
Types

in Programming Languages (7)

Christian Urbanhttp://www4.in.tum.de/lehre/vorlesungen/types/WS0607/

Munich, 13. December 2006 – p.1 (1/1)



Previously
untrapped errors
e.g. access of
an array
outside its
bounds;
jumping to a
legal address

trapped errors
e.g. division
by zero;
jumping to an
illegal
address

evil annoying

Munich, 13. December 2006 – p.2 (1/5)



Previously
untrapped errors
e.g. access of
an array
outside its
bounds;
jumping to a
legal address

trapped errors
e.g. division
by zero;
jumping to an
illegal
address

evil annoying

A programming language is called safe if no
untrapped errors can occur. Safety can be
achieved by run-time checks or static checks.

Munich, 13. December 2006 – p.2 (2/5)



Previously
untrapped errors
e.g. access of
an array
outside its
bounds;
jumping to a
legal address

trapped errors
e.g. division
by zero;
jumping to an
illegal
address

evil annoying

Forbidden errors include all untrapped errors
and some trapped ones. A strongly typed pro-
gramming language prevents all forbidden er-
rors.

Munich, 13. December 2006 – p.2 (3/5)



Previously
untrapped errors
e.g. access of
an array
outside its
bounds;
jumping to a
legal address

trapped errors
e.g. division
by zero;
jumping to an
illegal
address

evil annoying

A weakly typed programming language prevents
some untrapped errors, but not all; C, C++ have
features that make them weakly typed.

Munich, 13. December 2006 – p.2 (4/5)



Previously
untrapped errors
e.g. access of
an array
outside its
bounds;
jumping to a
legal address

trapped errors
e.g. division
by zero;
jumping to an
illegal
address

evil annoying

Typed Untyped
Safe SML, Java LISP

Unsafe C, C++ Assembler

Munich, 13. December 2006 – p.2 (5/5)



Real World-Compilers
So far we said that a program should type-check, and
then we forget about types (not always possible
because of dynamic checks)

This is however not what happens in practice:

an optimising compiler for a high-level language
might make as many as 20 passes over a single
program
many optimisations require type-information to
succeed (direct register allocation for integer
operations)

a compiler often translates between many
intermediate languages (type-information helps
to stay sane)

Munich, 13. December 2006 – p.3 (1/1)



Safety in the Target Lang.
The target language (e.g. Java bytecode or
Microsoft’s Common Language infrastructure) might
be typed.

In Java bytecode the types of the parameters of all
instructions are known and the verifier ensures they
are correct.

This ensures there are no operand stack overflows or
underflows; pointer arithmetic is not arbitrary.

Only when the bytecode is run, most checks are not
needed anymore.

The ultimate goal is that you can run untrusted code
on your machine.

Munich, 13. December 2006 – p.4 (1/1)



Example We Shall Look At
We want to ensure the property of
control-flow safety of “assembler programs”:

A program cannot jump to an arbitrary
address, but only to a well-defined subset of
possible entry points.

Greg Morrisett calls this language TAL-0
(Typed Assembly Language) and describes it
in the book on advanced topics on types and
programming languages.

Munich, 13. December 2006 – p.5 (1/1)



Language
Registers r ::= r1 j : : : j rk
Operands v ::= n integer literalj l label or pointerj r register

Instructions i ::= r := vj r := r + vj if r jump v

Programs p ::= jump vj i; p

Munich, 13. December 2006 – p.6 (1/1)



Example
The calculation of the product of r1 and r2,
placing the result in r3; return to an address
assumed to be in r4:

prod: r3 := 0 % res := 0
jump loop

loop: if r1 jump done % if a = 0 goto doner3 := r2 + r3 % res := res+ br1 := r1 + (�1) % a := a� 1

jump loop

done: jump r4 % return

Munich, 13. December 2006 – p.7 (1/1)



Machine States
Machine states are triples (H;R; p)
Heaps

fl1 := p1; : : : ; lm := pmg

Munich, 13. December 2006 – p.8 (1/1)



Heaps
prod: r3 := 0

jump loop

loop: if r1 jump doner3 := r2 + r3r1 := r1 + (�1)
jump loop

done: jump r4

H = fprod = pprod; loop = ploop; done = pdoneg

pprod

n
ploop

8><
>:

pdone f
Munich, 13. December 2006 – p.9 (1/1)



Machine States
Machine states are triples (H;R; p)
Heaps

fl1 := p1; : : : ; lm := pmg
Register files

fr1 := v1; : : : ; rn := vng

Safety property is that no machine state is
stuck (for example jump 42 is stuck).

Munich, 13. December 2006 – p.10 (1/1)



Transitions
Jump H(v) = p(H;R; jump v) ! (H;R; p)
Mov (H;R; r := v; p) ! (H;R[r := v℄; p)

Add R(r0) = n R(v) = n0(H;R; r := r0 + v; p) ! (H;R[r := r0 + v℄; p)

If-eq R(r) = 0 H(v) = p0(H;R; if r jump v; p) ! (H;R; p0)

If-neq R(r) 6= 0(H;R; if r jump v; p) ! (H;R; p)

Munich, 13. December 2006 – p.11 (1/1)



Type System
Any well-typed “machine” cannot get stuck
(remember jump 42 should not be a
well-typed program).

Types

T ::= intj X type-variablesj 8X:T polymorphic typesj code(� ) code labels

� ::= fr1 : T1; : : : ; rn : Tng: these are
register file types (in a minute)

Munich, 13. December 2006 – p.12 (1/1)



Example
prod: r3 := 0

jump loop

loop: if r1 jump doner3 := r2 + r3r1 := r1 + (�1)
jump loop

done: jump r4� contains the “assumptions” we make about the codefr1; r2; r3 : int; r4 : 8X:codefr1; r2; r3 : int; r4 : Xgg

They will be recorded in �, for examplefprod : code(� ); loop : code(� ); done : code(� )g

Munich, 13. December 2006 – p.13 (1/1)



Judgements (I)
We will have several kinds of judgments:

Integer literal � ` n : int
Label (l : T ) 2 �� ` l : T

(We want to have unique labels.)

Munich, 13. December 2006 – p.14 (1/1)



Judgements (II)
Register (r : T ) 2 ��;� ` r : T
Value (non-register)� ` v : T�;� ` v : T
Type-instantiation�;� ` v : 8X:T�;� ` v : T [X := T 0℄

Munich, 13. December 2006 – p.15 (1/1)



Judgements (III)
Instructions will be dealt with by� ` i : �in ! �out

Mov �;� ` v : T� ` r := v : � ! � [r : T ℄

Add �;� ` r0 : int �;� ` v : int� ` r := r0 + v : � ! � [r : int℄

If �;� ` r : int �;� ` v : code(� )� ` if r jump v : � ! �

Munich, 13. December 2006 – p.16 (1/1)



Judgements (IV)
programs (instruction sequences)� ` p : code(� )
Jump �;� ` v : code(� )� ` jump v : code(� )

Seq� ` i : � ! � 0 � ` p : code(� 0)�;� ` i; p : code(� )

Munich, 13. December 2006 – p.17 (1/1)



Examples
Let � befr1; r2; r3 : int; r4 : 8X:codefr1; r2; r3 : int; r4 : Xgg

Let � befprod : code(� ); loop : code(� ); done : code(� )g

Derivable judgements:� ` if r1 jump done : � ! �� ` r3 := r2 + r3 : � ! �� ` r1 := r1 + (�1) : � ! �� ` jump loop : code(� )

So we showed � ` ploop : code(� )

Munich, 13. December 2006 – p.18 (1/1)



Loose Ends
A register file is well-typed, written� ` R : � , if for all (r : T ) in R�;� ` r : T
A heap is well-typed, written ` H : �, if
for all l : T in �

� ` H(l) : T

and the T does not contain any free
type-variables.

Munich, 13. December 2006 – p.19 (1/1)



Well-Typedness
The types avoid to jump to an integer or an
undefined label — however the situation is
more complicated than is solvable by tags.

We can have

foo: r1 := bar
jump r1

bar: : : :

Munich, 13. December 2006 – p.20 (1/1)



Well-Typedness
Polymorphism even allows us

fr1 : int; : : :g
jump bar

fr1 : code(: : :); : : :g

jump bar

where the type of bar is8X:code(r1 : X; : : :).
Munich, 13. December 2006 – p.21 (1/1)



Next Time
We can show that given a well-typed machine stateM thenM cannot get stuck (i.e. jump to an integer
or an undefined label).

Proof-Outline: M is not immediately stuck and ifM !M 0 thenM 0 is also well-typed.

Question: given a machine stateM = (H;R; p) can
one find a � and � such that � ` p : code(� ) etc?

Answer: We do not know. (Likely not.)

The compiler has to give enough information during
the compilation process so that the bytecode only
needs to be “type-verified” — type-inference is too
hard.

Munich, 13. December 2006 – p.22 (1/1)



More Next Week
Slides at the end ofhttp://www4.in.tum.de/lehre/vorlesungen/types/WS0607/

There is also an appraisal form where you
can complain anonymously.

You can say whether the lecture was too
easy, too quiet, too hard to follow, too
chaotic and so on. You can also comment on
things I should repeat.

Munich, 13. December 2006 – p.23 (1/1)


	�egin {tabular}{@{}c@{}} \ {	itlefnt Types}\ large in Programming Languages (7)\
end {tabular}
	Previously
	�egin {tabular}{@{}c@{}}Real World-Compilersend {tabular}
	�egin {tabular}{@{}c@{}}Safety in the Target Lang.end {tabular}
	�egin {tabular}{@{}c@{}}Example We Shall Look Atend {tabular}
	�egin {tabular}{@{}c@{}}Languageend {tabular}
	�egin {tabular}{@{}c@{}}Exampleend {tabular}
	�egin {tabular}{@{}c@{}}Machine Statesend {tabular}
	�egin {tabular}{@{}c@{}}Heapsend {tabular}
	�egin {tabular}{@{}c@{}}Machine Statesend {tabular}
	�egin {tabular}{@{}c@{}}Transitionsend {tabular}
	�egin {tabular}{@{}c@{}}Type Systemend {tabular}
	�egin {tabular}{@{}c@{}}Exampleend {tabular}
	�egin {tabular}{@{}c@{}}Judgements (I)end
{tabular}
	�egin {tabular}{@{}c@{}}Judgements (II)end
{tabular}
	�egin {tabular}{@{}c@{}}Judgements (III)end
{tabular}
	�egin {tabular}{@{}c@{}}Judgements (IV)end
{tabular}
	�egin {tabular}{@{}c@{}}Examplesend {tabular}
	�egin {tabular}{@{}c@{}}Loose Endsend {tabular}
	�egin {tabular}{@{}c@{}}Well-Typednessend {tabular}
	�egin {tabular}{@{}c@{}}Well-Typednessend {tabular}
	�egin {tabular}{@{}c@{}}Next Timeend {tabular}
	�egin {tabular}{@{}c@{}}More Next Weekend {tabular}

