IJ/DES in Programming Languages (10)

Christian Urban

http://www4.in.tum.de/lehre/vorlesungen/types/WS0607/

Recap from last Week

- We had a look at Featherweight Java (its type-system and transition relation). I assume you did your homework and re-read the chapter by Pierce.
- We briefly talked about the Curry-Howard correspondence. We will have a closer look at this today.

Lambda-Calculus

- Extremely small Turing-complete programming language.
- Church-numerals are an encoding of numbers to lambda-terms:

Addition: $\lambda m n f x . m f(n f x)$

 $(\lambda m \ n \ f \ x. \ m f(n f x)) \ (\lambda f \ x. \ f^3 x) \ (\lambda f \ x. \ f^2 x)$

```
(\lambda m \, n \, f \, x. \, m f(n f x)) \, (\lambda f \, x. \, f^3 x) \, (\lambda f \, x. \, f^2 x) \ (\lambda n \, f \, x. \, (\lambda f \, x. \, f^3 x) \, f \, (n f x)) \, (\lambda f \, x. \, f^2 x)
```

```
egin{align} (\lambda m \ n \ f \ x. \ m f(n f x)) \ (\lambda f \ x. \ f^3 x) \ (\lambda f \ x. \ f^2 x) \ (\lambda n \ f \ x. \ (\lambda f \ x. \ f^3 x) \ f \ (n f x)) \ (\lambda f \ x. \ f^2 x) \ (\lambda f \ x. \ (\lambda f \ x. \ f^3 x) \ f \ ((\lambda f \ x. \ f^2 x) \ f \ x)) \ \end{array}
```

```
egin{align} (\lambda m \ n \ f \ x. \ m f (n f x)) \ (\lambda f \ x. \ f^3 x) \ (\lambda f \ x. \ f^2 x) \ (\lambda n \ f \ x. \ (\lambda f \ x. \ f^3 x) \ f \ (n f x)) \ (\lambda f \ x. \ f^2 x) \ (\lambda f \ x. \ (\lambda f \ x. \ f^3 x) \ f \ ((\lambda f \ x. \ f^2 x) \ f \ x)) \ (\lambda f \ x. \ (\lambda f \ x. \ f^3 x) \ f \ ((\lambda x. \ f^2 x) \ x)) \ \end{array}
```

```
egin{aligned} &(\lambda m\, n\, f\, x.\,\, mf(nfx))\,\, (\lambda f\, x.\,\, f^3x)\,\, (\lambda f\, x.\,\, f^2x) \ &(\lambda n\, f\, x.\,\, (\lambda f\, x.\,\, f^3x)\,\, f\,\, (nfx))\,\, (\lambda f\, x.\,\, f^2x) \ &(\lambda f\, x.\,\, (\lambda f\, x.\,\, f^3x)\,\, f\,\, ((\lambda f\, x.\,\, f^2x)\,\, f\,\, x)) \ &(\lambda f\, x.\,\, (\lambda f\, x.\,\, f^3x)\,\, f\,\, ((\lambda x.\,\, f^2x)\,\, x)) \ &(\lambda f\, x.\,\, (\lambda f\, x.\,\, f^3x)\,\, f\,\, (f^2x)) \end{aligned}
```

```
egin{aligned} &(\lambda m \ n \ f \ x. \ m f(n f x)) \ (\lambda f \ x. \ f^3 x) \ (\lambda f \ x. \ f^2 x) \ &(\lambda n \ f \ x. \ (\lambda f \ x. \ f^3 x) \ f \ (n f x)) \ (\lambda f \ x. \ f^2 x) \ &(\lambda f \ x. \ (\lambda f \ x. \ f^3 x) \ f \ ((\lambda f \ x. \ f^2 x) \ f \ x)) \ &(\lambda f \ x. \ (\lambda f \ x. \ f^3 x) \ f \ (f^2 x)) \ &(\lambda x. \ (\lambda f \ x. \ f^3 x) \ (f^2 x)) \ &(\lambda x. \ (\lambda f \ x. \ f^3 x) \ (f^2 x)) \end{aligned}
```

```
(\lambda m n f x. m f(nfx)) (\lambda f x. f^3x) (\lambda f x. f^2x)
(\lambda n f x. (\lambda f x. f^3 x) f (nfx)) (\lambda f x. f^2 x)
(\lambda f x. (\lambda f x. f^3 x) f ((\lambda f x. f^2 x) f x))
(\lambda f x. (\lambda f x. f^3 x) f ((\lambda x. f^2 x) x))
(\lambda f x. (\lambda f x. f^3 x) f (f^2 x))
(\lambda x. (\lambda f x. f^3 x) (f^2 x))
(\lambda f x. f^3(f^2x))
```

```
(\lambda m n f x. m f(nfx)) (\lambda f x. f^3x) (\lambda f x. f^2x)
(\lambda n f x. (\lambda f x. f^3 x) f (nfx)) (\lambda f x. f^2 x)
(\lambda f x. (\lambda f x. f^3 x) f ((\lambda f x. f^2 x) f x))
(\lambda f x. (\lambda f x. f^3 x) f ((\lambda x. f^2 x) x))
(\lambda f x. (\lambda f x. f^3 x) f (f^2 x))
(\lambda x. (\lambda f x. f^3 x) (f^2 x))
(\lambda f \, x. \, f^3(f^2x)) = (\lambda f \, x. \, f^5x)
```


Logic

Formulae:

$$F ::= P$$
 Prop. Variables $|F \supset F|$ Implications

Inference Rules:

$$egin{array}{cccc} [F_1] & dots &$$

Logic

Formulae:

Prop. Variables $F\supset F$ Implications

Inference Rules:

$$egin{array}{cccc} [F_1] & & dots &$$

$$F, arGamma arFamily F = rac{F_1, arGamma arFamily F_2}{arGamma arFamily F_1 \supset arFamily F_2} - rac{arGamma arFamily F_1 \supset arGamma_2 \quad arGamma arFamily F_2}{arGamma arFamily F_2} - rac{arGamma arFamily F_1 \supset arGamma_2 \quad arGamma arFamily F_2}{arGamma arFamily F_2}$$

Logic

Formulae:

$$F ::= P$$
 Prop. Variables $|F \supset F|$ Implications

Inference Rules:

$$egin{array}{cccc} [F_1] & dots &$$

$$F^x, arGamma arFigure F_1 ightarrow F_1 ightarrow F_2 ightarrow F_1 ightarrow F_2 ightarrow F_2 ightarrow F_1 ightarrow F_2 ightarrow F_1 ightarrow F_2 ighta$$

Correspondence

Inference rules

$$egin{aligned} F^x, arGamma arphi, arGamma arphi, arGamma arphi, arGamma arphi, arGamma arphi, arGamma arG$$

Typing rules

$$egin{aligned} x:T_1, arGamma dash M:T_2 \ x:T, arGamma dash x:T \end{aligned} egin{aligned} rac{x:T_1, arGamma dash M:T_2}{arGamma dash M:T_1
ightarrow T_2} \ rac{arGamma dash M:T_1
ightarrow T_2}{arGamma dash M:T_2} \end{aligned}$$

Reduction

Beta-reduction

$$egin{array}{c} x:T_1, arGamma dash M:T_2 \ arGamma dash \lambda x.M:T_1
ightarrow T_2 & arGamma dash N:T_1 \ arGamma dash (\lambda x.M) \, N:T_2 \ \end{array} \
ightarrow \ arGamma dash \Gamma dash M[x:=N]:T_2 \ \end{array}$$

Reduction

Proof-normalisation (removal of detours)

$$egin{array}{c} [F_1] & dots \ oldsymbol{\dot{F}_2} & dots \ oldsymbol{F_1}
ightarrow F_2 & oldsymbol{\dot{F}_1} \ F_2 & oldsymbol{F_2} \end{array}$$

Correspondence

Types ⇔ Formulae
Typed Terms ⇔ Proof
Evaluation ⇔ Proof Normalisation
Typing Problem ⇔ Finding a Proof
:

- Program is correct by construction: take a proof, find the corresponding lambda-term (i.e. program), and finally evaluate term
- no problem with intuitionistic logic (for $\exists n.F$, an intuitionistic proof will construct such an n)

Classical Logic

- there are more classical proofs (and also more formulae provable)
- but classical logic is not constructive: $\exists a \ b$ such that a and b are irrational but a^b is rational.
- lacktriangleright one can prove this without giving concrete values for a and b

surprising result: classical proofs still correspond to programs

Raise and Handle

$$rac{arGamma arGamma .T ert M: T_2}{x^\circ: T_1 o ot, arGamma \perp, arGamma arGamma \operatorname{raise}(x^\circ, M): T_2} \ rac{x^\circ: T_1 o ot, arGamma arGamma arGamma .T arGamma T_1 o ot, arGamma arGamma .T arGamma T_1 o ot, arGamma .T arGamma T_2 o ot, arGamma T_1 o ot, arGamma T_2 o ot, arGamma T_2 o ot, arGamma T_1 o ot, arGamma T_2 o ot, arGamma T_2 o ot, arGamma T_1 o ot, arGamma T_2 o ot,$$

$$M ext{ (raise}(x^\circ, v')) \longrightarrow ext{ raise}(x^\circ, v') \ ext{ (raise}(x^\circ, v)) \ v' \longrightarrow ext{ raise}(x^\circ, v) \ ext{ let } x^\circ ext{ in } v ext{ handle } x^\circ x' \Rightarrow N \longrightarrow v \ ext{ let } x^\circ ext{ in raise}(x^\circ, v) ext{ handle } x^\circ x' \Rightarrow N \longrightarrow N[x' := v]$$

V-Quantifier

We can add the universal quantifier to the logic. What happens on the programming side?

$$egin{array}{c|c} arGamma arphi arphi & X
ot\in \mathsf{ftv}(arGamma) \ & arGamma arphi arphi X.F \ & arGamma arphi arphi X.F_1 \ \hline arGamma arphi arphi arphi arphi I arphi X := F_2 \end{bmatrix}$$

lacksquare Formulae: $F::=X\mid F_1 o F_2\mid orall X.F$

Data Types

- This will allow us to represent datatypes, such as
 - Booleans (either True or False)
 - Lists (either Nil or Cons)
 - Nats (either Zero or Successor)
 - Bin-trees (either Leaf or Node)
- The question is how to include them into the typing-system. Introducing them primitively is unsatisfactory. Why?

Syntax of PLC

Types:

type variables T o T function types orall X.T $orall - ext{type}$

Terms:

$$e ::= x$$
 variables
 $| e e |$ applications
 $| \lambda x.e |$ lambda-abstractions
 $| \Lambda X.e |$ type-abstractions
 $| e T |$ type-applications

Transitions in PLC

We have the same transitions as in the lambda-calculus, e.g.

$$(\lambda x.e_1)e_2 \longrightarrow e_1[x:=e_2]$$

plus rules for type-abstractions and type-applications

$$\overline{(\Lambda X.e)T \longrightarrow e[X:=T]}$$

 \blacksquare Confluence and termination holds for \longrightarrow .

Typing Rules

Type-Generalisation

$$rac{arGamma arGamma e : T \quad X
ot\in \mathsf{ftv}(arGamma)}{arGamma arGamma \cdot \mathsf{A} X.e : orall X.T}$$

Type-Specialisation

$$rac{arGamma arGamma _{m{arGamma}} arGamma _{m{arGamma}} arGamma _{m{arGamma}} arGamma _{m{arGamma}} arGamma _{m{arGamma}} m{arGamma} _{m{a$$

Interestingly, for PLC the problems of type-checking and type-inference are computationally equivalent and undecidable!

Typing Rules

Type-Generalisation

Therefore we explicitly annotate the type in lambda-abstractions

Ту

 $\lambda x:T.e$

Type-checking is then trivial. (But is it useful?)

Interestingly, for PLC the problems of type-checking and type-inference are computationally equivalent and undecidable!

Munich, 24. January 2007 - p.16 (2/2)

Datatypes

We are now returning to the question of representing datatypes in PLC.

Booleans with values true and false is represented by

$$|\mathsf{bool}| \stackrel{\mathsf{def}}{=} orall X.X o (X o X)$$

In true $\stackrel{\mathsf{def}}{=} \Lambda X.\lambda x_1: X.\lambda x_2: X.x1$ false $\stackrel{\mathsf{def}}{=} \Lambda X.\lambda x_1: X.\lambda x_2: X.x2$

These are the only two closed normal terms of type bool.

Lists

Lists can be represented as

$$X$$
 list $\stackrel{\mathsf{def}}{=} orall Y.Y o (X \! o \! Y \! o \! Y) o Y$

 $lacksquare ext{Nil} \stackrel{\mathsf{def}}{=} \Lambda XY. \lambda x: Y. \lambda f: X o Y o Y. x$ $\mathcal{C}\mathsf{ons} \stackrel{\mathsf{def}}{=} \dots$

These are infinitely closed normal terms of this type.

We also have unit-, product- and sum-types. From this we can already build up all algebraic types (a.k.a. data types).

Possible Questions

- Question: A typed programming language is polymorphic if a term of the language may have different types (right or wrong)?
- PLC is at the heart of the immediate language in GHC: let-polymorphism of ML is compiled to (annotated) PLC.
- Describe the notion of beta-equality of terms in PLC. How can one decide that two typable PLC-terms are in this relation? Why does this fail for untypable terms?

Further Points

- Functional programming languages often allow bounds (constraints) on types: for example the membership functions of lists has type $X \to X$ list \to bool, where X can only be a type with defined equality.
- Haskell generalises this idea by using type-classes.
- This is in contrast to object-oriented programming languages which use subtyping for modelling this.