
and a term, which corresponds to the
“main-method” in Java

a class definition has the form

class A extends B f: : :g

where super-class is always included (whereB is possibly Object)

Munich, 17. January 2007 – p.4 (1/1)

Class Definitions
For example

class Pair extends Object f
Object fst ; (fields)
Object snd ;
Pair (Object f , Object s) f (constructor)

super(); this.fst = f ; this.snd = s; g

Pair setfst (Object newf) f (method)
return new Pair(newf , this.snd) gg

Munich, 17. January 2007 – p.5 (1/4)

Class Definitions
For example

class Pair extends Object f
Object fst ; (fields)
Object snd ;
Pair (Object f , Object s) f (constructor)

super(); this.fst = f ; this.snd = s; g

Pair setfst (Object newf) f (method)
return new Pair(newf , this.snd) gg

constructors need to be always present, e.g.A() f super(); g corresponds to “do nothing”
Munich, 17. January 2007 – p.5 (2/4)

Class Definitions
For example

class Pair extends Object f
Object fst ; (fields)
Object snd ;
Pair (Object f , Object s) f (constructor)

super(); this.fst = f ; this.snd = s; g

Pair setfst (Object newf) f (method)
return new Pair(newf , this.snd) gg

constructors always take one argument for
each field; super is always invoked

Munich, 17. January 2007 – p.5 (3/4)

Class Definitions
For example

class Pair extends Object f
Object fst ; (fields)
Object snd ;
Pair (Object f , Object s) f (constructor)

super(); this.fst = f ; this.snd = s; g

Pair setfst (Object newf) f (method)
return new Pair(newf , this.snd) gg

method-bodies are always of the form
return t where t is a term

Munich, 17. January 2007 – p.5 (4/4)

Terms
Terms are:

object constructions, e.g. new A(),
new Pair (. . . ,. . .)
method invocations, e.g. �.setfst(. . .)

field access, e.g. A.f , this.snd

variables, e.g. this, newf
casts, e.g. (A)t, (Pair)t

Munich, 17. January 2007 – p.6 (1/1)

Evaluation
Since we have no assignments, evaluation can be
easily formalised, e.g.:

new Pair (new A(), new B()).snd�! new B()

A computation may get stuck if

a field is accessed which is not declared

a method is invoked which does not exists

a cast to something other than a super-class

Munich, 17. January 2007 – p.7 (1/1)

Reduction Sequence
((P 0r)
(new P 0r (new P 0r (new A(), new B()),newA())). fst).snd�!

((P 0r) new P 0r (new A(), new B())).snd�!

new P 0r (new A(), new B()).snd�!

new B()

Munich, 17. January 2007 – p.8 (1/1)

Terms and Values
Terms:

T ::= x variablesj t:f field accessj t:m(t1; : : : ; tn) method invocationj newC(t1; : : : ; tn object creationj (C)t cast

Values:v ::= new C(v1; : : : ; vn)

Munich, 17. January 2007 – p.9 (1/1)

Classes
Classes:C ::= class C extends C f ~C ~f ; ~K ~Mg

Constructors:K ::= C(C ~x)fsuper(~f); this: ~f = ~fg

Methods:M ::= Cm(~C~x)freturn tg

Munich, 17. January 2007 – p.10 (1/1)

Subtyping

C <: C
C <: D D <: EC <: E

CT (C) = classC extendsD f: : :gC <: D
where CT is the class-table, a mapping
from class-names to class-declarations

Munich, 17. January 2007 – p.11 (1/1)

Evaluation (I)
newC(v1; : : : ; vn):fi �! vi

m is defined in C asBm(~B ~x)freturn tg
or so in a super-class ofC

newC(~v):m(~u) �!t[~x 7! ~u; this 7! newC(~v)℄

in t the ~x are instantiated by the ~u and this
is associated with C(~v)

Munich, 17. January 2007 – p.12 (1/1)

Evaluation (II)

C <: D(D)(newC(~v)) �! newC(~v)
the rest are “congruence”-rulest �! t0t:f �! t0:f

Munich, 17. January 2007 – p.13 (1/1)

Typing (I)

x : C 2 �� ` x : C
� ` t : C C contains field Ci fi� ` t:fi : Ci

� ` ~u : ~C ~C <: ~D� ` t : C0 and m : ~D ! C in C0

� ` t:m(~u) : C

Munich, 17. January 2007 – p.14 (1/1)

Typing (II)

� ` ~t : ~D ~C <: ~D C consists of fields ~D ~f� ` newC(~t) : C

� ` t : D D <: C� ` (C)t : C

� ` t : D C <: D C 6= D� ` (C)t : C

� ` t : D C 6<: D D 6<: C� ` (C)t : C stupid warning

Munich, 17. January 2007 – p.15 (1/1)

Type-Safety
If � ` t : C and t �! t0 then � ` t0 : C0
for some C0 <: C

stupid casts are rejected, but needed for
the property above, e.g.

class A extends Object : : :
class B extends Object : : :(A)(Object)newB() �! (A)newB()

Munich, 17. January 2007 – p.16 (1/1)

Data Types
We next consider how to represent
datatypes, such as

Booleans (either True or False)
Lists (either Nil or Cons)
Nats (either Zero or Successor)
Bin-trees (either Leaf or Node)

The question is how to include them into the
typing-system. Introducing them primitively
is unsatisfactory. Why?

We consider here the PLC.
Munich, 17. January 2007 – p.17 (1/1)

Syntax of PLC
Types:T ::= X type variablesj T ! T function typesj 8X:T 8-type
Terms:e ::= x variablesj e e applicationsj �x:e lambda-abstractionsj �X:e type-abstractionsj e T type-applications

Munich, 17. January 2007 – p.18 (1/1)

Transitions in PLC
We have the same transitions as in the
lambda-calculus, e.g.

(�x:e1)e2 �! e1[x :=e2℄
plus rules for type-abstractions and
type-applications

(�X:e)T �! e[X :=T ℄

Confluence and Termination holds for�!.

Munich, 17. January 2007 – p.19 (1/1)

Typing Rules
Type-Generalisation

� ` e : T X 62 ftv(�)� ` �X:e : 8X:T
Type-Specialisation

� ` e : 8X:T1� ` e T2 : T1[X := T2℄

Interestingly, for PLC the problems of
type-checking and type-inference are
computationally equivalent and undecidable!

Munich, 17. January 2007 – p.20 (1/2)

Typing Rules
Type-Generalisation

� ` e : T X 62 ftv(�)� ` �X:e : 8X:T
Type-Specialisation

� ` e : 8X:T1� ` e T2 : T1[X := T2℄

Interestingly, for PLC the problems of
type-checking and type-inference are
computationally equivalent and undecidable!

Therefore we explicitly annotate the
type in lambda-abstractions

�x : T:e
Type-checking is then trivial. (But is
it useful?)

Munich, 17. January 2007 – p.20 (2/2)

Datatypes
We are now returning to the question of
representing datatypes in PLC.

Booleans with values true and false
is represented by

bool
def= 8X:X ! (X ! X)

true
def= �X:�x1 : X:�x2 : X:x1

false
def= �X:�x1 : X:�x2 : X:x2

These are the only two closed normal terms
of type bool.

Munich, 17. January 2007 – p.21 (1/1)

Lists
Lists can be represented as

X list
def= 8Y:Y ! (X!Y !Y) ! Y

Nil
def= �XY:�x : Y:�f : X ! Y ! Y:x

Cons
def= : : :

These are infinitely closed normal terms of
this type.

We also have unit-, product- and sum-types.
From this we can already build up all
algebraic types (a.k.a. data types).

Munich, 17. January 2007 – p.22 (1/1)

Possible Questions
Question: A typed programming language is
polymorphic if a term of the language may
have different types (right or wrong)?

PLC is at the heart of the immediate
language in GHC: let-polymorphism of ML is
compiled to (annotated) PLC.

Describe the notion of beta-equality of
terms in PLC. How can one decide that two
typable PLC-terms are in this relation? Why
does this fail for untypable terms?

Munich, 17. January 2007 – p.23 (1/1)

Further Points
Functional programming languages often
allow bounds (constraints) on types:
for example the membership functions of
lists has typeX ! X list ! bool, whereX can only be a type with defined equality.

Haskell generalises this idea by using
type-classes

This is in contrast to object-oriented
programming languages which use subtyping
for modelling this.

Munich, 17. January 2007 – p.24 (1/1)

	�egin {tabular}{@{}c@{}} \ {	itlefnt Types}\ large in Programming Languages (9)\
end {tabular}
	�egin {tabular}{@{}c@{}}Recap from last Weekend {tabular}
	�egin {tabular}{@{}c@{}}Featherweight Javaend {tabular}
	�egin {tabular}{@{}c@{}}Syntaxend {tabular}
	�egin {tabular}{@{}c@{}}Class Definitionsend {tabular}
	�egin {tabular}{@{}c@{}}Termsend {tabular}
	�egin {tabular}{@{}c@{}}Evaluationend {tabular}
	�egin {tabular}{@{}c@{}}Reduction Sequenceend {tabular}
	�egin {tabular}{@{}c@{}}Terms and Valuesend {tabular}
	�egin {tabular}{@{}c@{}}Classesend {tabular}
	�egin {tabular}{@{}c@{}}Subtypingend {tabular}
	�egin {tabular}{@{}c@{}}Evaluation (I)end
{tabular}
	�egin {tabular}{@{}c@{}}Evaluation (II)end
{tabular}
	�egin {tabular}{@{}c@{}}Typing (I)end
{tabular}
	�egin {tabular}{@{}c@{}}Typing (II)end
{tabular}
	�egin {tabular}{@{}c@{}}Type-Safetyend {tabular}
	�egin {tabular}{@{}c@{}}Data Typesend {tabular}
	�egin {tabular}{@{}c@{}}Syntax of PLCend {tabular}
	�egin {tabular}{@{}c@{}}Transitions in PLCend {tabular}
	�egin {tabular}{@{}c@{}}Typing Rulesend {tabular}
	�egin {tabular}{@{}c@{}}Datatypesend {tabular}
	�egin {tabular}{@{}c@{}}Listsend {tabular}
	�egin {tabular}{@{}c@{}}Possible Questionsend {tabular}
	�egin {tabular}{@{}c@{}}Further Pointsend {tabular}

