INn Programming Languages (10)

Christian Urban

http://wwwé4.in.tum.de/lehre/vorlesungen/types/WS0607/

Munich, 24. January 2007 - p.1 (1/1)

Recap from last Week

B We had a look at Featherweight Java (its
type-system and transition relation). I
assume you did your homework and re-read
the chapter by Pierce.

B We briefly talked about the Curry-Howard
correspondence. We will have a closer look
at this today.

Munich, 24. January 2007 - p.2 (1/1)

Lambda-Calculus

B Extremely small Turing-complete
programming language.

B Church-numerals are an encoding of numbers
to lambda-terms:

ANfx. x
AN x. fx
M x. f(f)

0
1
2
3 — A= f(f(fz))

I R)

B Addition:)\m.n fx. mf(nfx)

Munich, 24. January 2007 - p.3 (1/1)

3+2

Amn fx. mf(nfzx)) (Afx. f2x) (Afz. f°x)

Munich, 24. January 2007 - p.4 (1/8)

3+2

(Amn fx. mf(nfzx)) (Afzx. f22) (Afz. f°x)
(An fa. (Afz. fox) f (nfz)) (Af 2.)

Munich, 24. January 2007 - p.4 (2/8)

3+2

(Amn fx. mf(nfzx)) (Afzx. f22) (Afz. f°x)
(An fa. (Afz. fox) f (nfz)) (Af 2.)
(Afa. (Afz. f5z) f (A f e fPx) f o)

Munich, 24. January 2007 - p.4 (3/8)

3+2

(Amn fx. mf(nfzx)) (Afzx. f22) (Afz. f°x)
(An fa. (Afz. fox) f (nfz)) (Af 2.)
(Afa. (Afz. f5z) f (A f e fPx) f o)

(Af @ (Af z. fPx) f ((Az. f2z) x))

January 2007 - p.4 (4/8)

3+2

(Amn fx. mf(nfzx)) (Afzx. f22) (Afz. f°x)
(An fa. (Afz. fox) f (nfz)) (Af 2.)
(Afa. (Afz. f5z) f (A f e fPx) f o)

(Af @ (Af z. fPx) f ((Az. f2z) x))

(Afa. (Afz. foz) f (F2))

January 2007 - p.4 (5/8)

3+2

(Amn fx. mf(nfzx)) (Afzx. f22) (Afz. f°x)
(An fa. (Afz. fox) f (nfz)) (Af 2.)
(Afa. (Afz. f5z) f (A f e fPx) f o)

(Af @ (Af z. fPx) f ((Az. f2z) x))

(Afa. (Afz. foz) f (F2))

(Az. (Afz. fPz) (f*x))

January 2007 - p.4 (6/8)

3+2

(Amn fx. mf(nfzx)) (Afzx. f22) (Afz. f°x)
(An fa. (Afz. fox) f (nfz)) (Af 2.)
(Afa. (Afz. f5z) f (A f e fPx) f o)

(Af @ (Af z. fPx) f ((Az. f2z) x))

(Afa. (Afz. foz) f (F2))

(Az. (Afz. fPz) (f*x))

(ASf z. f2(f*x))

3+2

(Amn fx. mf(nfzx)) (Afzx. f22) (Afz. f°x)
(An fa. (Afz. fox) f (nfz)) (Af 2.)
(Afa. (Afz. f5z) f (A f e fPx) f o)

(Af @ (Af z. fPx) f ((Az. f2z) x))

(Afa. (Afz. foz) f (F2))

(Az. (Afz. fPz) (f*x))

(Afz. f3(f22)) = (A\fa. fox)

Demo

Munich, 24. January 2007 - p.5 (1/1)

Logic

B Formulae:

F ::= P Prop. Variables
| F D F Implications

B Inference Rules:
[E 1]

F, F,OF F
F F13F2 F2

Munich, 24. January 2007 - p.6 (1/3)

Logic

B Formulae:

F ::= P Prop. Variables
| F D F Implications

B Inference Rules:

[El] _
F, F, DO F, F
F F1 D) F2 F2

F,T+F, TI'W-F,OF I+ F,
F,T-F TFF DOF I+ F,

Munich, 24. January 2007 - p.6 (2/3)

Logic

B Formulae:

F ::= P Prop. Variables
| F D F Implications

B Inference Rules:

[El] _
F, F, DO F, F
F F1 D) F2 F2

F*,I'-F, TI+F, DF, I'+F,

F*, I'=F I+ Fy, D Fy I' = Fy

Munich, 24. January 2007 - p.6 (3/3)

Correspondence

Inference rules
Fr, I' = F
F*,I' - F I' - F, O F,

I'=F, DF, I'EF,
I' = F,

Typing rules
ZB:Tl,Fl_MZTz
xc: T, I'-x:T I'EXx M : T, — T5

r-mM:T, -T, '-N:T,
I'-MN : T,

Munich, 24. January 2007 - p.7 (1/1)

Reduction

Beta-reduction

.’BZTl,F.l_MZTg :
Fl_ACB.M:Tl—)Tz Fl_N:Tl
Fl_(A.’.B.M)N:Tg

'+ Mz := N]: T

Munich, 24. January 2007 - p.8 (1/2)

Reduction

Proof-normalisation (removal of detours)
[F1]

Munich, 24. January 2007 - p.8 (2/2)

Correspondence

Types < Formulae
Typed Terms <> Proof
Evaluation <> Proof Normalisation
Typing Problem < Finding a Proof

B Program is correct by construction: take a
proof, find the corresponding lambda-term
(i.e. program), and finally evaluate term

B no problem with intuitionistic logic (for
dn.F', an intuitionistic proof will construct
such an n)

Munich, 24. January 2007 - p.9 (1/1)

Classical Logic

B there are more classical proofs (and also
more formulae provable)

B but classical logic is not constructive: Ja b

such that a and b are irrational but a? is
rational.

B one can prove this without giving concrete
values for a and b

B surprising result: classical proofs still
correspond to programs

Munich, 24. January 2007 - p.10 (1/1)

Ralse and Handle

Fl_MZTg
x°: Ty — L, I} raise(x°, M) : Ty

fL’oZTl—)J_,FI_Tg .’BIZTl,Fl_N:Tz
I'+letxz°in M handlex® ' = N : 15

M (raise(x°,v")) — raise(x°,v’)
(raise(x°,v)) v/ — raise(x®,v)
letx®in v handlex®°x’ = N — v
let ° in raise(x°,v) handlex® '’ = N
— Nlx' := v]

Munich, 24. January 2007 - p.11 (1/1)

V-Quantifier

B We can add the universal quantifier to the
logic. What happens on the programming
side?

'-F X ¢ ftv(I)
I'FVX.F

I' - VX.Fy
I' - Fl[X « = Fz]

B Formulae: F ::= X | F} — F, | VX.F

Munich, 24. January 2007 - p.12 (1/1)

Data Types

B This will allow us to represent datatypes,
such as

m Booleans (either True or False)
m Lists (either Nil or Cons)

m Nats (either Zero or Successor)
m Bin-trees (either Leaf or Node)

B The question is how to include them into the
typing-system. Introducing them primitively
is unsatisfactory. Why?

Munich, 24. January 2007 - p.13 (1/1)

Syntax of PLC

B Types:
T = X type variables
T — T function types
VX. T V-type
B Terms:
e = x variables

ee applications

Ax.e lambda-abstractions
AX.e type-abstractions
eT type-applications

Munich, 24. January 2007 - p.14 (1/1)

Transitions in PLC

B We have the same transitions as in the
lambda-calculus, e.q.

(Ax.e1)es — er|x:=e,]

plus rules for type-abstractions and
type-applications

(AX.e)T — e| X :=T]
B Confluence and termination holds for —.

Munich, 24. January 2007 - p.15 (1/1)

Typing Rules
B Type-Generalisation

I''e: T X &ftv(I')
I'EAX.e:VX.T

B Type-Specialisation

Fl_ei\V/X.Tl
F|_€T22T1[X « = Tz]

B Interestingly, for PLC the problems of
type-checking and type-inference are
computationally equivalent and undecidable!

Munich, 24. January 2007 - p.16 (1/2)

Typing Rules

B Type-Generalisation

‘Therefore we explicitly annotate the
type in lambda-abstractions

B Ty Ax : T.e

Type-checking is then trivial. (But is
it useful?)

J

l/_l_Ao_l__l_L.‘.l. °_'.'AJ

B Interestingly, for PLC the problems of
type-checking and type-inference are
computationally equivalent and undecidable!

Munich, 24. January 2007 - p.16 (2/2)

Datatypes

We are now returning to the question of
representing datatypes in PLC.

B Booleans with values true and false
IS represented by

bool & vX.X — (X — X)

B true def AX . Axq1: X \xy : X.221

false def AX . Axq: X.Axy 0 X.2x2

These are the only two closed normal terms
of type bool.

Munich, 24. January 2007 - p.17 (1/1)

LIsts

B Lists can be represented as

X list ¥ vyy — (X—-Y—->Y)—>Y

BNI EAXY z: Y AF: X 5 Y = Yo

def
Cons = ...

These are infinitely closed normal terms of
this type.

B We also have unit-, product- and sum-types.
From this we can already build up all
algebraic types (a.k.a. data types).

Munich, 24. January 2007 - p.18 (1/1)

Possible Questions

B Question: A typed programming language is
polymorphic if a ferm of the language may
have different types (right or wrong)?

B PLC is at the heart of the immediate
language in GHC: let-polymorphism of ML is
compiled to (annotated) PLC.

B Describe the notion of beta-equality of

terms in PLC. How can one decide that two
typable PLC-terms are in this relation? Why

does this fail for untypable terms?

Munich, 24. January 2007 - p.19 (1/1)

Further Points

Bl Functional programming languages often
allow bounds (constraints) on types:
for example the membership functions of
lists has type X — X list — bool, where
X can only be a type with defined equality.

B Haskell generalises this idea by using
type-classes.

B This is in contrast to object-oriented
programming languages which use subtyping
for modelling this.

Munich, 24. January 2007 - p.20 (1/1)

	�egin {tabular}{@{}c@{}} \ {	itlefnt Types}\ large in Programming Languages (10)\
end {tabular}
	�egin {tabular}{@{}c@{}}Recap from last Weekend {tabular}
	�egin {tabular}{@{}c@{}}Lambda-Calculusend {tabular}
	�egin {tabular}{@{}c@{}}3+2end {tabular}
	�egin {tabular}{@{}c@{}}{}end {tabular}
	�egin {tabular}{@{}c@{}}Logicend {tabular}
	�egin {tabular}{@{}c@{}}Correspondenceend {tabular}
	�egin {tabular}{@{}c@{}}Reductionend {tabular}
	�egin {tabular}{@{}c@{}}Correspondenceend {tabular}
	�egin {tabular}{@{}c@{}}Classical Logicend {tabular}
	�egin {tabular}{@{}c@{}}Raise and Handleend {tabular}
	�egin {tabular}{@{}c@{}}�oldmath $�orall $-Quantifierend {tabular}
	�egin {tabular}{@{}c@{}}Data Typesend {tabular}
	�egin {tabular}{@{}c@{}}Syntax of PLCend {tabular}
	�egin {tabular}{@{}c@{}}Transitions in PLCend {tabular}
	�egin {tabular}{@{}c@{}}Typing Rulesend {tabular}
	�egin {tabular}{@{}c@{}}Datatypesend {tabular}
	�egin {tabular}{@{}c@{}}Listsend {tabular}
	�egin {tabular}{@{}c@{}}Possible Questionsend {tabular}
	�egin {tabular}{@{}c@{}}Further Pointsend {tabular}

