Nominal Techniques Course

Thursday-Lecture

Christian Urban **W** University of Cambridge

$$
\pi\boldsymbol{\cdot} fn \stackrel{\sf def}{=} \lambda x.\pi\boldsymbol{\cdot} (fn(\pi^{-1}\boldsymbol{\cdot} x))
$$

Example $\lambda x.\text{pr}(a,x)$:

$$
\boldsymbol{\pi\!\bullet\!fn} \stackrel{\mathsf{def}}{=} \lambda x.\boldsymbol{\pi\!\bullet\!}(fn(\boldsymbol{\pi^{-1}\!\bullet\!x}))
$$

Example $\lambda x.\text{pr}(a, x)$: What is this function?

. . .

$$
\begin{array}{ccc}a & \mapsto & \mathsf{pr}(a,a)\\ b & \mapsto & \mathsf{pr}(a,b)\\ c & \mapsto & \mathsf{pr}(a,c)\\ d & \mapsto & \mathsf{pr}(a,d) \end{array}
$$

$$
\boldsymbol{\pi\!\bullet\!fn} \stackrel{\mathsf{def}}{=} \lambda x.\boldsymbol{\pi\!\bullet\!}(fn(\boldsymbol{\pi^{-1}\!\bullet\!x}))
$$

Example $\lambda x.\text{pr}(a, x)$: What is this function?

. . .

$$
\begin{array}{c} a \mapsto \text{pr}(a, a) \\ (a \ b) \cdot \begin{array}{c} b \mapsto \text{pr}(a, b) \\ c \mapsto \text{pr}(a, c) \\ d \mapsto \text{pr}(a, d) \end{array} \end{array}
$$

$$
\boldsymbol{\pi\!\bullet\!fn} \stackrel{\mathsf{def}}{=} \lambda x.\boldsymbol{\pi\!\bullet\!}(fn(\boldsymbol{\pi^{-1}\!\bullet\!x}))
$$

Example $\lambda x.\text{pr}(a, x)$: What is this function?

. . .

$$
\begin{array}{c} a \mapsto \text{pr}(a, a) \\ \text{(} a b \text{)} \cdot \begin{array}{c} b \mapsto \text{pr}(a, b) \\ c \mapsto \text{pr}(a, c) \\ d \mapsto \text{pr}(a, d) \end{array} \end{array}
$$

$$
\boldsymbol{\pi\!\bullet\!fn} \stackrel{\mathsf{def}}{=} \lambda x.\boldsymbol{\pi\!\bullet\!}(fn(\boldsymbol{\pi^{-1}\!\bullet\!x}))
$$

Example $\lambda x.\text{pr}(a, x)$: What is this function?

. . .

$$
\begin{array}{ccc}b&\mapsto&\mathsf{pr}(b,b)\\a&\mapsto&\mathsf{pr}(b,a)\\c&\mapsto&\mathsf{pr}(b,c)\\d&\mapsto&\mathsf{pr}(b,d)\end{array}
$$

which is the function $\lambda x.\text{pr}(b, x)$.

$$
\boldsymbol{\pi\cdot fn}\stackrel{\mathsf{def}}{=}\lambda x.\boldsymbol{\pi\bullet}(fn(\boldsymbol{\pi^{-1}\cdot x}))
$$

So $(a b) \cdot \lambda x . pr(a, x) = \lambda x . pr(b, x)!$

$$
\boldsymbol{\pi\!\bullet\!fn} \stackrel{\mathsf{def}}{=} \lambda x.\boldsymbol{\pi\!\bullet\!}(fn(\pi^{-1}\!\bullet\!x))
$$

So $(a\,b)\cdot \lambda x.\text{pr}(a,x) = \lambda x.\text{pr}(b,x)$! $(a\ b) \cdot \lambda x.\text{pr}(a, x)$ = $= \lambda y.(ab) \cdot ((\lambda x.\text{pr}(a, x))((a b) \cdot y))$

$$
\boldsymbol{\pi\!\bullet\!fn} \stackrel{\mathsf{def}}{=} \lambda x.\boldsymbol{\pi\!\bullet\!}(fn(\pi^{-1}\!\bullet\!x))
$$

So $(a\,b)\cdot \lambda x.\text{pr}(a,x) = \lambda x.\text{pr}(b,x)$! $(a\ b) \cdot \lambda x.\text{pr}(a, x)$ = $= \lambda y.(ab) \cdot ((\lambda x.\text{pr}(a, x))((a b) \cdot y))$ = $= \lambda y.(a b) \cdot pr(a, (a b) \cdot y)$

$$
\boldsymbol{\pi\!\bullet\!fn} \stackrel{\mathsf{def}}{=} \lambda x.\boldsymbol{\pi\!\bullet\!}(fn(\pi^{-1}\!\bullet\!x))
$$

So $(a\,b)\cdot \lambda x.\text{pr}(a,x) = \lambda x.\text{pr}(b,x)!$ $(a b) \cdot \lambda x . pr(a, x)$ = $= \lambda y.(ab) \cdot ((\lambda x.\text{pr}(a, x))((a b) \cdot y))$ = $= \lambda y.(a b) \cdot pr(a, (a b) \cdot y)$ = $= \lambda y.\text{pr}((a b) \cdot a, (a b) \cdot (a b) \cdot y)$

$$
\boldsymbol{\pi\!\bullet\!fn} \stackrel{\mathsf{def}}{=} \lambda x.\boldsymbol{\pi\!\bullet\!}(fn(\pi^{-1}\!\bullet\!x))
$$

So $(a\,b)\cdot \lambda x.\text{pr}(a,x) = \lambda x.\text{pr}(b,x)$! $(a b) \cdot \lambda x . pr(a, x)$ = $= \lambda y.(ab) \cdot ((\lambda x.\text{pr}(a, x))((a b) \cdot y))$ = $= \lambda y.(a b) \cdot pr(a, (a b) \cdot y)$ = $= \lambda y.\text{pr}((a b) \cdot a, (a b) \cdot (a b) \cdot y)$ = $= \ \lambda y.\mathsf{pr}(b,y)$

Equality on Functions

The question arose whether $(a \neq b)$: $[a].[a].am(a) = [b].[a].am(a)$?

Well, if we knew
\n
$$
\blacksquare \pi \bullet ([a].t) = [\pi \bullet a] \cdot (\pi \bullet t)
$$
\n
$$
\blacksquare t_1 = t_2 \Leftrightarrow [a].t_1 = [a].t_2
$$
\n
$$
\blacksquare a \neq b \Rightarrow (t_1 = (a b) \bullet t_2 \land a \neq t_2 \Leftrightarrow [a].t_1 = [b].t_2)
$$

we could easily decide this question, namely:

 $[a].[a].$ am $(a) = [b].[a].$ am (a) where $a \neq b$

 $[a].[a].$ am $(a) = [b].[a].$ am (a) where $a \neq b$

 $[a].[a].$ am $(a) = [b].[a].$ am (a)

 $[a].[a].$ am $(a) = [b].[a].$ am (a) where $a \neq b$

 $[a].[a].$ am $(a) = [b].[a].$ am (a) iff $[a] . am(a) = (a b) \cdot [a] . am(a)$ and $a \# [a] . am(a)$

 $[a].[a].$ am $(a) = [b].[a].$ am (a) where $a \neq b$

 $[a].[a].$ am $(a) = [b].[a].$ am (a) iff $[a] . am(a) = [b] . am(b)$ and $a \# [a].$ am (a)

 $[a].[a].$ am $(a) = [b].[a].$ am (a) where $a \neq b$

 $[a].[a].$ am $(a) = [b].[a].$ am (a) iff $[a] . am(a) = [b] . am(b)$ and $a \# [a].$ am (a)

iff $am(a) = am(a)$ and $a \# am(b)$

 $[a].[a].$ am $(a) = [b].[a].$ am (a) where $a \neq b$

 $[a].[a].$ am $(a) = [b].[a].$ am (a) iff $[a] . am(a) = [b] . am(b)$ and $a \# [a].$ am (a) iff $am(a) = am(a)$

and $a \# am(b)$

Nancy, 18+19. August 2004 – p.5 (6/6)

$$
\boldsymbol{\pi} \bullet ([a].t) = [\boldsymbol{\pi} \bullet a] . (\boldsymbol{\pi} \bullet t)
$$

which is:

Nancy, 18+19. August 2004 – p.6 (1/8)

$$
\boldsymbol{\pi} \boldsymbol{\cdot} ([a].t) = [\boldsymbol{\pi} \boldsymbol{\cdot} a] . (\boldsymbol{\pi} \boldsymbol{\cdot} t)
$$

which is:

 $\lambda x.\pi \cdot$ if $\pi^{-1} \cdot x = a$ then t else if $\pi^{-1} \cdot x \neq t$ then $(a \pi^{-1} \cdot x) \cdot t$ else er $x=\lambda x.$ if $x=\pi\bullet a$ then $\pi\bullet t$ else if $x \# \pi \bullet t$ then $(\pi \bullet a \ x) \bullet \pi \bullet t$ else er

$$
[a].t \stackrel{\text{def}}{=} \lambda x. \text{if } x = a \text{ then } t
$$

else if $x \neq t$ then $(x a) \cdot t$ else er

$$
\boldsymbol{\pi} \,{\raisebox{.5mm}{\text{\circle*{1.5}}}}\, ([a].t) = [\boldsymbol{\pi} \,{\raisebox{.5mm}{\text{\circle*{1.5}}}}\, a] . (\boldsymbol{\pi} \,{\raisebox{.5mm}{\text{\circle*{1.5}}}}\, t)
$$

which is:

$$
\lambda x.\pi \cdot \text{if } \pi^{-1} \cdot x = a \text{ then } t
$$
\n
$$
\text{else if } \pi^{-1} \cdot x \neq t \text{ then } (a \ \pi^{-1} \cdot x) \cdot t \text{ else er}
$$
\n
$$
= \lambda x.\text{if } x \leq \pi \cdot a \text{ then } \pi \cdot t
$$
\n
$$
\text{else if } x \neq \pi \cdot t \text{ then } (\pi \cdot a \ x) \cdot \pi \cdot t \text{ else er}
$$
\n
$$
\pi \cdot \text{if } \dots \text{ then } \dots \text{ else } \dots =
$$
\n
$$
\text{if } \dots \text{ then } \pi \cdot \dots \text{ else } \pi \cdot \dots
$$

$$
\boldsymbol{\pi} \boldsymbol{\cdot} ([a].t) = [\boldsymbol{\pi} \boldsymbol{\cdot} a] . (\boldsymbol{\pi} \boldsymbol{\cdot} t)
$$

which is:

 $\lambda x.$ if $\pi^{-1} \cdot x = a$ then $\pi \cdot t$ else if $\pi^{-1}\bullet x\;\#\;t$ then $\pi\bullet(a\;\;\pi^{-1}\bullet x)\bullet t$ else er $x=\lambda x.$ if $x=\pi\bullet a$ then $\pi\bullet t$ else if $x \# \pi \bullet t$ then $(\pi \bullet a \ x) \bullet \pi \bullet t$ else er

$$
\boldsymbol{\pi} \boldsymbol{\cdot} ([a].t) = [\boldsymbol{\pi} \boldsymbol{\cdot} a] . (\boldsymbol{\pi} \boldsymbol{\cdot} t)
$$

which is:

 $\lambda x.$ if $\pi^{-1} \cdot x = a$ then $\pi \cdot t$ else if $\pi^{-1}\bullet x\;\#\;t$ then $\pi\bullet(a\;\;\pi^{-1}\bullet x)\bullet t$ else er $x=\lambda x.$ if $x=\pi\bullet a$ then $\pi\bullet t$ else if $x\;\#\;\pi\,\bullet\, t$ then $(\!\pi\bullet a\; \;x)\bullet\pi\,\bullet\, t$ else er

$$
\begin{array}{l}\n\pi \bullet (a\ \pi^{-1} \bullet x) \bullet t \\
= (\pi \bullet a\ \pi \bullet \pi^{-1} \bullet x) \bullet \pi \bullet t \\
= (\pi \bullet a\ \ x) \bullet \pi \bullet t\n\end{array}
$$

$$
\boldsymbol{\pi} \boldsymbol{\cdot} ([a].t) = [\boldsymbol{\pi} \boldsymbol{\cdot} a] . (\boldsymbol{\pi} \boldsymbol{\cdot} t)
$$

which is:

 $\lambda x.$ if $\pi^{-1} \cdot x = a$ then $\pi \cdot t$ else if $\pi^{-1} \cdot x \neq t$ then $(\pi \cdot a \ x) \cdot \pi \cdot t$ else er $x=\lambda x.$ if $x=\pi\bullet a$ then $\pi\bullet t$ else if $x \# \pi \bullet t$ then $(\pi \bullet a \ x) \bullet \pi \bullet t$ else er

$$
\boldsymbol{\pi} \boldsymbol{\cdot} ([a].t) = [\boldsymbol{\pi} \boldsymbol{\cdot} a] . (\boldsymbol{\pi} \boldsymbol{\cdot} t)
$$

which is:

 $\lambda x.$ if $\pi^{-1} \cdot x = a$ then $\pi \cdot t$ else if $\pi^{-1}_{\ast}\bullet x\;\#\;t$ then $(\pi\bullet a\; \;x)\bullet\pi\bullet t$ else er $x=\lambda x.$ if $x=\pi\lambda a$ then $\pi\bullet t$ else if $x \# \pi$ +then $(\pi \cdot a \ x) \cdot \pi \cdot t$ else er $\pi^{-1}\!\bullet\!x\;\#\;t$ iff $x\;\#\;\pi\!\bullet\!t$

$$
\boldsymbol{\pi} \boldsymbol{\cdot} ([a].t) = [\boldsymbol{\pi} \boldsymbol{\cdot} a] . (\boldsymbol{\pi} \boldsymbol{\cdot} t)
$$

which is:

 $\lambda x.$ if $\pi^{-1} \cdot x = a$ then $\pi \cdot t$ else if $x \# \pi \cdot t$ then $(\pi \cdot a \ x) \cdot \pi \cdot t$ else er $x=\lambda x.$ if $x=\pi\bullet a$ then $\pi\bullet t$ else if $x \# \pi \cdot t$ then $(\pi \cdot a \ x) \cdot \pi \cdot t$ else er

Done.

$$
[a].t_1=[a].t_2\Rightarrow t_1=t_2
$$

which means we can assume that:

 λx .if $x = a$ then t_1 else if $x \neq t_1$ then $(a x) \cdot t_1$ else er $\;=\; \lambda x.$ if $x = a$ then t_2 else if $x \neq t_2$ then $(a x) \cdot t_2$ else er

$$
[a].t_1=[a].t_2\Rightarrow t_1=t_2
$$

which means we can assume that:

```
\forall x. if x = a then t_1else if x \neq t_1 then (a x) \cdot t_1 else er
\simif x = a then t_2else if x \neq t_2 then (a x) \cdot t_2 else er
```

$$
[a].t_1=[a].t_2\Rightarrow t_1=t_2
$$

which means we can assume that:

```
if a = a then t_1else if a \# t_1 then (a a) \bullet t_1 else er
\simif a = a then t_2else if a \# t_2 then (a a) \bullet t_2 else er
```

$$
[a].t_1=[a].t_2\Rightarrow t_1=t_2
$$

which means we can assume that:

 t_1

 \sim

 $t₂$

Done.

Lemma: $a \neq b \wedge b \neq [a].t \Rightarrow b \neq t$

Lemma: $a \neq b \wedge b \neq [a].t \Rightarrow b \neq t$

Proof:

(1) $(\exists c)c \neq (a, b, t, [a].t)$ "finitely supported"

Lemma: $a \neq b \wedge b \neq [a].t \Rightarrow b \neq t$

Proof:

(1) $(\exists c)c \neq (a, b, t, [a].t)$ "finitely supported" (2) $(b c) \cdot [a].t = [a].t$ from (1) + ass.

Lemma: $a \neq b \wedge b \neq [a].t \Rightarrow b \neq t$

Proof:

(1) $(\exists c)c \neq (a, b, t, [a].t)$ "finitely supported" (2) $[a] \cdot ((b c) \cdot t) = [a] \cdot t$ from (1) + ass

Lemma: $a \neq b \wedge b \neq [a].t \Rightarrow b \neq t$

Proof:

(1) $(\exists c)c \neq (a, b, t, [a].t)$ "finitely supported" (2) $[a]$. $((b c) \cdot t) = [a]$.t from (1) + ass (3) $(b c) \cdot t = t$ by "same abstraction"

Lemma: $a \neq b \wedge b \neq [a].t \Rightarrow b \neq t$

Proof:

(1) $(\exists c)c \neq (a, b, t, [a].t)$ "finitely supported" (2) $[a] \cdot ((b c) \cdot t) = [a] \cdot t$ from (1) + ass (3) $(b c) \cdot t = t$ by "same abstraction" (4) $(b c) \cdot c \neq (b c) \cdot t$ from $c \neq t$

Lemma: $a \neq b \wedge b \neq [a].t \Rightarrow b \neq t$

Proof:

(1) $(\exists c)c \neq (a, b, t, [a].t)$ "finitely supported" (2) $[a] \cdot ((b c) \cdot t) = [a] \cdot t$ from (1) + ass (3) $(b c) \cdot t = t$ by "same abstraction" (4) $b \neq t$ from $c \neq t$ and (3)

Lemma: $a \neq b \wedge b \neq [a].t \Rightarrow b \neq t$

Proof:

(1) $(\exists c)c \neq (a, b, t, [a].t)$ "finitely supported" (2) $[a]$. $((b c) \cdot t) = [a]$.t from (1) + ass (3) $(b c) \cdot t = t$ by "same abstraction" (4) $b \neq t$ from $c \neq t$ and (3) Done.

Lemma: $a \# [a].t$

Lemma: $a \# [a].t$

Proof:

(1) $(\exists c)c \neq (a, t)$ "finitely supported"

Lemma: $a \# [a].t$

Proof:

(1) $(\exists c)c \neq (a, t)$ "finitely supported" (2) $c \neq [a].t$ by (Freshness 1)

Lemma: $a \# [a].t$

Proof:

(1) $(\exists c)c \neq (a, t)$ "finitely supported" (2) $c \neq [a].t$ by (Freshness 1) (3) $(a c) \cdot c \neq (a c) \cdot [a].t$ from (2)

Lemma: $a \# [a].t$

Proof:

(1) $(\exists c)c \neq (a, t)$ "finitely supported" (2) $c \neq [a].t$ by (Freshness 1) (3) $a \# [c] . ((a c) \cdot t)$ from (2)

Lemma: $a \# [a].t$

Proof:

- (1) $(\exists c)c \neq (a, t)$ "finitely supported" (2) $c \neq [a].t$ by (Freshness 1) (3) $a \# [c] . ((a c) \cdot t)$ from (2) (4) $[c] \cdot ((a c) \cdot t) = [a] \cdot t$ provided $c \neq t$ and
	- $(a c) \cdot t = (a c) \cdot t$

Lemma: $a \# [a].t$

Proof:

(1) $(\exists c)c \# (a, t)$ "finitely supported" (2) $c \neq [a].t$ by (Freshness 1) (3) $a \# [c] . ((a c) \cdot t)$ from (2) (4) $[c] \cdot ((a c) \cdot t) = [a] \cdot t$ provided $c \neq t$ and

 $(a c) \cdot t = (a c) \cdot t$

Both hold, therefore $a \# [a].t$ Done.

Equivariance

slightly unusual definition for equivariance.

Equivariance

eqvt $(P) \stackrel{\text{def}}{=} (\forall t : \Lambda_a)(\forall x : FSType)(\forall pi)$ $P \, t \, x \Rightarrow P(\pi \,{\scriptstyle \bullet } \, t)(\pi \,{\scriptstyle \bullet } \, x)$

Later we shall often consider predicates having an Λ_{α} -term as first argument and an \boldsymbol{FSType} as second argument. Therefore, this slightly unusual definition for equivariance.

Some /Any-Property

Assuming eqvt (P) then $(\exists x) a \# x \wedge (\forall t) P([a].t) x$ if and only if $(\forall x) a \# x \Rightarrow (\forall t) P([a].t) x$

Some /Any-Property

Assuming eqvt (P) then $(\exists x) a \# x \wedge (\forall t) P([a].t) x$ if and only if $(\forall x) a \# x \Rightarrow (\forall t) P([a].t) x$

Proof: Same as on Tuesday.

Induction

$$
(\forall a) P (\text{am}(a)) x
$$

$$
(\forall t_1, t_2) P t_1 x \land P t_2 x \Rightarrow P (\text{pr}(t_1, t_2)) x
$$

$$
(\exists a) a \# x \land (\forall t) P t x \Rightarrow P ([a].t) x
$$

$$
(\forall t) P t x
$$

Proof: By induction on n (the "stage" when constructing Λ_{α}).

Induction

eqvt (P) $(\forall a) P(\text{am}(a)) x$ $(\forall t_1, t_2)$ $P t_1 x \wedge P t_2 x \Rightarrow P (pr(t_1, t_2)) x$ $(\forall a) a \# x \Rightarrow (\forall t) P t x \Rightarrow P([a].t) x$ $(\forall t)$ Ptx

Proof: By induction on n (the "stage" when constructing Λ_{α}).

What Has Been Achieved

we gave an inductive definition of ^a set (Λ_{α}) that is bijective with the α -equated lambda-terms

- Λ_{α} has very much the feel of (named) lambda-terms (equated up to α -equivalence)
- \blacksquare if we can prove equivariance for the IH, then we only need to prove the abstraction case for one fresh atom
- **T** and we can put the money where our mouth is. . . ;o)