Types**in Programming Languages (7)**

Christian Urban

http://www4.in.tum.de/lehre/vorlesungen/types/WS0607/

Munich, 13. December ²⁰⁰⁶ – p.¹ (1/1)

trapped errors e.g. divisionby zero; jumping to anillegal address

annoying

^A programming language is called safe if no untrapped errors can occur. Safety can beachieved by run-time checks or static checks.

trapped errors e.g. divisionby zero; jumping to anillegal address

annoying

Forbidden errors include all untrapped errors and some trapped ones. ^A strongly typed programming language prevents all forbidden errors.

A weakly typed programming language prevents some untrapped errors, but **not** all; C, C++ havefeatures that make them weakly typed.

Real World-Compilers

So far we said that a program should type-check, and then we forget about types (not always possiblebecause of dynamic checks)

This is however **not** what happens in practice:

- an optimising compiler for ^a high-level language might make as many as ²⁰ passes over ^a singleprogram
- many optimisations require type-information to succeed (direct register allocation for integer operations)

a compiler often translates between many intermediate languages (type-information helps to stay sane)

Safety in the Target Lang.

- The target language (e.g. Java bytecode or Microsoft's Common Language infrastructure) might be typed.
- In Java bytecode the types of the parameters of all instructions are known and the verifier ensures theyare correct.
- This ensures there are no operan^d stack overflows or underflows; pointer arithmetic is not arbitrary.
- Only when the bytecode is run, most checks are not needed anymore.
- The ultimate goa^l is that you can run untrusted codeon your machine.

Example We Shall Look At

We want to ensure the property of control-flow safety of "assembler programs":

^A program cannot jump to an arbitrary address, but only to ^a well-defined subset ofpossible entry points.

Greg Morrisett calls this language TAL-0 (Typed Assembly Language) and describes it in the book on advanced topics on types andprogramming languages.

Registers $r ::= r_1$ $\begin{array}{c|c} 1 & \end{array}$. . . $\mid r_k$ Operands v ::= n integer literal $\begin{vmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{vmatrix}$ label or pointer $\vert \quad \ \ r \quad \, \text{register}$ **Instructions** $i \hspace{3mm} := \hspace{3mm} r := v$ and the contract of the contra $r :=$ j
|
| \boldsymbol{r} $\, + \,$ \boldsymbol{v} \vert if r jump v j
|
| Programs p := jump v
 $\frac{1}{p}$ i.m $\begin{array}{cc} & i; \bm{p} \end{array}$ i
j

Example

- The calculation of the product of r_1 and r_2 , placing the result in r_3 ; return to an address assumed to be in $\boldsymbol{r_4}$:
- prod: $r_3 :=$ $\%$ res $:= 0$ jump loop
- loop: if r_1 jump done % if $a=$ $=0$ goto done
 $: = \mathop{\mathit{mes}}\limits_{}^{} + h$ $r_3 :=$ $r_2 + r_3$ % res := res + b
 $r_1 + r_2 + r_3$ % res := res + b $\displaystyle r_{1}:=$ $r_1 + (-1)$ % $a := a - 1$
n loop jump loop
- done: jump \boldsymbol{r}_4 % return

Machine States

Machine states are triples $(\boldsymbol{H},\boldsymbol{R},\boldsymbol{p})$ H eaps

$$
\{l_1:=p_1,\ldots,l_m:=p_m
$$

Heaps

 $\begin{array}{ll} \mathsf{prod:} & r_3 := 0 \ & \mathsf{sum\:} & \ \end{array}$ jump looploop: \quad if r_1 jump done $r_3 := r_2 + r_3$
 $r_4 := r_4 \perp 1$ $\displaystyle r_{1}:=$ $r_1 + (-1)$ jump loop $\boldsymbol{p}_{\sf done}$ { done: jump $\boldsymbol{r}_{\boldsymbol{4}}$ $H = \{\mathsf{prod} = p_\mathsf{prod}, \mathsf{loop} = p_\mathsf{loop}, \mathsf{done} = p_\mathsf{done}\}$ $\boldsymbol{p}_{\mathsf{prod}}$ $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ \boldsymbol{p} loop 8><>: $e\left\{$

Machine States

Machine states are triples $(\boldsymbol{H},\boldsymbol{R},\boldsymbol{p})$ \Box Heaps

$$
\{l_1:=p_1,\ldots,l_m:=p_m
$$

Register files

$$
\{r_1:=v_1,\ldots,r_n:=v_n
$$

Safety property is that no machine state is stuck (for example jump ⁴² is stuck).

Transitions

Jump $\boldsymbol{H(v)}$ $\bm=p$ $(H, R,$ jump $v) \rightarrow (H, R, p)$ Mov $(H,R,r:=v;p) \to (H,R[r:=v],p)$ $\boldsymbol{R}(\boldsymbol{r^\prime}) = \boldsymbol{n}$ **|** ׀ Add \mathcal{L} and \mathcal{L} and \mathcal{L} and \mathcal{L} 0) $=\boldsymbol{n}\quad\boldsymbol{R}(\boldsymbol{v})$ $\bm =\bm n$ $(H,R,r:=r'+v; p) \rightarrow (H,R[r])$ 00 $\gamma'+v;p)\rightarrow (H,R[r]:=r)$ $\boldsymbol{R}(\boldsymbol{r})=\boldsymbol{0}$ **|** 0 $' + v], p)$ ׀ If-eq $=\mathbf{0}$ $\boldsymbol{H}(\boldsymbol{v})$ $\bm=p$ $(\boldsymbol{H},\boldsymbol{R},$ if r jump $v;\boldsymbol{p})\to(\boldsymbol{H},\boldsymbol{R},\boldsymbol{p})$ 0 $\boldsymbol{R}(\boldsymbol{r})\neq0$ 0)If-neqthe contract of the contract of $(\boldsymbol{H},\boldsymbol{R},$ if r jump $v;\boldsymbol{p})\to(\boldsymbol{H},\boldsymbol{R},\boldsymbol{p})$

Type System

Any well-typed "machine" cannot ge^t stuck(remember jump ⁴² should not be ^a well-typed program).

Types

 \boldsymbol{T} $\begin{array}{ccc} T & ::= & \mathsf{int} \cr & \vert & \mathbf{Y} \cr \end{array}$ $\begin{array}{ccc} & X & \text{type-variables} \ & & \forall \textbf{Y} & \text{nonmonic to} \end{array}$ $\forall X.T$ polymorphic types $|$ code (\varGamma) code labels

 $\boldsymbol{\varGamma}$ \mathbf{I} ::= {
{ $r_1:T_1,\ldots,r_n:T_n$: these are \sim \sim \sim register file types (in ^a minute)

$$
\begin{array}{ll} \mathsf{prod:} & r_3 := 0 \\ & \mathsf{jump\ loop} \end{array}
$$

loop: \quad if r_1 jump done $\begin{array}{rcl} r_3 := r_2 + r_3 \ r_4 := r_4 + 4 \end{array}$ $\displaystyle\mathop{r_1}_{\cdot}:=$ $r_1 + (-1)$ jump loop

done: $\;$ jump r_4

 $\boldsymbol{\varGamma}$ contains the "assumptions" we make about the code $\{r_1, r_2, r_3:$ int, $r_4: \forall X.\text{code}\{r_1, r_2, r_3:$ int, $r_4: X\}\}$ They will be recorded in Δ , for example $\{ \mathsf{prod} : \mathsf{code}(\varGamma), \mathsf{loop} : \mathsf{code}(\varGamma), \mathsf{done} : \mathsf{code}(\varGamma) \}$

We will have **several** kinds of judgments:

Theader literal

 $\Delta\vdash n:$ int

Label

 $\overline{\mathcal{L}}$ l.
• \boldsymbol{T}) \in $\boldsymbol{\Delta}$ $\boldsymbol{\Delta} \vdash l : T$

(We want to have unique labels.)

Judgements (III)
Instruments (III)
Matrixations will be dealt with by
$\Delta \vdash i : \Gamma_{\text{in}} \rightarrow \Gamma_{\text{out}}$
Mov
$\Delta \vdash r := v : \Gamma \rightarrow \Gamma[r : T]$
Add
$\Delta \vdash r := r' + v : \Gamma \rightarrow \Gamma[r : \text{int}]$
If
$\Delta \vdash r : \text{int } \Delta; \Gamma \vdash v : \text{code}(\Gamma)$
If
$\Delta \vdash \text{if } r \text{ jump } v : \Gamma \rightarrow \Gamma$

programs (instruction sequences) $\boldsymbol{\Delta \vdash p:}$: $\mathsf{code}(\mathnormal{\Gamma})$

Examples

Let \varGamma be $\{r_1, r_2, r_3:$ int, $r_4: \forall X.$ code $\{r_1, r_2, r_3:$ int, $r_4: X\}\}$ Let Δ be
Spred : co $\{ {\sf prod}: {\sf code}(\varGamma), {\sf loop}: {\sf code}(\varGamma), {\sf done}: {\sf code}(\varGamma) \}$ Derivable judgements: $\begin{array}{l}\Delta \vdash \textsf{if} \ r_1 \ \textsf{jump} \ \textsf{done} : \varGamma \to \varGamma \ \Delta \vdash r_2 := r_2 + r_2 : \varGamma \to \varGamma \end{array}$ $\begin{array}{l} \Delta \vdash r_3 := r_2 + r_3 : \Gamma \rightarrow \Gamma \ \Delta \vdash r_1 := r_1 + (-1) : \Gamma \rightarrow \Gamma \end{array}$ $\begin{array}{l}\n\Delta \vdash r_1 := r_1 + (-1) : \Gamma \to \Gamma \\
\Lambda \vdash \text{iumn loan : code}(\Gamma)\n\end{array}$ $\Delta \vdash$ jump loop : code (Γ) So we showed $\boldsymbol{\Delta} \vdash p_{\mathsf{loop}} : \mathsf{code}(\boldsymbol{\varGamma})$

Loose Ends

- ^A register file is well-typed, written $\boldsymbol{\Delta} \vdash \boldsymbol{R} : \boldsymbol{\varGamma}$, if for all ($\bm{r}:\bm{T})$ in \bm{R} $\boldsymbol{\Delta};\boldsymbol{\varGamma} \vdash r:\boldsymbol{T}$
	- A heap is well-typed, written $\vdash H:$ Δ , if for all l : T in Δ

$\boldsymbol{\Delta} \vdash \boldsymbol{H(l)}$: T

and the \bm{T} does not contain any free type-variables.

Well-Typedness

The types avoid to jump to an integer or an undefined label — however the situation is more complicated than is solvable by tags.

We can have

$$
\begin{array}{ll}\n\text{foo:} & r_1 := \text{bar} \\
\text{jump } r_1\n\end{array}
$$

bar::::

Well-Typedness

Polymorphism even allows us

{
{ jump bar $r_1:$ int, \ldots

{
{ jump bar $\boldsymbol{r_1}$: code(. . .);:::

where the type of bar is $\forall \textit{X}.code($ $r_1:$ $\colon X,$. . .).

Next Time

We can show that given a well-typed machine state \bm{M} then \bm{M} cannot get stuck (i.e. jump to an integer
or an undefined label). \bm{M} then
or an un or an undefined label).

Proof-Outline: M is not immediately stuck and if
 $M \to M'$ then M' is also well-typed. $M \to M'$ then M' is also well-typed.

Question: given a machine state $M=\frac{1}{2}$ \mathbf{L} $(\boldsymbol{H},\boldsymbol{R},\boldsymbol{p})$ can one find a Δ and \varGamma such that $\Delta\vdash p:\text{code}(\varGamma)$ etc?

Answer: We do not know. (Likely not.)

The compiler has to ^give enoug^h information during the compilation process so that the bytecode only needs to be "type-verified" — type-inference is toohard.

More Next Week

Slides at the end of

http://www4.in.tum.de/lehre/vorlesungen/types/WS0607/

There is also an appraisal form where youcan complain anonymously.

You can say whether the lecture was tooeasy, too quiet, too hard to follow, too chaotic and so on. You can also comment onthings ^I should repeat.