Quiz?

Assuming that a and b are distinct variables, is it possible to find λ -terms M_1 to M_7 that make the following pairs α -equivalent?

 $\boldsymbol{\lambda a.\lambda b.} (M_1\; b)$ and $\boldsymbol{\lambda b.\lambda a.} (\textit{\textbf{a}}\; M_1)$ $\boldsymbol{\lambda a.\lambda b.} (M_{2} \; \pmb{b})$ and $\boldsymbol{\lambda b.\lambda a.} (\textit{\textbf{a}} \; M_{3})$ $\boldsymbol{\lambda a.\lambda b.}(b\ M_{4})$ and $\boldsymbol{\lambda b.\lambda a.}(a\ M_{5})$ $\boldsymbol{\lambda a.\lambda b.}(b\ M_6)$ and $\boldsymbol{\lambda a.\lambda a.}(a\ M_7)$

If there is one solution for ^a pair, can you describe all its solutions?

Nominal Techniquesin Isabelle/HOL (II):Alpha-Equivalence Classes

based on work by Andy Pitts

joint work with Stefan, Markus, Alexander. . .

Recap (I): -Equivalence

The following rules define α -equivalence on lambda-term (syntax-trees):

$$
\overline{a \approx a} \approx a \approx a \tan \frac{t_1 \approx s_1 \quad t_2 \approx s_2}{t_1 \quad t_2 \approx s_1 \quad s_2} \approx \text{app}
$$
\n
$$
\frac{t \approx s}{\lambda a.t \approx \lambda a.s} \approx \text{lam}_1 \frac{t \approx (a \, b) \cdot s}{\lambda a.t \approx \lambda b.s} \approx \text{lam}_2
$$

assuming $a \neq b$

Recap (II): Support andFreshness

The **suppor^t** of an object $\boldsymbol{x}:\boldsymbol{\iota}$ ι is a set of atoms $\boldsymbol{\alpha}$:

$$
\text{supp}_{\alpha} x \stackrel{\text{def}}{=} \{a \mid \text{infinite}\{b \mid (a \; b) \cdot x \neq x \}
$$

An atom is **fresh** for an ^x, if it is not in thesupport of \boldsymbol{x} :

$$
a \# x \stackrel{\text{def}}{=} a \not\in \text{supp}_{\alpha}(x)
$$

^I often drop the α in supp $\boldsymbol{\alpha}$.

Nominal AbstractionsWe are now going to specify what abstraction'abstractly' means: it is an operation $\overline{}$ $\overline{}$: $(_)$: $\alpha\Rightarrow\iota\Rightarrow\iota$ $\boldsymbol{\iota}$ which has to satisfy:

$$
\blacksquare \, \pi \cdot ([a].x) = [\pi \cdot a] \cdot (\pi \cdot x)
$$
\n
$$
\blacksquare [a].x = [b].y \text{ iff}
$$
\n
$$
(a = b \land x = y) \lor
$$
\n
$$
(a \neq b \land x = (a \, b) \cdot y \land a \neq y)
$$

 \blacksquare these two properties imply for finitely supported \sim \sim \sim $\bm{\mathcal{X}}$ supp([\boldsymbol{a} $].x)$ $=$ supp ($\bm{\mathcal{X}}$)__ {
{ \boldsymbol{a}

Nominal AbstractionsRemember the definition of α -equivalence from
the besinning: the beginning: it is an operation of the beginning: $a \neq b$ $t_1 \approx (a b) \cdot t$ $\overline{1}$ $t_1\thickapprox t_2$ $\frac{d}{dx}$ by $t_1 \approx (a\,b) \bullet t_2 \quad a \not\in \mathsf{f} \setminus \mathsf{f}$ $\boldsymbol{\pi}$ $\overline{\bullet}$ ($\overline{}$ \boldsymbol{a} $\overline{|\boldsymbol{\cdot} x)}$ $=|\pi\cdot a|.$ $\overline{\mathsf{I}}$ $\overline{1}$ $\overline{\mathbb C}$ $\bm{\pi} \bm{\cdot} \bm{x}$) $\overline{}$ \boldsymbol{a} $].x$ $=[b].y$ iff $(a =$ **|**
| $\sqrt{2}$ $a=b\wedge x=y)\,\,\vee\,$ $\boldsymbol{\Lambda}$ \boldsymbol{T} \mathcal{L} $\bigg($ $a\neq b\wedge x=$ $\bigg($ $\bm{a}\,\bm{b})$ $\bullet y\wedge a\ \#\ y)$ \blacksquare these two properties imply for finitely supported $\bm{\mathcal{X}}$ $\lambda a.t_1 \approx \lambda a.t$ 2 $a\neq b\,\,\, t_1\approx(a\,b)$ ~ 1 \sim \bullet t $_2$ a $\not\in$ fv(t $_2)$ $\lambda a.t_1 \approx \lambda b.t_2$ 2

 \sim \sim \sim supp([\boldsymbol{a} $].x)$ $=$ supp ($\bm{\mathcal{X}}$)__ {
{ \boldsymbol{a}

Nominal AbstractionsWe are now going to specify what abstraction'abstractly' means: it is an operation $\overline{}$ $\overline{}$: $(_)$: $\alpha\Rightarrow\iota\Rightarrow\iota$ $\boldsymbol{\iota}$ which has to satisfy:

$$
\blacksquare \, \pi \cdot ([a].x) = [\pi \cdot a] \cdot (\pi \cdot x)
$$
\n
$$
\blacksquare [a].x = [b].y \text{ iff}
$$
\n
$$
(a = b \land x = y) \lor
$$
\n
$$
(a \neq b \land x = (a \, b) \cdot y \land a \neq y)
$$

 \blacksquare these two properties imply for finitely supported \sim \sim \sim $\bm{\mathcal{X}}$ supp([\boldsymbol{a} $].x)$ $=$ supp ($\bm{\mathcal{X}}$)__ {
{ \boldsymbol{a}

Freshness and Abstractions

Given $pt_{\alpha,\iota}$, finite(supp $\bm{\mathcal{X}}$) and $a\neq b$ then $\bm{a}\;\#\; \bm{x}$ \boldsymbol{x} iff $\bm{a}\;\#\;[\bm{b}].\bm{x}$ $\overline{}$

Proof. There exists ^a \boldsymbol{C} with $\boldsymbol{c} \:\# \:\left(\boldsymbol{a},\boldsymbol{b},\boldsymbol{x},[\boldsymbol{b}].\boldsymbol{x}\right)$. (\Leftarrow) From $a \mathrel{\#} [b].x$ and $c \mathrel{\#}$ $\overline{}$ $\bm{a}\;\#\;[\bm{b}]$. \bm{x} and **|**
| $\boldsymbol{c}\ \# \ [b].x$ $\overline{}$ $[b].x = (a\,c) \!\bullet\! ([b].x) = [b].$ **|** =(\boldsymbol{a} \boldsymbol{c} \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare $)(\lbrack b].x)$ $=$ $|b|$. **|** $\overline{}$ ($\bm{a} \ \bm{c}$ Hence $x=(a\,c)\,{\scriptstyle\bullet}\, x$. Now from $c\,\,\#$) \bullet x $\bigg($ $\bm{a} \ \bm{c}$) \bullet \boldsymbol{x} . Now from $\boldsymbol{c}\;\#\; \boldsymbol{x}$: $c\;\#\;x\Leftrightarrow(a\;c)\!\bullet\!c\;\# \;(a\;c)\!\bullet\!x$ \boldsymbol{a} \boldsymbol{c}) \bullet \bm{c} $\;\#\;$ (\boldsymbol{a} \boldsymbol{c}) $\bullet x\Leftrightarrow a\,\#\,\,x$

Freshness and Abstractions

Given $pt_{\alpha,\iota}$, finite(supp $\bm{\mathcal{X}}$) and $a\neq b$ then $\bm{a}\;\#\; \bm{x}$ \boldsymbol{x} iff $\bm{a}\;\#\;[\bm{b}].\bm{x}$ $\overline{}$

Proof. There exists ^a \boldsymbol{C} with $\boldsymbol{c} \:\# \:\left(\boldsymbol{a},\boldsymbol{b},\boldsymbol{x},[\boldsymbol{b}].\boldsymbol{x}\right)$. (\Rightarrow) From $c \mathrel{\#} [b].x$ we also ho $\overline{}$ $\boldsymbol{c} \: \# \: [\boldsymbol{b}] . \boldsymbol{x}$ we also have $\overline{}$ (\boldsymbol{a} \boldsymbol{c}) $\bm{\cdot} \bm{c} \; \# \; ($ $\bm{a} \ \bm{c}$) \bullet $[b].x$ [

and

 $\bm{a} \; \# \; [\bm{b}]$. Because $a\;\#\;x$ and $c\;\#\;x$, $(a$ $\overline{}$ ׀ (\bm{a} \bm{c}) \bullet x x and $\boldsymbol{c}\;\#\; \boldsymbol{x}$, $($ \boldsymbol{a} \boldsymbol{c}) $\bm \cdot x=x$.

Freshness and Abstractions

We also have

 $\bm{a}\;\#\;[\bm{a}$ $\overline{}$ $].x$

Again from $\boldsymbol{c} \mathrel{\#} (\boldsymbol{a}, \boldsymbol{c})$ $\boldsymbol{c}\ \#\ (a,x,[a$ []. $x)$ we can infer

$$
c \# [a].x \Leftrightarrow (ac) \cdot c \# (a c) \cdot [a].x
$$

$$
\Leftrightarrow a \# [c].(a c) \cdot x.
$$

However:

$$
[c].(a\,c)\!\boldsymbol{\cdot} x=[a].x
$$

(since $c\neq a$, $[c].$ **|**
| \mathbf{C} $\left($ \mathbf{C} \mathbf{A} $\overline{}$ ($\bm{a} \ \bm{c}$) $\cdot x=|a|$ γ $\overline{}$. . . $].x$ iff $($ \bm{a} \bm{c}) $\bm \cdot \bm x=$ (\bm{a} \bm{c}) $\bullet x \wedge c \:\# \:x)$

Fres		
So we have shown that		
We also	$a \neq b$	$a \neq x$
Again f and	$a \neq x \stackrel{\text{def}}{=} a \notin \text{supp}(x)$	
therefore	$a \neq x \stackrel{\text{def}}{=} a \notin \text{supp}(x)$	
However	$\text{supp}([a].x) = \text{supp}(x) - \{a\}$	
(since $c \neq a$, $[c]$. $(a c) \cdot x = [a]$. x		
if $(a c) \cdot x = (a c) \cdot x \land c \neq x$		

ich 15 Fehr Munich, 15. February ²⁰⁰⁶ – p.⁷ (2/2)

Nominal AbstractionsWe have specified what abstraction'abstractly' means by an operation $\overline{}$ $\overline{}$: $(_)$: $\alpha\Rightarrow\iota\Rightarrow\iota$ ι which satisfies:

$$
\begin{aligned}\n\blacksquare \, \pi \cdot ([a].x) &= [\pi \cdot a].(\pi \cdot x) \\
\blacksquare [a].x &= [b].y \text{ iff} \\
(a = b \land x = y) \lor \\
(a \neq b \land x = (a \, b) \cdot y \land a \neq y)\n\end{aligned}
$$

Are there any structures that satisfy these properties? Are there any structures that are"supported" in Isabelle/HOL?

Possibilities

- α -equivalence classes (sets of syntax trees), e.g. $[\lambda a.(a\ c)]_{\alpha}=[\lambda b.(b\ c)]$ \boldsymbol{a} $\,c)]_{\alpha}$ = $[\lambda b.(b\,\,c)]_{\alpha}$
- terms with de-Bruijn indices and namedfree variables, like $\lambda(1)$ (you need a function abs which \boldsymbol{C}). "abstracts" ^a variable: $\boldsymbol{a}\boldsymbol{b}\boldsymbol{s}(\boldsymbol{x},t)$ $\mapsto \lambda($. . .))
- ^a weak HOAS encoding (lambdas as functions $-$ the function for $\lambda a.$ (will be the same as the one for $\lambda b. (b\,\,c)$ \bm{a} \bm{c})))

Remember the user will only see the "axioms" from the previous slide. $\sum_{Munich, 15. February 2006 - p.9 (1/2)}$

Possibilities

- α -equivalence classes (sets of syntax trees), e.g. $[\lambda a.(a\ c)]_{\alpha}=[\lambda b.(b\ c)]$ \boldsymbol{a} $\,c)]_{\alpha}$ = $[\lambda b.(b\,\,c)]_{\alpha}$
- terms with de-Bruijn indices and namedfree veriables, like 1/ <u> 112 م انا مملك ممسمعه</u> $\overline{}$). L could now stop nere (This is dependently not the could now stop nere (This is d and probably go for a | CIASSES (1 \overline{a} nac 7!()) classes (Norrish did this with the help of ^a package by Hohmeier for HOL4), but I do not ;o) ^I could now stop here (this is all known), and probably go for α -equivalence

 $\frac{1}{2}$ The function (will be the same as the one for $\lambda b. (b\,\,c)$ $\overline{\bm{u}}$ $\overline{\bm{c}}$)))

Remember the user will only see the "axioms" from the previous slide.

$\textbf{Function} \; [\bm{a}].t \; \textcolor{red}{\bm{\check{u}}}] \cdot \textcolor{red}{\bm{t}} = \textcolor{red}{\bm{\check{v}}} [\lambda \bm{a}.\bm{t}]_{\bm{\alpha}}$

$$
[a].t \stackrel{\text{def}}{=} (\lambda b. \text{ if } a = b
$$

then Some(t)
else if $b \neq t$ then Some(($b a$) • t) else None)

type: $\alpha \rightarrow \iota$ option

$$
[a].(a, c) \stackrel{\text{def}}{=} (\lambda b. \text{if } a = b
$$

\n
$$
\text{then } \text{Some}(a, c)
$$

\n
$$
\text{else if } b \neq (a, c)
$$

\n
$$
\text{then } \text{Some}((b\ a) \cdot (a, c)) \text{ else } \text{None})
$$

Let's check this for $[a]$. (a, c) :

$$
[a] \cdot (a, c) \stackrel{\text{def}}{=} \n(\lambda b. \text{ if } a = b \text{ then } \text{Some}(a, c) \text{ else if } b \neq (a, c) \text{ then } \text{Some}((b\ a) \cdot (a, c)) \text{ else } \text{None})
$$

Let's check this for $[a]$. (a, c) : \boldsymbol{a} \bm{a} 'applied to' $[\bm{a}]$. (\bm{a},\bm{c}) 'gives' Some (\bm{a},\bm{c})

$$
[a].(a, c) \stackrel{\text{def}}{=} (\lambda b. \text{if } a = b
$$

\n
$$
\text{then } \text{Some}(a, c)
$$

\n
$$
\text{else if } b \neq (a, c)
$$

\n
$$
\text{then } \text{Some}((b\ a) \cdot (a, c)) \text{ else } \text{None})
$$

Let's check this for $[a]$. (a, c) : \boldsymbol{a} \bm{a} 'applied to' $[\bm{a}]$. (\bm{a}, \bm{c}) 'gives' Some (\bm{a}, \bm{c}) \bm{b} 'applied to' $[\bm{a}]$. (\bm{a}, \bm{c}) 'gives' Some (\bm{b}, \bm{c})

$$
[a].(a, c) \stackrel{\text{def}}{=} (\lambda b. \text{if } a = b
$$

\n
$$
\text{then } \text{Some}(a, c)
$$

\n
$$
\text{else if } b \neq (a, c)
$$

\n
$$
\text{then } \text{Some}((b\ a) \cdot (a, c)) \text{ else } \text{None})
$$

Let's check this for $[a]$. (a, c) : \boldsymbol{a} \bm{a} 'applied to' $[\bm{a}]$. (\bm{a}, \bm{c}) 'gives' Some (\bm{a}, \bm{c}) \bm{b} 'applied to' $[\bm{a}]$. (\bm{a}, \bm{c}) 'gives' Some (\bm{b}, \bm{c}) \boldsymbol{C} \boldsymbol{c} 'applied to' $[\boldsymbol{a}]$. $(\boldsymbol{a},\boldsymbol{c})$ 'gives' None

$$
[a] \cdot (a, c) \stackrel{\text{def}}{=} \n(\lambda b. \text{if } a = b \text{ then } \text{Some}(a, c) \text{ else if } b \neq (a, c) \text{ then } \text{Some}((b\ a) \cdot (a, c)) \text{ else } \text{None})
$$

Let's check this for $[a]$. (a, c) : \boldsymbol{a} \bm{a} 'applied to' $[\bm{a}]$. (\bm{a}, \bm{c}) 'gives' Some (\bm{a}, \bm{c}) \bm{b} 'applied to' $[\bm{a}]$. (\bm{a}, \bm{c}) 'gives' Some (\bm{b}, \bm{c}) \boldsymbol{C} \boldsymbol{c} 'applied to' $[\boldsymbol{a}]$. $(\boldsymbol{a},\boldsymbol{c})$ 'gives' None \bm{d} 'applied to' $[\bm{a}]$. (\bm{a},\bm{c}) 'gives' Some (\bm{d},\bm{c})

...

$$
[a].(a, c) \stackrel{\text{def}}{=} (\lambda b. \text{if } a = b
$$

\n
$$
\text{then } \text{Some}(a, c)
$$

\n
$$
\text{else if } b \neq (a, c)
$$

\n
$$
\text{then } \text{Some}((b\ a) \cdot (a, c)) \text{ else } \text{None})
$$

Let's check this for $[a]$. (a, c) : \boldsymbol{a} \bm{a} 'applied to' $[\bm{a}]$. (\bm{a}, \bm{c}) 'gives' Some (\bm{a}, \bm{c}) 'A $\bm{a}.(\bm{a} \ \bm{c})$ ' \bm{b} 'applied to' $[\bm{a}]$. (\bm{a}, \bm{c}) 'gives' Some (\bm{b}, \bm{c}) ' ' $\bm{\lambda} \bm{b}$. $(\bm{b} \ \bm{c})$ ' \boldsymbol{C} \boldsymbol{c} 'applied to' $[\boldsymbol{a}]$. $(\boldsymbol{a},\boldsymbol{c})$ 'gives' None \bm{d} 'applied to' $[\bm{a}]$. (\bm{a}, \bm{c}) 'gives' Some (\bm{d}, \bm{c}) ' 'A $\bm{d}.(\bm{d}\,\bm{c})$ '

...

$$
[a] \cdot (a, c) \stackrel{\text{def}}{=} (\lambda b \cdot \text{if } a = b
$$
\nthen Some(a, c)\nelse if $b \neq (a, c)$
\nelse if $b \neq (a, c)$
\nthen Some((b a) \cdot (a, c)) else None)
\nLet's check this for [a].(a, c):
\na 'applied to' [a].(a, c) 'gives' Some(a, c)\n
$$
[\lambda a. (a c)]
$$
\nc 'applied to' [a].(a, c) 'gives' None
\nd 'applied to' [a].(a, c) 'gives' None
\nd 'applied to' [a].(a, c) 'gives' Some(d, c)\n
$$
[\lambda d. (d c)]
$$
\n:

Nominal Datatypes

We define **inductively** α -equivalence classes of lambda-terms—but they still have **names**.

Nominal Datatypes

We define **inductively** α -equivalence classes of lambda-terms—but they still have **names**.

$$
\frac{t_1 \in \Lambda_\alpha \quad t_2 \in \Lambda_\alpha}{\text{Var}(a) \in \Lambda_\alpha} \frac{t_1 \in \Lambda_\alpha \quad t_2 \in \Lambda_\alpha}{\text{App}(t_1, t_2) \in \Lambda_\alpha} \\\frac{t \in \Lambda_\alpha}{\text{Lam}[a].t \in \Lambda_\alpha}
$$

Munich, 15. February ²⁰⁰⁶ – p.¹² (2/4)

 $\frac{1}{2}$ support. $|S|$; in Λ_α have fi Which also means that we have ^afamiliar induction principle inplace for Λ_α (in a moment). α (in a moment). And all terms in Λ_α $_{\alpha}$ have finite

$$
\overline{\text{Var}(a)} \in \Lambda_{\alpha} \qquad \begin{aligned} &\frac{t_1 \in \Lambda_{\alpha} \quad t_2 \in \Lambda_{\alpha} \\ &\text{App}(t_1, t_2) \in \Lambda_{\alpha} \\ &\frac{t \in \Lambda_{\alpha}}{\text{Lam}[a].t \in \Lambda_{\alpha}} \end{aligned}
$$

 $\frac{1}{2}$ support. $|S|$; in Λ_α have fi Which also means that we have ^afamiliar induction principle inplace for Λ_α (in a moment). α (in a moment). And all terms in Λ_α $_{\alpha}$ have finite

$$
\begin{array}{ll}\n\text{supp}(\text{Var}(a)) & = \{a\} \\
\text{supp}(App(t_1, t_2)) & = \text{supp}(t_1, t_2) \\
\text{supp}(\text{Lam}[a].t) & = \text{supp}([a].t) = \text{supp}(t) - \{a\} \\
\hline\n\text{Lam}[a].t & \in \Lambda_{\alpha}\n\end{array}
$$

Bijection

In order to show that $\Lambda_{/\approx}$ and Λ_α are
bijective we define a function a from Λ bijective we define a function \bm{q} from $\bm{\Lambda}$ to $\bm{\Lambda_{\alpha}}$:

$$
q(a) \stackrel{\text{def}}{=} \text{Var}(a)
$$

\n
$$
q(t_1 t_2) \stackrel{\text{def}}{=} \text{App}(q(t_1), q(t_2))
$$

\n
$$
q(\lambda a.t) \stackrel{\text{def}}{=} \text{Lam}[a].q(t)
$$

with the property

 $t_1 \approx t_2 \; \Leftrightarrow \; q(t_1) = q(t_2)$

Struct. Induction on $\boldsymbol{\alpha}$

$$
\overline{\textsf{Var}(a)} \in \Lambda_{\alpha} \qquad \begin{aligned} &\frac{t_1 \in \Lambda_{\alpha} \quad t_2 \in \Lambda_{\alpha} \\ &\mathsf{App}(t_1, t_2) \in \Lambda_{\alpha} \\ &\frac{t \in \Lambda_{\alpha}}{\textsf{Lam}\left[a\right].t \in \Lambda_{\alpha}} \end{aligned}
$$

Structural Induction Principle:

$$
\forall a. P \left(\text{Var}(a) \right)
$$

$$
\forall t_1, t_2. P t_1 \Rightarrow P t_2 \Rightarrow P \left(\text{App}(t_1, t_2) \right)
$$

$$
\forall a, t. P t \Rightarrow P \left(\text{Lam}[a].t \right)
$$

$$
\forall t. P t
$$

 ${\sf Substitution\; Lemma:}$ If $x\not\equiv y$ and $x\not\in FV(L)$, then $M[x := N][y := L] \equiv M[y := L][x := N[y := L]].$

Proof: By induction on the structure of ^M.

Case 1: ^M is ^a variable.

Case 1.1. $M \equiv x$. Then both sides equal $N[y := L]$ since $x \not\equiv y$.
Case 1.2, $M \equiv u$, Then both sides equal L for $x \not\sqsubset F V(L)$ Case 1.2. $M \equiv y$. Then both sides equal L , for $x \not\in FV(L)$
implies $L[x := -1] = L$.

implies $L[x := \ldots] \equiv L.$ Case 1.3. $M \equiv z \not\equiv x,y$. Then both sides equal z .
Case 2: $M = \lambda z M$. By the variable convention

• Case 2: $M \equiv \lambda z.M_1$. By the variable convention we may assume that $z \not\equiv x,y$ and z is not free in N,L . Then by induction hypothesis that $z \not\equiv x, y$ and z is not free in N, L . Then by induction hypothesis

$$
(\lambda z.M_1)[x := N][y := L]
$$

$$
\equiv \lambda z.(M_1[x := N][y := L])
$$

$$
\equiv \lambda z.(M_1[y := L][x := N[y := L]])
$$

 $\equiv \text{ } (\lambda z.M_1)[y := L][x := N[y := L]].$

• Case 3: $M \equiv M_1M_2$. The statement follows again from the induction hypothesis. tion hypothesis. Munich, 15. February 2006 - p.15 (1/1)

Outlook

- nominal induction-principles (over nominal datatypes and inductive definitions)
- **U** why the present version of the axiomatic type-classes are fairly unwieldy for this work
- **T** functions over nominal datatypes (what are the conditions that allow ^a definitionby "recursion" over α -equivalence classes)

$$
\begin{array}{rcl}\n(\textsf{Var}\,a)[b := s] & = & \text{if } a = b \text{ then } s \text{ else } (\textsf{Var}\,a) \\
(\textsf{App}\,t_1\,t_2)[b := s] & = & \textsf{App}\,(t_1[b := s])\,(t_2[b := s] \\
(\textsf{Lam}\,[a].t)[b := s] & = & \textsf{Lam}\,[a].(t[b := s]) \\
& \textsf{provided}\,a \neq (b,s)\n\end{array}
$$

Outlook

 nominal induction-principles (over nominal datatypes and inductive definitions)

U why the present version of the axiomatic

type-classes are fairly the formulation of the formulation of the formulation of the formulation of the formula
This is a common painting of the formulation of the formulation of the formulation of the formulation of the f **Nominal Datatype Package:**

work

functions of the matrix of
International data to the matrix of the m http://isabelle.in.tum.de/nominal/

are the conditions that allow ^a definition**Mailing List:**

 $\left| \begin{matrix} 1 & 0 \\ 0 & 0 \end{matrix} \right|$ by the sum informatik tu-muenchen de/caibin/mailman/listinfo/nominal-isabelle <u>c</u> fo/nominal
— Ann https://mailbroy.informatik.tu-muenchen.de/cgi-

Contract Contract Contract Contract bin/mailman/listinfo/nominal-isabelle (App $t_1\,t_2) [b := s] \;\; = \;\;$ App $(t_1[b := s])\,(t_2[b := s])$ and the contract of the contract of $b := s$ ׀ $=$ App $(t_1$
 $=$ Lam $[a]$ [$b :=$ $s])\left(t_{2}\right)$ $(\mathsf{Lam}\left[a\right].t)[b := s] \quad = \quad \mathsf{Lam}\left[a\right].(t[b := s])$ [$\bm{b} :=$ $:=s])\,(t_2 [b := s$ [׀ $=$ Lam [a]. $(t[b :=$
provided a $#$ [׀ **Contract Contract Ave** [$s])$ provided $a\;\# \; (b,s)$

 $(\textsf{Var}\,a)$

Outlook

- nominal induction-principles (over nominal datatypes and inductive definitions)
- **Why the present version of the axiomatic** type-classes are fairly unwieldy for this work
- funct**ions of the tend?** What are the conditions of the conditions o by "re <u>्ह</u>री classes) **The End?T** EN

 $(\mathsf{Var}\,a)[b := s] =$ **Contract Contract Contract Contract** ׀ $\begin{array}{rcl} s & = & \text{if } a = b \text{ then } s \text{ else (Var } a) \\ s & = & \text{Ann } (t, [b \cdot - s]) (t, [b \cdot - s]) \end{array}$ ר מ $(App t_1 t_2)[b := s] = App (t_1[b := s]) (t_2[b := s])$ t1t $t_2)[$ $b :=$ s׀ $=$ App (t1 \top [$b :=$ $s])$ (t2[$\bm{b} :=$ \boldsymbol{s} $(\mathsf{Lam}\,[a].t)[b := s] \hspace{3mm} =$ [׀ $=$ Lam [a]. $(t[b :=$
provided a $#$ [׀ **Contract Contract Ave** [$s])$ provided $a\;\# \; (b,s)$