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Permutations on Fun’s

π·fn
def
= λx.π·(fn(π−1·x))

Example λx.pr(a, x):
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Permutations on Fun’s

π·fn
def
= λx.π·(fn(π−1·x))

Example λx.pr(a, x): What is this function?

(a b)·
b 7→ pr(b, b)
a 7→ pr(b, a)
c 7→ pr(b, c)
d 7→ pr(b, d)

...

which is the function λx.pr(b, x).
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Permutations on Fun’s (ct.)
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Equality on Functions
The question arose whether (a 6= b):

[a].[a].am(a) = [b].[a].am(a)?

Well, if we knew

π·([a].t) = [π·a].(π·t)
t1 = t2 ⇔ [a].t1 = [a].t2

a 6= b ⇒ (t1 = (a b)·t2 ∧ a # t2

⇔ [a].t1 = [b].t2)

we could easily decide this question, namely:
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Proofs for the Equalities 1
π·([a].t) = [π·a].(π·t)

which is:
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π·([a].t) = [π·a].(π·t)

which is:

= λx.π·if π−1·x = a then t
else if π−1·x # t then (a π−1·x)·t else er

= λx.if x = π·a then π·t
else if x # π·t then (π·a x)·π·t else er

[a].t
def
= λx.if x = a then t

else if x # t then (x a)·t else er
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π·if . . . then . . . else . . . =
if . . . then π· . . . else π· . . .
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= λx.if π−1·x = a then π·t
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Proofs for the Equalities 2
[a].t1 = [a].t2 ⇒ t1 = t2

which means we can assume that:

= λx.if x = a then t1
else if x # t1 then (a x)·t1 else er

= λx.if x = a then t2
else if x # t2 then (a x)·t2 else er
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Proofs for the Equalities 2
[a].t1 = [a].t2 ⇒ t1 = t2

which means we can assume that:

∀x. t1

∀x. =

∀x. t2

∀x. Done.
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Freshness 3
Lemma: a # [a].t

Proof:

(1) (∃c)c # (a, t) “finitely supported”

(2) c # [a].t by (Freshness 1)

(3) a # [c].((a c)·t) from (2)

(4) [c].((a c)·t) = [a].t provided c # t and
(a c)·t = (a c)·t

Both hold, therefore a # [a].t

Done.
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Equivariance

eqvt(P )
def
= (∀t : Λa)(∀x : FSType)(∀pi)

P t x ⇒ P (π·t)(π·x)

Later we shall often consider predicates
having an Λα-term as first argument and an
FSType as second argument. Therefore, this
slightly unusual definition for equivariance.

We have an induction principle for Λα (by
way of how it is constructed), but this
induction principle is not as weak (in the
good sense) as that from Nominal Logic. If
we prove an equivariant property, we can
do better.
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Some /Any-Property
Assuming eqvt(P ) then

(∃x) a # x ∧ (∀t) P ([a].t) x

if and only if

(∀x) a # x ⇒ (∀t) P ([a].t) x
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Some /Any-Property
Assuming eqvt(P ) then

(∃x) a # x ∧ (∀t) P ([a].t) x

if and only if

(∀x) a # x ⇒ (∀t) P ([a].t) x

Proof: Same as on Tuesday.
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Induction
eqvt(P )

(∀a) P (am(a)) x

(∀t1, t2) P t1 x ∧ P t2 x ⇒ P (pr(t1, t2)) x

(∃a) a # x ∧ (∀t) P t x ⇒ P ([a].t) x

(∀t) P t x

Proof: By induction on n (the “stage” when
constructing Λα).
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What Has Been Achieved
we gave an inductive definition of a set
(Λα) that is bijective with the α-equated
lambda-terms

Λα has very much the feel of (named)
lambda-terms (equated up to
α-equivalence)

if we can prove equivariance for the IH,
then we only need to prove the
abstraction case for one fresh atom

and we can put the money where our
mouth is. . . ;o)
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