INn Programming Languages (9)

Christian Urban

http://wwwé4.in.tum.de/lehre/vorlesungen/types/WS0607/

Munich, 17. January 2007 - p.1 (1/1)

Recap from last Week

B We reformulated the inference rules for
subtyping and typing so that one could read

of f a typing-algorithm.

B The language we considered contained
variables, applications and lambda-
abstractions (briefly also looked at casts).
Main point of subtyping is to analyse typing-
systems for object-oriented languages.

Munich, 17. January 2007 - p.2 (1/1)

Featherweight Java

B small language to study Java proposed by
Igarashi, Pierce and Wadler

B contains only: object creation, method
invocation, field access, casting and variables

(no side-effects, which means it behaves
almost like a functional language)

B one design motivation is the type-safety
proof; for example since no assignment is
possible, one does not need an environment
to evaluate an FJ-program (still, FJ is
Turing-complete)

Munich, 17. January 2007 - p.3 (1/1)

Syntax

B an FJ-program consists of

m a class-table, C'T', which is a collection
of class definitions

m and a term, which corresponds to the
"main-method" in Java

B a class definition has the form

class A extends B {...}

where super-class is always included (where
B is possibly Object)

Munich, 17. January 2007 - p.4 (1/1)

Class Definitions

Bl For example

class Pair extends Object {

Object fst, (fields)

Object snd;

Pair (Object f, Object s) { (constructor)
super(); this.fst = f. this.snd = s; }

Pair setfst (Object newf) { (method)

return new Pair(newf, this.snd) }

Munich, 17. January 2007 - p.5 (1/4)

Class Definitions

B For example

class Pair extends Object {

Object fst, (fields)

Object snd;

Pair (Object f, Object s) { (constructor)
super(); this.fst = f. this.snd = s; }

Pair setfst (Object newf) { (method)

return new Pair(newf, this.snd) }

}

B constructors need to be always present, e.g.
A() { super(); } corresponds to “"do nothing"

Munich, 17. January 2007 - p.5 (2/4)

Class Definitions

B For example

class Pair extends Object {

Object fst, (fields)

Object snd;

Pair (Object f, Object s) { (constructor)
super(); this.fst = f. this.snd = s; }

Pair setfst (Object newf) { (method)

return new Pair(newf, this.snd) }

}

B constructors always take one argument for
each field; super is always invoked

Munich, 17. January 2007 - p.5 (3/4)

Class Definitions

B For example

class Pair extends Object {

Object fst, (fields)

Object snd;

Pair (Object f, Object s) { (constructor)
super(); this.fst = f. this.snd = s; }

Pair setfst (Object newf) { (method)

return new Pair(newf, this.snd) }

}

B method-bodies are always of the form
return £ where £ is a term

Munich, 17. January 2007 - p.5 (4/4)

Terms

Terms are.

B object constructions, e.g. new A(),
new Pair(...,...)

B method invocations, e.g. —.setfst(...)
B field access, e.q. A.f, this.snd
B variables, e.g. this, newf

B casts, eg. (A)t, (Paar)t

Munich, 17. January 2007 - p.6 (1/1)

Evaluation

Since we have no assignments, evaluation can be
easily formalised, e.g.:

new Pair(new A(), new B()).snd
— new B()
A computation may get stuck if

B a field is accessed which is not declared
B a method is invoked which does not exists
B a cast to something other than a super-class

Munich, 17. January 2007 - p.7 (1/1)

Reduction Sequence

((P'r)
(new P'r(new P'r(new A(), new B()),new A())). fst).snd

_
((P’r) new P'r(new A(), new B())).snd
_

new Pr(new A(), new B()).snd

—

new B()

Munich, 17. January 2007 - p.8 (1/1)

Terms and Values

B Terms:
T ::= =x variables
t.f field access
t.m(ty,...,t,) method invocation
newC'(ty,...,t, object creation
(C)t cast
B Values:

v = new C(viy...,0y)

Munich, 17. January 2007 - p.9 (1/1)

Classes

B Classes:
C ::= class C extends C {C_"j? K M}
B Constructors:
K == C(C Z){super(f);this.f = f}
B Methods:

M 3= Cm(CZ){return t}

Munich, 17. January 2007 - p.10 (1/1)

Subtyping

BC <<: C
_
C<:D D<:FE
C<<: FE

]
CT(C) = classC extends D {...}
C <:D

where CT' is the class-table, a mapping
from class-names to class-declarations

Munich, 17. January 2007 - p.11 (1/1)

Evaluation (1)

BnewC(vy,...,0,).fi — v;

m is defined in C' as
B m(B x){return t}
or so in a super-class of C
new C (V). m(u) —
t|d — u, this — new C(v)]

int the T are instantiated by the u and this
is associated with C'(¥)

Munich, 17. January 2007 - p.12 (1/1)

Evaluation (Il

C <:D
(D) (nhew C(¥)) — new C'(7¥)

B the rest are "congruence”-rules

t — t
t.f —t'.f

Munich, 17. January 2007 - p.13 (1/1)

_ Typing (I)

r.:(C el
I'+x:C

_
I'=t:C C contains field C; f;

I |—tfz o Cz

. —> —> —

—u:C C<:D

—t:C' andm : D — C inC’
I'tm(u):C

I
I

Munich, 17. January 2007 - p.14 (1/1)

Typing (1)
. — —> — —
I't:D C <:D C consists of fields D ;

I'newC(t): C

_
I't: D D<:C

r-Ct:C

®rrt:D c<:D C +# D

r-y:cC

.Fl—t:D C LD D<«LC

r-Ct:C

stupid warninc

Munich, 17. January 2007 - p.15 (1/1)

Type-Safety

BIfI'Ft:Candt — t'thenI' =t : C’
for some C’ <: C

B stupid casts are rejected, but needed for
the property above, e.g.

class A extends Object ...
class B extends Object..
(A)(Object)new B() — (A)new B()

Munich, 17. January 2007 - p.16 (1/1)

Data Types

B We next consider how to represent
datatypes, such as

m Booleans (either True or False)
m Lists (either Nil or Cons)

m Nats (either Zero or Successor)
m Bin-trees (either Leaf or Node)

B The question is how to include them into the
typing-system. Introducing them primitively
is unsatisfactory. Why?

B We consider here the PLC.

Munich, 17. January 2007 - p.17 (1/1)

Syntax of PLC

B Types:
T = X type variables
T — T function types
vVX.T V-type
B Terms:
e = x variables

ee applications

Ax.e lambda-abstractions
AX.e type-abstractions
eT type-applications

Munich, 17. January 2007 - p.18 (1/1)

Transitions in PLC

B We have the same transitions as in the
lambda-calculus, e.q.

(Ax.e1)es — er|x:=e,]

plus rules for type-abstractions and
type-applications

(AX.e)T — e| X :=T]
B Confluence and Termination holds for —.

Munich, 17. January 2007 - p.19 (1/1)

Typing Rules
B Type-Generalisation

I''e: T X &ftv(I')
I'EAX.e:VX.T

B Type-Specialisation

Fl_ei\V/X.Tl
F|_€T22T1[X « = Tz]

B Interestingly, for PLC the problems of
type-checking and type-inference are
computationally equivalent and undecidable!

Munich, 17. January 2007 - p.20 (1/2)

Typing Rules

B Type-Generalisation

‘Therefore we explicitly annotate the
type in lambda-abstractions

B Ty Ax : T.e

Type-checking is then trivial. (But is
it useful?)

J

l/_l_Ao_l__l_L.‘.l. °_'.'AJ

B Interestingly, for PLC the problems of
type-checking and type-inference are
computationally equivalent and undecidable!

Munich, 17. January 2007 - p.20 (2/2)

Datatypes

We are now returning to the question of
representing datatypes in PLC.

B Booleans with values true and false
IS represented by

bool & vX.X — (X — X)

B true def AX . Axq1: X \xy : X.221

false def AX . Axq: X.Axy 0 X.2x2

These are the only two closed normal terms
of type bool.

Munich, 17. January 2007 - p.21 (1/1)

LIsts

B Lists can be represented as

X list ¥ vyy — (X—-Y—->Y)—>Y

BNI EAXY z: Y AF: X 5 Y = Yo

def
Cons = ...

These are infinitely closed normal terms of
this type.

B We also have unit-, product- and sum-types.
From this we can already build up all
algebraic types (a.k.a. data types).

Munich, 17. January 2007 - p.22 (1/1)

Possible Questions

B Question: A typed programming language is
polymorphic if a ferm of the language may
have different types (right or wrong)?

B PLC is at the heart of the immediate
language in GHC: let-polymorphism of ML is
compiled to (annotated) PLC.

B Describe the notion of beta-equality of

terms in PLC. How can one decide that two
typable PLC-terms are in this relation? Why

does this fail for untypable terms?

Munich, 17. January 2007 - p.23 (1/1)

Further Points

Bl Functional programming languages often
allow bounds (constraints) on types:
for example the membership functions of
lists has type X — X list — bool, where
X can only be a type with defined equality.

B Haskell generalises this idea by using
type-classes

B This is in contrast to object-oriented
programming languages which use subtyping
for modelling this.

Munich, 17. January 2007 - p.24 (1/1)

	�egin {tabular}{@{}c@{}} \ {	itlefnt Types}\ large in Programming Languages (9)\
end {tabular}
	�egin {tabular}{@{}c@{}}Recap from last Weekend {tabular}
	�egin {tabular}{@{}c@{}}Featherweight Javaend {tabular}
	�egin {tabular}{@{}c@{}}Syntaxend {tabular}
	�egin {tabular}{@{}c@{}}Class Definitionsend {tabular}
	�egin {tabular}{@{}c@{}}Termsend {tabular}
	�egin {tabular}{@{}c@{}}Evaluationend {tabular}
	�egin {tabular}{@{}c@{}}Reduction Sequenceend {tabular}
	�egin {tabular}{@{}c@{}}Terms and Valuesend {tabular}
	�egin {tabular}{@{}c@{}}Classesend {tabular}
	�egin {tabular}{@{}c@{}}Subtypingend {tabular}
	�egin {tabular}{@{}c@{}}Evaluation (I)end
{tabular}
	�egin {tabular}{@{}c@{}}Evaluation (II)end
{tabular}
	�egin {tabular}{@{}c@{}}Typing (I)end
{tabular}
	�egin {tabular}{@{}c@{}}Typing (II)end
{tabular}
	�egin {tabular}{@{}c@{}}Type-Safetyend {tabular}
	�egin {tabular}{@{}c@{}}Data Typesend {tabular}
	�egin {tabular}{@{}c@{}}Syntax of PLCend {tabular}
	�egin {tabular}{@{}c@{}}Transitions in PLCend {tabular}
	�egin {tabular}{@{}c@{}}Typing Rulesend {tabular}
	�egin {tabular}{@{}c@{}}Datatypesend {tabular}
	�egin {tabular}{@{}c@{}}Listsend {tabular}
	�egin {tabular}{@{}c@{}}Possible Questionsend {tabular}
	�egin {tabular}{@{}c@{}}Further Pointsend {tabular}

