
Correct/Incorrect?
Does the following Prolog program produce for
every lambda-term the correct type?

type Gamma (var X) A :- member (pair X A) Gamma.

type Gamma (app M N) B :- type Gamma M (arrow A B),
type Gamma N A.

type Gamma (lam X M) (arrow A B) :-
type (pair X A)::Gamma M B.

member A A::Tail.

member A B::Tail :- member A Tail.
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Recap from Yesterday
Nominal Logic has the following weak (in the good sense)
induction principle for lambda-terms:

(∀a : V ar) ϕ(var(a), ~x)

(∀t1, t2 : Trm) ϕ(t1, ~x) ∧ ϕ(t2, ~x)
⇒ ϕ(app(t1, t2), ~x)

(∃a : V ar) a # ~x ∧ (∀t : Trm) ϕ(t, ~x)
⇒ ϕ(lam(a.t), ~x)

(∀t : Trm) ϕ(t, ~x)

It asks that for every term there exists a fresh atom.

(∀x : S)(∃a : A) a # x

Are such principles justified? Answer in today’s lecture.
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General Outline
We shall define a ’big-set’ and then carve out a
’small-set’, Λα, that is bijective with Λ/≈.

big-set—’fterms’

ΛαΛ/≈

bad: no (good)
induction prin-
ciples

bijection
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General Outline
We shall define a ’big-set’ and then carve out a
’small-set’, Λα, that is bijective with Λ/≈.

Caveat: The lambda-calculus is now more than
60 years old and people have tried for a long
time to find a simple solution for the problem
with binders. This means what I present next
is necessarily a bit complicated. It get’s
simple again on Friday. ;o)
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Small Dictionary
Λ set of (raw)-lambda-terms

Λ/≈ set of α-equated lambda-terms
(not inductively defined)

big-set also Ftrm
(inductively defined)

small-set also Λα
(subset of big-set, inductively defined, in
bijection with Λ/≈)
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Big-Set
Näıve attempt for big-set

Ftrm ::=
am : Atom ’atoms’

| pr : Ftrm × Ftrm ’pairs’
| se : Ftrm Set ’α-eq-cl’
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Big-Set
Näıve attempt for big-set

Ftrm ::=
am : Atom ’atoms’

| pr : Ftrm × Ftrm ’pairs’
| se : Ftrm Set ’α-eq-cl’

trick: encode the α-equivalence
class as the set of lambda-terms

[t]α
def
= {t′ | t ≈ t′}
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Big-Set
Better attempt for big-set

Ftrm ::= er ’error’
| am : Atom ’atoms’
| pr : Ftrm × Ftrm ’pairs’
| se : Atom → Ftrm ’α-eq-cl’

same idea, but encoding with
(partial) functions, along the lines:

”if t′ ∈ [t]α then yes else er”
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You Could Guessed It:
Permutation for Big-Set

Starting from the permutation operation for
atoms, we want to permute all free atoms in
fterms:

π·er def
= er

π·am(a)
def
= am(π·a)

π·pr(t1, t2)
def
= pr(π·t1, π·t2)

π·se(fn)
def
= se(λa.π·(fn(π−1·a)))
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You Could Guessed It:
Permutation for Big-Set

Starting from the permutation operation for
atoms, we want to permute all free atoms in
fterms:

π·er def
= er

π·am(a)
def
= am(π·a)

π·pr(t1, t2)
def
= pr(π·t1, π·t2)

π·se(fn)
def
= se(λa.π·(fn(π−1·a)))

Ok, slowly: fn is a function Atom → Ftrm

fn = λa.(fn a)

So we should have
π·fn = π·λa.(fn a)

We want to permute all free atoms in fn
(= λa.(fn a)—a is clearly not free). Therefore

λa.π·(fn a)

is wrong, as it will also permute a (wherever it ends up).
However, if we substitute π−1·a first, then the π that
is too much will go away.
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Properties of this
Permutation Operation
π·er def

= er

π·am(a)
def
= am(π·a)

π·pr(t1, t2)
def
= pr(π·t1, π·t2)

π·se(fn)
def
= se(λa.π·(fn(π−1·a)))

[]·t = t

(π1@π2)·t = π1·(π2·t)

ds(π1, π2) = ∅ implies π1·t = π2·t
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Properties of this
Permutation Operation
π·er def

= er

π·am(a)
def
= am(π·a)

π·pr(t1, t2)
def
= pr(π·t1, π·t2)

π·se(fn)
def
= se(λa.π·(fn(π−1·a)))

[]·t = t

(π1@π2)·t = π1·(π2·t)

ds(π1, π2) = ∅ implies π1·t = π2·t

If a type (set) satisfies these three
properties, then we call it a permutation
type. So Ftrm’s are a permutation
type—or short PType.
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Abstract Properties
If a type satisfies

[]·t = t

(π1@π2)·t = π1·(π2·t)

ds(π1, π2) = ∅ implies π1·t = π2·t

we can prove (independent of what the type looks like)

(a a)·t = t

π−1·(π·t) = t

π·t1 = t2 iff t1 = π−1·t2

t ∈ X iff π·t ∈ π·X
where π·X

def
= {π·t | t ∈ X}
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BTW: Where Do Atoms
Come From?

We assume a countable infinite set of atoms.
Countable infinite is important!

For example, the natural numbers would
do—just we do not write them as numbers,
rather as

a, b, c, . . .

The only property we are interested in is that
there are countably infinite many atoms: no
hidden games with de-Bruijn indices.
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SUPPORT!!!
Once we have a permutation operation for a
type, we can define the notion of support (a
set of atoms):

supp : PType → Atom Set

supp(x)
def
= {a | infinite {b | (a b)·x 6= x}}

In words: all atoms a where the set

{b | (a b)·x 6= x}

is infinite (each swapping (a b) needs to change
something “syntactically” in x).
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Digression: λ-Calculus
The (raw) lambda-calculus is a ptype.

π·a
def
=

{

a1 if π·a = a2

a2 if π·a = a1

π·a otherwise

π·t1 t2
def
= (π·t1)(π·t2)

π·λa.t
def
= λ(π·a).(π·t)

[]·t = t

(π1@π2)·t = π1·(π2·t)

ds(π1, π2) = ∅ implies π1·t = π2·t
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Support of an Atom
What is the support of the atom c?

supp(c)
def
= {a | infinite {b | (a b)·c 6= c}}

Let’s check the (infinitely many) atoms one by
one:
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Support of an Atom
What is the support of the atom c?

supp(c)
def
= {a | infinite {b | (a b)·c 6= c}}

Let’s check the (infinitely many) atoms one by
one:

a: (a ?)·c 6= c
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What is the support of the atom c?

supp(c)
def
= {a | infinite {b | (a b)·c 6= c}}

Let’s check the (infinitely many) atoms one by
one:

a: (a ?)·c 6= c no
b: (b ?)·c 6= c

Nancy, 18+19. August 2004 – p.13 (3/7)



Support of an Atom
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supp(c)
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Support of an Atom
What is the support of the atom c?

supp(c)
def
= {a | infinite {b | (a b)·c 6= c}}

Let’s check the (infinitely many) atoms one by
one:

a: (a ?)·c 6= c no
b: (b ?)·c 6= c no
c: (c ?)·c 6= c yes
d: (d ?)·c 6= c
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Support of an Atom
What is the support of the atom c?

supp(c)
def
= {a | infinite {b | (a b)·c 6= c}}

Let’s check the (infinitely many) atoms one by
one:

a: (a ?)·c 6= c no
b: (b ?)·c 6= c no
c: (c ?)·c 6= c yes
d: (d ?)·c 6= c no

... no
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Support of an Atom
What is the support of the atom c?

supp(c)
def
= {a | infinite {b | (a b)·c 6= c}}

Let’s check the (infinitely many) atoms one by
one:

a: (a ?)·c 6= c no
b: (b ?)·c 6= c no
c: (c ?)·c 6= c yes
d: (d ?)·c 6= c no

... no

So supp(c) = {c}
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Support of an Application

supp(t1 t2)
def
= {a | infinite {b | (a b)·t1 t2 6= t1 t2}}
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Support of an Application

supp(t1 t2)
def
= {a | infinite {b | (a b)·t1 t2 6= t1 t2}}

{a | inf{b | ((a b)·t1) ((a b)·t2) 6= t1 t2}}
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Support of an Application

supp(t1 t2)
def
= {a | infinite {b | (a b)·t1 t2 6= t1 t2}}

{a | inf{b | ((a b)·t1) ((a b)·t2) 6= t1 t2}}

We know
t1 t2 = s1 s2 iff t1 = s1 ∧ t2 = s2

hence
t1 t2 6= s1 s2 iff t1 6= s1 ∨ t2 6= s2
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Support of an Application

supp(t1 t2)
def
= {a | infinite {b | (a b)·t1 t2 6= t1 t2}}

{a | inf{b | ((a b)·t1) ((a b)·t2) 6= t1 t2}}

{a | inf{b | (a b)·t1 6= t1 ∨ (a b)·t2 6= t2}}
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Support of an Application

supp(t1 t2)
def
= {a | infinite {b | (a b)·t1 t2 6= t1 t2}}

{a | inf{b | ((a b)·t1) ((a b)·t2) 6= t1 t2}}

{a | inf{b | (a b)·t1 6= t1 ∨ (a b)·t2 6= t2}}

{a | inf({b | (a b)·t1 6= t1}∪{b | (a b)·t2 6= t2})}
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Support of an Application

supp(t1 t2)
def
= {a | infinite {b | (a b)·t1 t2 6= t1 t2}}

{a | inf{b | ((a b)·t1) ((a b)·t2) 6= t1 t2}}

{a | inf{b | (a b)·t1 6= t1 ∨ (a b)·t2 6= t2}}

{a | inf({b | (a b)·t1 6= t1}∪{b | (a b)·t2 6= t2})}

{a | inf{b | (a b)·t1 6= t1}∨ inf{b | (a b)·t2 6= t2}}
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Support of an Application

supp(t1 t2)
def
= {a | infinite {b | (a b)·t1 t2 6= t1 t2}}

{a | inf{b | ((a b)·t1) ((a b)·t2) 6= t1 t2}}

{a | inf{b | (a b)·t1 6= t1 ∨ (a b)·t2 6= t2}}

{a | inf({b | (a b)·t1 6= t1}∪{b | (a b)·t2 6= t2})}

{a | inf{b | (a b)·t1 6= t1}∨ inf{b | (a b)·t2 6= t2}}

{a | inf{b | (a b)·t1 6= t1}}∪{a | inf{b | (a b)·t2 6= t2}}
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Support of an Application

supp(t1 t2)
def
= {a | infinite {b | (a b)·t1 t2 6= t1 t2}}

{a | inf{b | ((a b)·t1) ((a b)·t2) 6= t1 t2}}

{a | inf{b | (a b)·t1 6= t1 ∨ (a b)·t2 6= t2}}

{a | inf({b | (a b)·t1 6= t1}∪{b | (a b)·t2 6= t2})}

{a | inf{b | (a b)·t1 6= t1}∨ inf{b | (a b)·t2 6= t2}}

{a | inf{b | (a b)·t1 6= t1}}∪{a | inf{b | (a b)·t2 6= t2}}

supp(t1) ∪ supp(t2)
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Support of an Application

supp(t1 t2)
def
= {a | infinite {b | (a b)·t1 t2 6= t1 t2}}

{a | inf{b | ((a b)·t1) ((a b)·t2) 6= t1 t2}}

{a | inf{b | (a b)·t1 6= t1 ∨ (a b)·t2 6= t2}}

{a | inf({b | (a b)·t1 6= t1}∪{b | (a b)·t2 6= t2})}

{a | inf{b | (a b)·t1 6= t1}∨ inf{b | (a b)·t2 6= t2}}

{a | inf{b | (a b)·t1 6= t1}}∪{a | inf{b | (a b)·t2 6= t2}}

supp(t1) ∪ supp(t2)

So supp(t1 t2) = supp(t1) ∪ supp(t2)
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Support of an Abstraction

supp(λc.t)
def
= {a | infinite {b | (a b)·λc.t 6= λc.t}}
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Support of an Abstraction

supp(λc.t)
def
= {a | infinite {b | (a b)·λc.t 6= λc.t}}

We mean here ’syntactic’
(in)-equality, not α-(in)-equality.
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Support of an Abstraction

supp(λc.t)
def
= {a | infinite {b | (a b)·λc.t 6= λc.t}}

So supp(λc.t) = supp(t) ∪ {c}
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Support for λ-Terms

supp(t)
def
= {a | infinite {b | (a b)·t 6= t}}

supp(c) = {c}

supp(t1t2) = supp(t1) ∪ supp(t1)

supp(λc.t) = supp(t) ∪ {c}
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Support for λ-Terms

supp(t)
def
= {a | infinite {b | (a b)·t 6= t}}

supp(c) = {c}

supp(t1t2) = supp(t1) ∪ supp(t1)

supp(λc.t) = supp(t) ∪ {c}

supp(t) = occurs(t) (for lambda-terms)

occurs(c)
def
= {c}

occurs(t1t2)
def
= occurs(t1) ∪ occurs(t1)

occurs(λc.t)
def
= occurs(t) ∪ {c}
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A Variant

supp′(t)
def
= {a | infinite {b | (a b)·t 6= t}}
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A Variant

supp′(t)
def
= {a | infinite {b | (a b)·t 6≈ t}}
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A Variant

supp′(t)
def
= {a | infinite {b | (a b)·t 6≈ t}}

supp′(λc.c) = {a | infinite {b | (a b)·λc.c 6≈ λc.c}}

= ∅
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A Variant

supp′(t)
def
= {a | infinite {b | (a b)·t 6≈ t}}

supp′(λc.c) = {a | infinite {b | (a b)·λc.c 6≈ λc.c}}

= ∅

supp′(t) = free(t)

free(a)
def
= {a}

free(t1t2)
def
= free(t1) ∪ free(t1)

free(λc.t)
def
= free(t) − {c}
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Coming Back to FTrms

supp(x)
def
= {a | infinite {b | (a b)·x 6= x}}

Roughly means: the ’free’ atoms affected by
permutations—this cannot be defined
inductively over Ftrms.

t ::= er
| am(a)
| pr(t1, t2)
| se(fn)

We are stuck with supp. . . but this isn’t so bad.
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Not in the Support
An old friend can be defined in terms of
support:

a # x
def
= a 6∈ supp(x)
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Not in the Support
An old friend can be defined in terms of
support:

a # x
def
= a 6∈ supp(x)

We can (abstractly) prove for every PType
(that includes lambda-calculus and FTrms)
that:

a # x ∧ b # x ⇒ (a b)·x = x
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Proof of an Old Friend
Lemma: a # x ∧ b # x ⇒ (a b)·x = x
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Proof of an Old Friend
Lemma: a # x ∧ b # x ⇒ (a b)·x = x

Proof: case a = b clear
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Proof of an Old Friend
Lemma: a # x ∧ b # x ⇒ (a b)·x = x

Proof: case a 6= b:
(1) fin{c | (a c)·x 6= x}

fin{c | (b c)·x 6= x}
from Ass. +Def. of #

a # x
def
= a 6∈ supp(x)

supp(x)
def
= {a | inf{c | (a c)·x 6= x}}
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Proof of an Old Friend
Lemma: a # x ∧ b # x ⇒ (a b)·x = x

Proof: case a 6= b:
(1) fin{c | (a c)·x 6= x}

fin{c | (b c)·x 6= x}
from Ass. +Def. of #

(2’) fin({c | (a c)·x 6= x} ∪ {c | (b c)·x 6= x}) f. (1)
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Proof of an Old Friend
Lemma: a # x ∧ b # x ⇒ (a b)·x = x

Proof: case a 6= b:
(1) fin{c | (a c)·x 6= x}

fin{c | (b c)·x 6= x}
from Ass. +Def. of #

(2’) fin{c | (a c)·x 6= x ∨ (b c)·x 6= x} f. (1)
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Proof of an Old Friend
Lemma: a # x ∧ b # x ⇒ (a b)·x = x

Proof: case a 6= b:
(1) fin{c | (a c)·x 6= x}

fin{c | (b c)·x 6= x}
from Ass. +Def. of #

(2’) fin{c | (a c)·x 6= x ∨ (b c)·x 6= x} f. (1)
(3’) inf{c | ¬((a c)·x 6= x ∨ (b c)·x 6= x)} f. (2’)

Given a finite set of atoms,
its ’co-set’ must be infinite.
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Proof of an Old Friend
Lemma: a # x ∧ b # x ⇒ (a b)·x = x

Proof: case a 6= b:
(1) fin{c | (a c)·x 6= x}

fin{c | (b c)·x 6= x}
from Ass. +Def. of #

(2’) fin{c | (a c)·x 6= x ∨ (b c)·x 6= x} f. (1)
(3’) inf{c | (a c)·x = x ∧ (b c)·x = x)} f. (2’)
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Proof of an Old Friend
Lemma: a # x ∧ b # x ⇒ (a b)·x = x

Proof: case a 6= b:
(1) fin{c | (a c)·x 6= x}

fin{c | (b c)·x 6= x}
from Ass. +Def. of #

(2’) fin{c | (a c)·x 6= x ∨ (b c)·x 6= x} f. (1)
(3’) inf{c | (a c)·x = x ∧ (b c)·x = x)} f. (2’)
(4) (i) (a c)·x = x (ii) (b c)·x = x for a c ∈ (3’)

If a set is infinite, it must
contain a few elements.
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Proof of an Old Friend
Lemma: a # x ∧ b # x ⇒ (a b)·x = x

Proof: case a 6= b:
(1) fin{c | (a c)·x 6= x}

fin{c | (b c)·x 6= x}
from Ass. +Def. of #

(2’) fin{c | (a c)·x 6= x ∨ (b c)·x 6= x} f. (1)
(3’) inf{c | (a c)·x = x ∧ (b c)·x = x)} f. (2’)
(4) (i) (a c)·x = x (ii) (b c)·x = x for a c ∈ (3’)
(5) (a c)·x = x by (4i)
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Proof of an Old Friend
Lemma: a # x ∧ b # x ⇒ (a b)·x = x

Proof: case a 6= b:
(1) fin{c | (a c)·x 6= x}

fin{c | (b c)·x 6= x}
from Ass. +Def. of #

(2’) fin{c | (a c)·x 6= x ∨ (b c)·x 6= x} f. (1)
(3’) inf{c | (a c)·x = x ∧ (b c)·x = x)} f. (2’)
(4) (i) (a c)·x = x (ii) (b c)·x = x for a c ∈ (3’)
(5) (a c)·x = x by (4i)
(6’) (b c)·(a c)·x = (b c)·x by bij.

bij.: x = y iff π·x = π·y
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Proof of an Old Friend
Lemma: a # x ∧ b # x ⇒ (a b)·x = x

Proof: case a 6= b:
(1) fin{c | (a c)·x 6= x}

fin{c | (b c)·x 6= x}
from Ass. +Def. of #

(2’) fin{c | (a c)·x 6= x ∨ (b c)·x 6= x} f. (1)
(3’) inf{c | (a c)·x = x ∧ (b c)·x = x)} f. (2’)
(4) (i) (a c)·x = x (ii) (b c)·x = x for a c ∈ (3’)
(5) (a c)·x = x by (4i)
(6’) (b c)·(a c)·x = x by bij.,(4ii)
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Proof of an Old Friend
Lemma: a # x ∧ b # x ⇒ (a b)·x = x

Proof: case a 6= b:
(1) fin{c | (a c)·x 6= x}

fin{c | (b c)·x 6= x}
from Ass. +Def. of #

(2’) fin{c | (a c)·x 6= x ∨ (b c)·x 6= x} f. (1)
(3’) inf{c | (a c)·x = x ∧ (b c)·x = x)} f. (2’)
(4) (i) (a c)·x = x (ii) (b c)·x = x for a c ∈ (3’)
(5) (a c)·x = x by (4i)
(6’) (b c)·(a c)·x = x by bij.,(4ii)
(7’) (a c)·(b c)·(a c)·x = (a c)·x by bij.
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(a c)(b c)(a c)·b = a
(a c)(b c)(a c)·c = c
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3rd prop. of permutation types:
ds(π1, π2) = ∅ ⇒ π1·x = π2·x
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Another Small Proof
Lemma: π·supp(x) = supp(π·x)
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Lemma: π·supp(x) = supp(π·x)

Proof:

(1) {π·a | inf{b | (a b)·x 6= x}}

= {a | inf{b | (a b)·π·x 6= π·x}}

by Def.

(2) = {a | inf{b | π−1·(a b)·π·x 6= x}}

(3) = {a | inf{b | (π−1·a π−1·b)·x 6= x}}

(4) = {π·a | inf{π·b | (a b)·x 6= x}}

(5) the set {b | (a b)·x 6= x} is infinite,
whenever {π·b | (a b)·x 6= x} is and v-v.

(1)+(4)
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(3) = {a | inf{b | (π−1·a π−1·b)·x 6= x}}

(4) = {π·a | inf{π·b | (a b)·x 6= x}}

(5) the set {b | (a b)·x 6= x} is infinite,
whenever {π·b | (a b)·x 6= x} is and v-v.
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What About Small-Set?

t ::= er
| am(a)
| pr(t1, t2)
| se(fn)

ΛαΛ/≈ bijection
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What About Small-Set?

ΛαΛ/≈ bijection

For Λα, we are only interested in some very
specific functions, namely

[a].t
def
= se (λb. if a = b

then t
else if b # t then (b a)·t else er)
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Function [a].t ‘=’ [λa.t]α
[a].t

def
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Function [a].t ‘=’ [λa.t]α
[a].t

def
= se (λb. if a = b

then t
else if b # t then (b a)·t else er)

This is supposed to stand for the
α-equivalence class of λa.t.
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Function [a].t ‘=’ [λa.t]α
[a].pr(a, c)

def
=

se (λb. if a = b
then pr(a, c)
else if b # pr(a, c)

then (b a)·pr(a, c) else er)

Let’s check this for [a].pr(a, c):
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then (b a)·pr(a, c) else er)

Let’s check this for [a].pr(a, c):
[λa.(a c)]tlα:

...

[a].pr(a, c) ’applied to’ a ’gives’ pr(a, c) ’λa.(a c)’

[a].pr(a, c) ’applied to’ b ’gives’ pr(b, c) ’λb.(b c)’
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Properties of [a].t
π·([a].t) = [π·a].(π·t)

Should be familiar from Monday:

π·λa.t
def
= λ(π·a).(π·t)

(a simple calculation for [a].t)
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Properties of [a].t
π·([a].t) = [π·a].(π·t)
t1 = t2 ⇔ [a].t1 = [a].t2

a 6= b ⇒ (t1 = (a b)·t2 ∧ a # t2

⇔ [a].t1 = [b].t2)

Should also be familiar from Monday:

t1 ≈ t2

λa.t1 ≈ λa.t2

a 6= b t1 ≈ (a b)·t2 a # t2

λa.t1 ≈ λb.t2
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Properties of [a].t
π·([a].t) = [π·a].(π·t)
t1 = t2 ⇔ [a].t1 = [a].t2

a 6= b ⇒ (t1 = (a b)·t2 ∧ a # t2

⇔ [a].t1 = [b].t2)

These properties (plus the Ptype properties
and one further restriction on t), will give:

a # [a].t

a 6= b ∧ a # t ⇔ a # [b].t

supp([a].t) = supp(t) − {a}
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Properties of [a].t
π·([a].t) = [π·a].(π·t)
t1 = t2 ⇔ [a].t1 = [a].t2

a 6= b ⇒ (t1 = (a b)·t2 ∧ a # t2

⇔ [a].t1 = [b].t2)

These properties (plus the Ptype properties
and one further restriction on t), will give:

a # [a].t

a 6= b ∧ a # t ⇔ a # [b].t

supp([a].t) = supp(t) − {a}

So [a].t behaves very
much like what we
would expect from a
lambda-abstraction.
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Definition of Small-Set

t ::= am(a)
| pr(t1, t2)
| [a].t

ΛαΛ/≈ bijection
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Definition of Small-Set

ΛαΛ/≈ bijection

F (X)
def
= AM ∪ PR(X) ∪ AS(X)

Λα
def
= lfp(F ) =

⋃

n Fn

where F0
def
= F (∅)

Fn+1
def
= F (Fn)
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def
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Λα
def
= lfp(F ) =

⋃

n Fn

where F0
def
= F (∅)

Fn+1
def
= F (Fn)

AM
def
= {am(a) | a is an atom}
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Definition of Small-Set

ΛαΛ/≈ bijection

F (X)
def
= AM ∪ PR(X) ∪ AS(X)

Λα
def
= lfp(F ) =

⋃

n Fn

where F0
def
= F (∅)

Fn+1
def
= F (Fn)

Which means also that
we have a familiar
induction principle in
place for Λα (over n).
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Finite Support

fsupp(x)
def
= finite(supp(x))

While an Ftrm is not necessarily finitely
supported, every element in Λα is.

supp(am(a)) = {a}

supp(pr(t1, t2)) = supp(t1) ∪ supp(t2)

supp([a].t) = supp(t) − {a}
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supp(pr(t1, t2)) = supp(t1) ∪ supp(t2)

supp([a].t) = supp(t) − {a}

Whenever an x is finitely supported, then

(∃a : Atom) a # x !!
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Finite Support

fsupp(x)
def
= finite(supp(x))

While an Ftrm is not necessarily finitely
supported, every element in Λα is.

supp(am(a)) = {a}

supp(pr(t1, t2)) = supp(t1) ∪ supp(t2)

supp([a].t) = supp(t) − {a}

Whenever an x is finitely supported, then

(∃a : Atom) a # x !!

If a PType is
finitely supported,
then we call it an
FSType.
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Bijection
In order to show that Λ/≈ and Λα are
bijective we define a function q from Λ to Λα:

q(a)
def
= am(a)

q(t1 t2)
def
= pr(q(t1), q(t2))

q(λa.t)
def
= [a].q(t)

with the property

t1 ≈ t2 ⇔ q(t1) = q(t2)
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Bijection
In order to show that Λ/≈ and Λα are
bijective we define a function q from Λ to Λα:

q(a)
def
= am(a)

q(t1 t2)
def
= pr(q(t1), q(t2))

q(λa.t)
def
= [a].q(t)

with the property

t1 ≈ t2 ⇔ q(t1) = q(t2)

Aside: This is as close to the ’bijection’ as you
possibly want, but you can get closer: you can
’lift’ q to Λ/≈. A theorem prover doesn’t let
you easily choose one element from a set;
with all elements it is no problem. So q′ can
be defined as

q′(X)
def
= {q(t) | t ∈ X}

If q behaves well with respect to the
α-equivalence class, then we defined a
singleton set. Stripping of the set-brackets
gives you a function from Λ/≈ to Λα.
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Λα is an FSType
i.e., a finitely supported PType. It inherits
the following properties from Ftrm

π·([a].t) = [π·a].(π·t)
t1 = t2 ⇔ [a].t1 = [a].t2

a 6= b ⇒ (t1 = (a b)·t2 ∧ a # t2

⇔ [a].t1 = [b].t2)
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Λα is an FSType
i.e., a finitely supported PType. It inherits
the following properties from Ftrm

π·([a].t) = [π·a].(π·t)
t1 = t2 ⇔ [a].t1 = [a].t2

a 6= b ⇒ (t1 = (a b)·t2 ∧ a # t2

⇔ [a].t1 = [b].t2)

To remind you, the important properties
we have already shown are:

a # x ∧ b # x ⇒ (a b)·x = x

a # x ⇔ π·a # π·x
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Freshness 1
Lemma: a 6= b ∧ b # t ⇒ b # [a].t
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(1) (∃c)c # (a, b, t, [a].t) “finitely supported”

(2) (b c)·t = t from (1) + ass.
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(4) b # [a].t (2)+(3)
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Freshness 1
Lemma: a 6= b ∧ b # t ⇒ b # [a].t

Proof:

(1) (∃c)c # (a, b, t, [a].t) “finitely supported”

(2) (b c)·t = t from (1) + ass.

(3) b # [a].((b c)·t) from c # [a].t

(4) b # [a].t (2)+(3)

Done.
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