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Type-Schemes
In addition to types of the form:T ::= X type variablesj T ! T function types

we introduced type-schemes:S ::= 8A:T
Where A ranges over a finite set of type-variables.
When A = fX1; : : : ; Xng we write 8A:T as8fX1; : : : ;Xng:T8fg:T is possible; 8A:8B:T is not. Note that
type-schemes are not types! Munich, 15. November 2006 – p.2 (1/1)



Typing Problem
Given a valid � and an e, can we find a T such that� ` e : T
holds?

Completeness: For all (�; e) with e typable in the
context � , the algorithm should produce a T .

Soundness For all (�; e) with e untypable in the
context � , the algorithm should fail.

Example of an untypable term: �x:(x x)? ` �x:(x x) : ??
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MiniML Type-System
Variables

valid � (x : S) 2 � S � T� ` x : T
Applications� ` e1 : T1 ! T2 � ` e2 : T1� ` e1 e2 : T2
Lambdasx : 8fg:T1; � ` e : T2 x 62 dom�� ` �x:e : T1 ! T2

Lets A = tv(T1)� ftv(codom � )� ` e1 : T1 x : 8A:T1; � ` e2 : T2 x 62 dom�� ` letx = e1 in e2 : T2
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Unification
TVar-TVarfX =? X; : : :g "=) f: : :g

Fun-FunfT1!T2 =? U1!U2; : : :g "=) fT1 =? U1; T2 =? U2; : : :g

TVar-TyfX =? T; : : :g [X:=T ℄=) f: : :g[X := T ℄
Ty-TVarfT =? X; : : :g [X:=T ℄=) f: : :g[X := T ℄

both transformation only ifX 62 tv(T )

transform until you reach ?; if stuck, no unifier
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Unifier
If ? is reached, you have a sequence:

P1 �1=) P2 �2=) : : : �n=) ?
The (most general) unifier � for the problem P1 is then� = �n Æ : : : Æ �2 Æ �1
Substitution composition �1 Æ �2 is defined:

[X1 := T1; : : : ;Xn := Tn℄| {z }�1 Æ [Y1 := U1; : : : ; Ym := Um℄| {z }�2

gives [: : : ; Xi :=Ti; : : : ; Y1 :=�1(U1); : : : ; Ym :=�1(Um)℄

where allXj := are deleted which are in fY1; : : : ; Ymg.
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The Unification Algorithm
In every sequence:

P1 �1=) P2 �2=) : : : �n=) ?
the lexicographic ordered measure (n1; n2) goes
down (n1 is the number of variables in a problem; n2

is sum of the sizes of terms in a problem).
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The Unification Algorithm
In every sequence:

P1 �1=) P2 �2=) : : : �n=) ?
the lexicographic ordered measure (n1; n2) goes
down (n1 is the number of variables in a problem; n2

is sum of the sizes of terms in a problem).

Therefore the unification algorithm will always
terminate (either produces the empty set or gets
stuck).
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Soundness and Completeness
Given a unification problem, let U(P ) be the set of
all the solutions of P (set of some substitutions).

For a transformation

P �=) P 0
we can show:

if �0 2 U(P ) then �0 2 U(P 0)
if �0 2 U(P 0) then �0 Æ � 2 U(P ).
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Soundness and Completeness
Given a unification problem, let U(P ) be the set of
all the solutions of P (set of some substitutions).

For a transformation

P �=) P 0
we can show:

if �0 2 U(P ) then �0 2 U(P 0)
if �0 2 U(P 0) then �0 Æ � 2 U(P ).

Completeness

For a stuck problem U(Pstuk) = ?, thereforeU(P1) = ?.P1 �1=) P2 �2=) : : : �n=) Pstuk
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Typing Algorithm
Input: an expression e and a (valid) context �

Output: FAIL or a substitution � and type T

If a � and T , then we know

�(� ) ` e : T
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Algorithm W
The original algorithm of Damas and Milner:

Variables:W (�; x) = ("; T [X1 := Y1; : : : ; Xn := Yn℄)

where (x : 8fX1; : : : ;Xng:T ) 2 � and the Yi are
distinct and fresh (w.r.t. � and T ).

Lambdas: calculate firstW ((x : 8fg:Y; � ); e) = (�; T1)

where Y is fresh (w.r.t. � ). Then returnW (�; �x:e) = (�; �(Y ) ! T1)
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Algorithm W
Applications: Calculate firstW (�; e1) = (�1; T )
then W (�1(� ); e2) = (�2; T1)
and then

unify f�2(T ) =? T1 ! Y g = �3

where Y is fresh (w.r.t. � ). Finally returnW (�; e1 e2) = (�3 Æ �2 Æ �1; �3(Y ))
� ` e1 : T1 ! T2� ` e2 : T1� ` e1 e2 : T2
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Algorithm W
Lets: Calculate firstW (�; e1) = (�1; T1)
then A = tv(T1)� ftv(�1(� ))
and thenW ((x : 8A:T1; �1(� )); e2) = (�2; T2)

Finally returnW (�; letx = e1 in e2) = (�2 Æ �1; T2)
x 62 dom�� ` e1 : T1x : 8A:T1; � ` e2 : T2� ` letx = e1 in e2 : T2

Munich, 15. November 2006 – p.12 (1/1)



Example

� ` let f = �x:x in g (f a) : ?
We expect X2 ! X3.

� = � g : 8fg:X1 ! X2 ! X3;a : 8fg:X1;

�

� 0 = ( x : 8fg:Yg : 8fg:X1 ! X2 ! X3;a : 8fg:X1;

)

� 00 = ( f : 8fY g:Y ! Yg : 8fg:X1 ! X2 ! X3;a : 8fg:X1;

)
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Principal Type-Scheme
Input: an expression e and a (valid) context �

Output: FAIL or a substitution � and type T

“Real” Output: FAIL or a type-schemeS = 8A:T where

A = tv(T )� ftv(�(� ))
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Remember the Homework?
Type into your favourite functional language:

let pair = �x:�y:�z: z x y in
let x1 = �y:pair y y in
let x2 = �y:x1 (x1 y) in
let x3 = �y:x2 (x2 y) in
let x4 = �y:x3 (x3 y) in
let x5 = �y:x4 (x4 y) inx5 (�y:y)

and let it check what its prinicpal
type-scheme is.
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and let it check what its prinicpal
type-scheme is.

Although typing is decidable, it is known
to be exponential-time complete, and
the type can be exponentially larger
than the expression.

BUT this problem does not arise natu-
rally in practice and the typing algorithm
is not a bottle-neck in an ML-compiler.
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Story So Far

We sould now start to show soundness and
completeness of W (rather tricky).

Instead, we will look at extensions of the
language and interaction with the typing
system — there are a few surprises.

Remember type-systems should provide
safety (prevent all forbidden errors which
includes untrapped errors).
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Polymorphic References
Let’s assume we have memory. . .

T ::= : : :j unit unit typej T ref type of references

e ::= : : :j () unit valuej ref e creation of a referencej !e de-referencingj e := e assignment
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MiniML Type-System
Units

valid �� ` () : unit
References � ` e : T� ` ref e : T ref

De-References � ` e : T ref� `!e : T
Assignments� ` e1 : T ref � ` e2 : T� ` e1 := e2 : unit
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Interesting Example
Consider the expression:

let r = ref �x:x in
let u = (r := �y:(ref !y)) in!r ()

this expression has type unit since? ` ref �x:x : (Y ! Y ) reffr : 8fY g:(Y ! Y ) refg` r := �y:(ref !y) : unitfr : 8fY g:(Y ! Y ) refg `!r () : unit
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During Run-Time

let r = ref �x:x in
let u = (r := �y:(ref !y)) in!r ()
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Restoring Safety I
The rule for Lets gets restricted

� ` e1 : T1 x : 8A:T1; � ` e2 : T2 x 62 dom�� ` letx = e1 in e2 : T2
where

A = �fg if e1 is not a value
tv(T1)� ftv(� ) if e1 is a value

Values

V ::= x j �x:e j ()
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Restoring Safety II
With the restricted rule some programs
(not involving refs) that were typable
beforehand, are not typable any longer.
Is this a problem?

Well, Wright checked 1995 approximately
400,000 lines of SML code and found that in
practice the restriction does not cause any
trouble. After that, the question how to
solve the problem with type-safety was
settled.
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Can We Be Sure?
Can we be sure to have safety with the
restricted system?

Well, the answer lies in a formal proof:

We have to define a transition relation
for configurations he; si:

he; si �! he0; s0i

Show that typing is preserved under
transitions.
Show that well-typed expressions cannot
get stuck.
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Next Week
Next week we have a look at a version of the
Damas-Milner typing algorithm, which
provides better error-messages when a
program is not typable.

Also, many modern typing algorithms are
formulated as a constraint solving system
(we take a look at them). This technique
generalises relatively easily to other type
systems.
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Possible Question
Given the typing judgements we have defined
for Mini-ML, show that if ? ` e : T is
derivable, them e must be closed.

Hint: Show by rule induction that for all
derivable typing judgements, � ` e : T , we
have fv(e) � dom� .
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More Next Week
Slides at the end ofhttp://www4.in.tum.de/lehre/vorlesungen/types/WS0607/

There is also an appraisal form where you
can complain anonymously.

You can say whether the lecture was too
easy, too quiet, too hard to follow, too
chaotic and so on. You can also comment on
things I should repeat.
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