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Quotes
Robin Milner in Computing Tomorrow:
“One of the most helpful concepts in the whole of pro-
gramming is the notion of type, used to classify the
kinds of object which are manipulated. A significant
proportion of programming mistakes are detected by
an implementation which does type-checking before it
runs any program.”

Leslie Lamport in Types Considered Harmful:
“...mathematicians have gotten along quite well for two
thousand years without types, and they still can to-
day.”
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Learning Goals
At the end you

can make up your own mind about types

know about the issues with type-systems

can define type-systems, implement
type-checkers

can prove properties about type-systems !
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What Are Types Good For
Detect errors via type-checking (prevent
multiplication of an integer by a bool)

Abstraction and Interfaces (programmer 1:
“please give me a value in mph”; programmer
2: “I give you a value in kmph”)

Documentation (useful hints about intended
use which is kept consistent with the
changes of the program)

Efficiency (if I know a value is an int, I can
compile to use machine registers)
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Avoiding Embarrassing
Claims

C, C++, Java, Ocaml, SML, C#, F# all have
types.

Q: What is the difference between them?

A: Some are better because they have a
strong type-system. (In C you can use an
integer as a bool via pointers. This defeats
the purpose of types.)

Q: But what about languages like LISP which
have no types at all? Are they really really
bad?
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Errors
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Errors
untrapped errors
e.g. access of
an array
outside its
bounds;
jumping to a
legal address
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Errors
untrapped errors
e.g. access of
an array
outside its
bounds;
jumping to a
legal address

trapped errors
e.g. division
by zero;
jumping to an
illegal
address

evil annoying

A programming language is called safe if no
untrapped errors can occur. Safety can be
achieved by run-time checks or static checks.
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Errors
untrapped errors
e.g. access of
an array
outside its
bounds;
jumping to a
legal address

trapped errors
e.g. division
by zero;
jumping to an
illegal
address

evil annoying

Forbidden errors include all untrapped errors
and some trapped ones. A strongly typed pro-
gramming language prevents all forbidden er-
rors.
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Errors
untrapped errors
e.g. access of
an array
outside its
bounds;
jumping to a
legal address

trapped errors
e.g. division
by zero;
jumping to an
illegal
address

evil annoying

A weakly typed programming language prevents
some untrapped errors, but not all; C, C++ have
features that make them weakly typed.
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Errors
untrapped errors
e.g. access of
an array
outside its
bounds;
jumping to a
legal address

trapped errors
e.g. division
by zero;
jumping to an
illegal
address

evil annoying

Typed Untyped
Safe SML, Java LISP

Unsafe C, C++ Assembler
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From “The Ten Commandments for C Programmers”

1) Thou shalt run lint [etc.] frequently and study its
pronouncements with care, for verily its perception
and judgement oft exceed thine.

2) Thou shalt not follow the NULL pointer, for chaos
and madness await thee at its end.

3) Thou shalt cast all function arguments to the
expected type if they are not of that type already,
even when thou art convinced that this is
unnecessary, lest they take cruel vengeance upon
thee when thou least expect it.

4) If thy header files fail to declare the return types of
thy library functions, thou shalt declare them thyself
with the most meticulous care, lest grievous harm
befall thy program.
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From “The Ten Commandments for C Programmers”

1) Thou shalt run lint [etc.] frequently and study its
pronouncements with care, for verily its perception
and judgement oft exceed thine.

2) Thou shalt not follow the NULL pointer, for chaos
and madness await thee at its end.

3) Thou shalt cast all function arguments to the
expected type if they are not of that type already,
even when thou art convinced that this is
unnecessary, lest they take cruel vengeance upon
thee when thou least expect it.

4) If thy header files fail to declare the return types of
thy library functions, thou shalt declare them thyself
with the most meticulous care, lest grievous harm
befall thy program.

Moral: Why not using a strongly
typed programming language in the
first place?
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Expected Properties
of Type Systems

Checks can be made statically or during run-time.
The checks should be:

decidable (The purpose of types is not just
stating the programmers intentions, but to
prevent error.)

transparent (Why a program type-checks or
not should be predictable.)

should not be in the way in programming
(polymorphism)
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Checks can be made statically or during run-time.
The checks should be:

decidable (The purpose of types is not just
stating the programmers intentions, but to
prevent error.)

transparent (Why a program type-checks or
not should be predictable.)

should not be in the way in programming
(polymorphism)

That means sometimes checks have
to be done dynamically during
run-time—programs become slower.
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Expected Properties
of Type Systems

Checks can be made statically or during run-time.
The checks should be:

decidable (The purpose of types is not just
stating the programmers intentions, but to
prevent error.)

transparent (Why a program type-checks or
not should be predictable.)

should not be in the way in programming
(polymorphism)

“This program contains a type-error”
is not helpful for the programmer.
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Formal Specification
of Type Systems

should provide a precise mathematical
characterisation

basis for type-soundness proofs (It is
quite difficult to design a strongly-typed
language. We will see examples where people
got it wrong.)

should keep algorithmic concerns and
specification separate
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Example
To warm up, let’s start with an example:e ::= x variablesj truej falsej gr e e greater thanj le e e less thanj eq e e equalj if e e e if-then-elsej 0j succ e successorj iszero e
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Example
To warm up, let’s start with an example:e ::= x variablesj truej falsej gr e e greater thanj le e e less thanj eq e e equalj if e e e if-then-elsej 0j succ e successorj iszero etrue, false, gr and so on are called constructors.
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Possible Expressions
iszero (succ 0)

if true false true

if (iszero n) (succ 0) 0
gr 0 (succ 0)
iszero false

if 0 0 (succ 0)
if x 0 false

le true false

eq true (succ 0)
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Possible Expressions
iszero (succ 0)

if true false true

if (iszero n) (succ 0) 0
gr 0 (succ 0)
iszero false

if 0 0 (succ 0)
if x 0 false

le true false

eq true (succ 0)
9>>>>>=

>>>>>;
however these
expressions look
wrong
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Typing
We introduce types bool and nat and a judgement:

true : bool false : bool 0 : nat
iszero should only work over nats and
produce a bool: e : nat

iszero e : boole1 : nat e2 : nat
gr e1 e2 : bool e1 : nat e2 : nat

le e1 e2 : boole : nat
succ e : nat
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Typing

T is a variable standing either for bool or
for nat. e1 : bool e2 : T e3 : T

if e1 e2 e3 : T

e1 : T e2 : T
eq e1 e2 : bool
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Type of Variables
What about variables?

x : T
but

x : bool 0 : nat x : nat
succ x : nat

if x 0 (succ x) : nat
Variables should refer to a single value (stored in
a register or memory location)
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Type-Contexts
The type of variables will be explicitly given in a
typing-context. They are finite sets of
(variable,type)-pairs:� = f(x; bool); (y; bool); (z; nat)g
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Type-Contexts
The type of variables will be explicitly given in a
typing-context. They are finite sets of
(variable,type)-pairs:� = f(x; bool); (y; bool); (z; nat)g

we write them as� = fx : bool; y : bool; z : natg

Our typing-judgement is now a 3-place relation� ` e : T
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Typing with Contexts

� ` true : bool � ` false : bool � ` 0 : nat

� ` e : nat� ` iszero e : bool� ` e1 : nat � ` e2 : nat� ` gr e1 e2 : bool� ` e1 : nat � ` e2 : nat� ` le e1 e2 : bool� ` e : nat� ` succ e : nat
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Typing with Contexts

� ` e1 : bool � ` e2 : T � ` e3 : T� ` if e1 e2 e3 : T

� ` e1 : T � ` e2 : T� ` eq e1 e2 : bool

(x : T ) 2 �� ` x : T
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Typing with Contexts

� ` e1 : bool � ` e2 : T � ` e3 : T� ` if e1 e2 e3 : T

� ` e1 : T � ` e2 : T� ` eq e1 e2 : bool

(x : T ) 2 �� ` x : T
The context must give a unique answer! E.g.:� = f(x : bool); (x : nat)g

should not be allowed. Munich, 18. October 2006 – p.17 (2/2)



Valid Contexts
Valid contexts are either the empty context or
the ones where the domain contains only distinct
variables.

valid ?
valid � x =2 dom �
valid (x : T ) [ �

e.g. dom(fx : bool; y : bool; z : natg) = fx; y; zg
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Valid Contexts
Valid contexts are either the empty context or
the ones where the domain contains only distinct
variables.

valid ?
valid � x =2 dom �
valid (x : T ) [ �

Now the typing-rule for variables looks as
follows:

valid � (x : T ) 2 �� ` x : T
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Valid Contexts
Valid contexts are either the empty context or
the ones where the domain contains only distinct
variables.

valid ?
valid � x =2 dom �
valid (x : T ) [ �

The typing-rules for true, false and 0 are:

valid �� ` true : bool valid �� ` false : bool valid �� ` 0 : nat
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Typable
We call an expression (term) e to be typable
if there exists a � and a type T such that� ` e : T can be derived.

Not all terms are typable, e.g. for eq 0 true
there does not exist such a � and T
(according to our rules).

We call things like:(x :bool)2fx :boolgfx :boolg ` x : bool fx :boolg ` 0:nat fx :boolg ` 0:natfx :boolg ` succ 0:natfx :boolg ` if x 0 (succ 0) : nat
a derivation (in this case a type-derivation).
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Inductive Definitions

set of all
contexts

set of all valid
contexts

Contexts are sets of (variable,type)-pairs.

valid ? valid � x =2 dom �

valid (x : T ) [ �

Munich, 18. October 2006 – p.20 (1/2)



Inductive Definitions

set of all
contexts

set of all valid
contexts

Contexts are sets of (variable,type)-pairs.

valid ? valid � x =2 dom �

valid (x : T ) [ �
Similarly with the typing-judgement:

� ` e : T
and the rules we defined.
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Inference Rules
The general pattern of an (inference) rule:

premise1 : : : premisen side-conditions

conclusion

Examples:� ` e1 : T � ` e2 : T� ` eq e1 e2 : bool
valid � x =2 dom �
valid (x : T ) [ �
valid ?
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Inference Rules
The general pattern of an (inference) rule:

premise1 : : : premisen side-conditions

conclusion

Examples:� ` e1 : T � ` e2 : T� ` eq e1 e2 : bool
valid � x =2 dom �
valid (x : T ) [ �
valid ?

An axiom is an infer-
ence rule without
premises (it can have
side-conditions), e.g:

valid� (x : T ) 2 �� ` x : T
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Induction Principles
Remember the general pattern of a rule is:

premise1 : : : premisen side-conditions

conclusion
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Induction Principles
Remember the general pattern of a rule is:

premise1 : : : premisen side-conditions

conclusion

We can show that a property P holds for all
elements given by rules, by

showing that the property holds for the
axioms (we can assume the side-conditions)

holds for the conclusion of all other rules,
assuming it holds already for the premises
(we can also assume the side-conditions)
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For Example
We want to show that a property P � e T
holds for all � ` e : T . That means we want
to show

� ` e : T ) P � e T
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For Example
We want to show that a property P � e T
holds for all � ` e : T . That means we want
to show

� ` e : T ) P � e T
For every rule

premise1 : : : premisen side-conditions

conclusion

“P prem1” ^ : : : ^ “P premn” ^ side-cond’s) “P concl”
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For Example
So for the gr-rule

� ` e1 : nat � ` e2 : nat� ` gr e1 e2 : bool

P � e1 nat^P � e2 nat)P � (gr e1 e2) bool
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For Example
So for the gr-rule

� ` e1 : nat � ` e2 : nat� ` gr e1 e2 : bool

P � e1 nat^P � e2 nat)P � (gr e1 e2) bool

and for the true-axiom

valid �� ` true : bool
valid � ) P � true bool
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Induction in Action
Let’s show a concrete property:

P � e T def= valid �
That means we want to show: If � ` e : T

then valid �, or� ` e : T ) valid �

Proof by induction over the rules of� ` e : T :

1) we have to show P for the axioms, and
2) then for the other rules
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1. Axioms
valid �� ` true : bool valid �� ` false : bool valid �� ` 0 : nat

valid � (x : T ) 2 �� ` x : T
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1. Axioms
valid �� ` true : bool valid �� ` false : bool valid �� ` 0 : nat

valid � (x : T ) 2 �� ` x : T
“side-cond’s” ) “P concl”

valid � ) valid �

valid � ^ (x : T ) 2 � ) valid �
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2. Rules

� ` e1 : bool � ` e2 : T � ` e3 : T� ` if e1 e2 e3 : T

� ` e1 : T � ` e2 : T� ` eq e1 e2 : bool

Munich, 18. October 2006 – p.27 (1/4)



2. Rules
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2. Rules

� ` e1 : bool � ` e2 : T � ` e3 : T� ` if e1 e2 e3 : T

� ` e1 : T � ` e2 : T� ` eq e1 e2 : bool
“P prem’s” ^ “side-cond’s” ) “P concl”

valid � ^ valid � ^ valid � ) valid �

valid � ^ valid � ) valid �
If we go through all cases, we proved:

Whenever � ` e : T then valid �.
OK that was simple.
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2. Rules

� ` e1 : bool � ` e2 : T � ` e3 : T� ` if e1 e2 e3 : T

� ` e1 : T � ` e2 : T� ` eq e1 e2 : bool
“P prem’s” ^ “side-cond’s” ) “P concl”

valid � ^ valid � ^ valid � ) valid �

valid � ^ valid � ) valid �
If we go through all cases, we proved:

Whenever � ` e : T then valid �.
OK that was simple.

But one has to know a
hammer, before one
can crack a nut. ;o)

Munich, 18. October 2006 – p.27 (4/4)



Structural Induction

8x: P xP trueP false8e1 e2: P e1 ^ P e2 ) P (gr e1 e2)8e1 e2: P e1 ^ P e2 ) P (le e1 e2)8e1 e2: P e1 ^ P e2 ) P (eq e1 e2)8e1 e2 e3: P e1^P e2^P e3)P (if e1 e2 e3)P 08e: P e ) P (succ e)8e: P e ) P (iszero e)8e: P e
e ::= xj truej falsej gr e ej le e ej eq e ej if e e ej 0j succ ej iszero e
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More Next Week
Slides at the end ofhttp://www4.in.tum.de/lehre/vorlesungen/types/WS0607/

There is also an appraisal form where you
can complain anonymously.

You can say whether the lecture was too
easy, too quiet, too hard to follow, too
chaotic and so on. You can also comment on
things I should repeat.
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