Quiz?

Assuming that a and b are distinct variables, is it possible to find λ -terms M_1 to M_7 that make the following pairs α -equivalent?

 $\lambda a.\lambda b.(M_1 b)$ and $\lambda b.\lambda a.(a M_1)$ $\lambda a.\lambda b.(M_2 b)$ and $\lambda b.\lambda a.(a M_3)$ $\lambda a.\lambda b.(b M_4)$ and $\lambda b.\lambda a.(a M_5)$ $\lambda a.\lambda b.(b M_6)$ and $\lambda a.\lambda a.(a M_7)$

If there is one solution for a pair, can you describe all its solutions?

Nominal Techniques in Isabelle/HOL (II): Alpha-Equivalence Classes

based on work by Andy Pitts

joint work with Stefan, Markus, Alexander...

Recap (I): α -Equivalence

The following rules define α -equivalence on lambda-term (syntax-trees):

assuming $a \neq b$

Recap (II): Support and Freshness

The support of an object $x:\iota$ is a set of atoms α :

$$\mathsf{supp}_{\alpha} \; x \stackrel{\mathsf{def}}{=} \{a \mid \mathsf{infinite}\{b \mid (a \; b) \! \bullet \! x \neq x \;$$

An atom is fresh for an \boldsymbol{x} , if it is not in the support of \boldsymbol{x} :

$$a \ \# \ x \stackrel{\mathsf{def}}{=} a \ arepsilon \ \mathsf{supp}_lpha(x)$$

I often drop the α in supp $_{\alpha}$.

Nominal Abstractions We are now going to specify what abstraction 'abstractly' means: it is an operation $[-].(-): \alpha \Rightarrow \iota \Rightarrow \iota$ which has to satisfy:

$$\begin{array}{l} \blacksquare \pi \cdot ([a].x) = [\pi \cdot a].(\pi \cdot x) \\ \blacksquare [a].x = [b].y \text{ iff} \\ (a = b \land x = y) \lor \\ (a \neq b \land x = (a \ b) \cdot y \land a \ \# y) \end{array}$$

these two properties imply for finitely supported x $supp([a].x) = supp(x) - \{a$

Nominal Abstractions Remember the definition of α -equivalence from the beginning: $a \neq b \ t_1 \approx (a \, b) \bullet t_2 \ a \not\in \mathsf{fv}(t_2)$ $t_1 pprox t_2$ $\lambda a.t_1 \approx \lambda a.t_2$ $\lambda a.t_1 \approx \lambda b.t_2$ $\pi \cdot (|a|.x) = |\pi \cdot a|.(\pi \cdot x)$ [a].x = [b].y iff $(a = b \land x = y) \lor$ $(a \neq b \land x = (a b) \cdot y \land a \# y)$ these two properties imply for finitely supported \boldsymbol{x} $supp([a].x) = supp(x) - \{a\}$

Nominal Abstractions We are now going to specify what abstraction 'abstractly' means: it is an operation $[-].(-): \alpha \Rightarrow \iota \Rightarrow \iota$ which has to satisfy:

$$\begin{array}{l} \blacksquare \pi \cdot ([a].x) = [\pi \cdot a].(\pi \cdot x) \\ \blacksquare [a].x = [b].y \text{ iff} \\ (a = b \land x = y) \lor \\ (a \neq b \land x = (a \ b) \cdot y \land a \ \# y) \end{array}$$

these two properties imply for finitely supported x $supp([a].x) = supp(x) - \{a$

Freshness and Abstractions

Given $pt_{lpha,\iota}$, finite(supp x) and a
eq b then $a \ \# x$ iff $a \ \# [b].x$

Proof. There exists a c with c # (a, b, x, [b].x). (\Leftarrow) From a # [b].x and c # [b].x $[b].x = (a c) \cdot ([b].x) = [b].(a c) \cdot x$ Hence $x = (a c) \cdot x$. Now from c # x: $c \# x \Leftrightarrow (a c) \cdot c \# (a c) \cdot x \Leftrightarrow a \# x$

Freshness and Abstractions

Given $pt_{lpha,\iota}$, finite(supp x) and a
eq b then $a \ \# x$ iff $a \ \# [b].x$

Proof. There exists a c with c # (a, b, x, [b].x). (\Rightarrow) From c # [b].x we also have $(a c) \cdot c \# (a c) \cdot [b].x$

and

 $a \ \# \ [b] . (a \ c) \cdot x$ Because $a \ \# \ x$ and $c \ \# \ x$, $(a \ c) \cdot x = x$.

Freshness and Abstractions

We also have

a # [a].x

Again from $c \ \# \ (a,x,[a].x)$ we can infer

$$c \# [a].x \Leftrightarrow (a c) \cdot c \# (a c) \cdot [a].x$$

 $\Leftrightarrow a \# [c].(a c) \cdot x.$

However:

$$[c].(a c) \bullet x = [a].x$$

(since $c \neq a$, $[c] \cdot (a c) \cdot x = [a] \cdot x$ iff $(a c) \cdot x = (a c) \cdot x \wedge c \# x$)

Freshoes and Abstractions
So we have shown that
We also
Again f
$$c \#$$

 $a \# [b].x$ $a \# [a].x$
 $a \# [a].x$
Again f
 $a \# x \stackrel{\text{def}}{=} a \notin \text{supp}(x)$
therefore
 $\text{supp}([a].x) = \text{supp}(x) - \{a$
 $[c] \cdot (a c) \cdot x = [a].x$
iff $(a c) \cdot x = (a c) \cdot x \land c \# x)$

Nominal Abstractions We have specified what abstraction 'abstractly' means by an operation $[-].(-): \alpha \Rightarrow \iota \Rightarrow \iota$ which satisfies:

$$\begin{array}{l} \blacksquare \pi \cdot ([a].x) = [\pi \cdot a].(\pi \cdot x) \\ \blacksquare [a].x = [b].y \text{ iff} \\ (a = b \land x = y) \lor \\ (a \neq b \land x = (a \ b) \cdot y \land a \ \# y) \end{array}$$

Are there any structures that satisfy these properties? Are there any structures that are "supported" in Isabelle/HOL?

Possibilities

- terms with de-Bruijn indices and named free variables, like $\lambda(1 \ c)$. (you need a function *abs* which "abstracts" a variable: $abs(x,t) \mapsto \lambda(\dots)$)
- a weak HOAS encoding (lambdas as functions — the function for $\lambda a.(a c)$ will be the same as the one for $\lambda b.(b c)$)

Remember the user will only see the "axioms" from the previous slide.

Possibilities

- α -equivalence classes (sets of syntax trees), e.g. $[\lambda a.(a \ c)]_{\alpha} = [\lambda b.(b \ c)]_{\alpha}$
- terms with de-Bruijn indices and named I could now stop here (this is all known), and probably go for α -equivalence classes (Norrish did this with the help of a package by Hohmeier for HOL4), but I do not ;o)

will be the same as the one for $\lambda b.(b c)$

Remember the user will only see the "axioms" from the previous slide.

$$[a].t \stackrel{\text{def}}{=} (\lambda b. \text{ if } a = b \\ \text{then Some}(t) \\ \text{else if } b \ \# \ t \ \text{then Some}((b \ a) \bullet t) \ \text{else None})$$

type: $lpha
ightarrow \iota$ option

$$[a].(a,c) \stackrel{\text{def}}{=} \\ (\lambda b.\text{if } a = b \\ \text{then Some}(a,c) \\ \text{else if } b \ \# \ (a,c) \\ \text{then Some}((b \ a) \bullet (a,c)) \ \text{else None})$$

Let's check this for [a].(a, c):

$$[a].(a,c) \stackrel{\text{def}}{=} \\ (\lambda b.\text{if } a = b \\ \text{then Some}(a,c) \\ \text{else if } b \ \# \ (a,c) \\ \text{then Some}((b \ a) \bullet (a,c)) \ \text{else None})$$

Let's check this for [a].(a, c): *a* 'applied to' [a].(a, c) 'gives' Some(a, c)

$$[a].(a,c) \stackrel{\text{def}}{=} \\ (\lambda b.\text{if } a = b \\ \text{then Some}(a,c) \\ \text{else if } b \ \# \ (a,c) \\ \text{then Some}((b \ a) \bullet (a,c)) \text{ else None})$$

Let's check this for [a].(a, c): a 'applied to' [a].(a, c) 'gives' Some(a, c)b 'applied to' [a].(a, c) 'gives' Some(b, c)

$$[a].(a,c) \stackrel{\text{def}}{=} \\ (\lambda b.\text{if } a = b \\ \text{then Some}(a,c) \\ \text{else if } b \ \# \ (a,c) \\ \text{then Some}((b \ a) \bullet (a,c)) \text{ else None})$$

Let's check this for [a].(a, c): a 'applied to' [a].(a, c) 'gives' Some(a, c) b 'applied to' [a].(a, c) 'gives' Some(b, c)c 'applied to' [a].(a, c) 'gives' None

$$[a].(a,c) \stackrel{\text{def}}{=} \\ (\lambda b.\text{if } a = b \\ \text{then Some}(a,c) \\ \text{else if } b \ \# \ (a,c) \\ \text{then Some}((b \ a) \bullet (a,c)) \text{ else None})$$

Let's check this for [a].(a, c): a 'applied to' [a].(a, c) 'gives' Some(a, c) b 'applied to' [a].(a, c) 'gives' Some(b, c) c 'applied to' [a].(a, c) 'gives' None d 'applied to' [a].(a, c) 'gives' Some(d, c)

$$[a].(a,c) \stackrel{\text{def}}{=} \\ (\lambda b.\text{if } a = b \\ \text{then Some}(a,c) \\ \text{else if } b \ \# \ (a,c) \\ \text{then Some}((b \ a) \bullet (a,c)) \text{ else None})$$

Let's check this for [a].(a, c): a 'applied to' [a].(a, c) 'gives' Some(a, c) ' $\lambda a.(a c)$ ' b 'applied to' [a].(a, c) 'gives' Some(b, c) ' $\lambda b.(b c)$ ' c 'applied to' [a].(a, c) 'gives' None d 'applied to' [a].(a, c) 'gives' Some(d, c) ' $\lambda d.(d c)$ '

$$[a].(a, c) \stackrel{\text{def}}{=} \\ (\lambda b. \text{if } a = b \\ \text{then Some}(a, c) \\ \text{else if } b \# (a, c) \\ \text{then Some}((b a) \bullet (a, c)) \text{ else None} \end{cases}$$

$$[\lambda a.(a c)]_{\alpha}:$$

$$[a' \text{applied to'} [a].(a, c) \text{ 'gives' Some}(a, c) \\ b' \text{applied to'} [a].(a, c) \text{ 'gives' Some}(b, c) \\ c' \text{applied to'} [a].(a, c) \text{ 'gives' Some}(d, c) \\ \vdots \end{bmatrix}$$

$$[\lambda a.(a c)]_{\alpha}:$$

$$[\lambda a.($$

Nominal Datatypes

We define inductively α -equivalence classes of lambda-terms—but they still have names.

Nominal Datatypes

We define inductively α -equivalence classes of lambda-terms—but they still have names.

 $egin{aligned} rac{t_1 \in \Lambda_lpha & t_2 \in \Lambda_lpha \ App(t_1,t_2) \in \Lambda_lpha \ & rac{t \in \Lambda_lpha & I \in \Lambda_lpha \ & rac{t \in \Lambda_lpha & I \in \Lambda_lpha \ & I ext{totam}\left[a
ight].t \in \Lambda_lpha \end{aligned}$

Which also means that we have a familiar induction principle in place for Λ_{α} (in a moment). And all terms in Λ_{α} have finite support.

$$egin{aligned} rac{t_1 \in \Lambda_lpha & t_2 \in \Lambda_lpha \ App(t_1,t_2) \in \Lambda_lpha \ \hline Lam \, [a].t \in \Lambda_lpha \end{aligned}$$

Which also means that we have a familiar induction principle in place for Λ_{α} (in a moment). And all terms in Λ_{α} have finite support.

$$\begin{aligned} & \sup (\operatorname{Var}(a)) &= \{a\} \\ & \sup (\operatorname{App}(t_1, t_2)) = \operatorname{supp}(t_1, t_2) \\ & \sup (\operatorname{Lam}[a].t) &= \operatorname{supp}([a].t) = \operatorname{supp}(t) - \{a\} \end{aligned}$$

Bijection

In order to show that $\Lambda_{/\approx}$ and Λ_{α} are bijective we define a function q from Λ to Λ_{α} :

$$egin{aligned} q(a) & \stackrel{ ext{def}}{=} & ext{Var}(a) \ q(t_1\,t_2) & \stackrel{ ext{def}}{=} & ext{App}(q(t_1),q(t_2)) \ q(\lambda a.t) & \stackrel{ ext{def}}{=} & ext{Lam}\left[a
ight].q(t) \end{aligned}$$

with the property

 $t_1 pprox t_2 \ \Leftrightarrow \ q(t_1) = q(t_2)$

Struct. Induction on Λ_{α}

$$egin{aligned} & rac{t_1 \in \Lambda_lpha & t_2 \in \Lambda_lpha \ & \mathsf{App}(t_1,t_2) \in \Lambda_lpha \ & rac{t \in \Lambda_lpha \ & \mathsf{Lam}\,[a].t \in \Lambda_lpha \end{aligned}$$

Structural Induction Principle:

$$\begin{array}{l} \forall a. \ P \left(\mathsf{Var}(a) \right) \\ \forall t_1, t_2. \ P \ t_1 \Rightarrow P \ t_2 \Rightarrow P \left(\mathsf{App}(t_1, t_2) \right) \\ \hline \forall a, t. \ P \ t \Rightarrow P \left(\mathsf{Lam} \left[a \right] . t \right) \\ \hline \forall t. \ P \ t \end{array}$$

Substitution Lemma: If $x \not\equiv y$ and $x \not\in FV(L)$, then $M[x := N][y := L] \equiv M[y := L][x := N[y := L]].$

Proof: By induction on the structure of M.

• Case 1: M is a variable.

Case 1.1. $M \equiv x$. Then both sides equal N[y := L] since $x \not\equiv y$. Case 1.2. $M \equiv y$. Then both sides equal L, for $x \not\in FV(L)$ implies $L[x := \ldots] \equiv L$.

Case 1.3. $M\equiv z
ot\equiv x,y$. Then both sides equal z.

• Case 2: $M \equiv \lambda z.M_1$. By the variable convention we may assume that $z \not\equiv x, y$ and z is not free in N, L. Then by induction hypothesis

 $egin{aligned} & (\lambda z.M_1)[x:=N][y:=L]\ &\equiv & \lambda z.(M_1[x:=N][y:=L]) \end{aligned}$

- $\equiv \lambda z.(M_1[y:=L][x:=N[y:=L]])$
- $\equiv (\lambda z.M_1)[y := L][x := N[y := L]].$
- Case 3: $M \equiv M_1 M_2$. The statement follows again from the induction hypothesis. Munich, 15. February 2006 - p.15 (1/1)

Outlook

- nominal induction-principles (over nominal datatypes and inductive definitions)
- why the present version of the axiomatic type-classes are fairly unwieldy for this work
- functions over nominal datatypes (what are the conditions that allow a definition by "recursion" over α -equivalence classes)

 $\begin{array}{ll} = & \text{if } a = b \text{ then } s \text{ else } (\text{Var } a) \\ = & \text{App } (t_1[b:=s]) \ (t_2[b:=s] \\ = & \text{Lam } [a].(t[b:=s]) \\ & \text{provided } a \ \# \ (b,s) \end{array}$

Outlook

nominal induction-principles (over nominal datatypes and inductive definitions)

why the present version of the axiomatic

Nominal Datatype Package:

http://isabelle.in.tum.de/nominal/

Mailing List:

https://mailbroy.informatik.tu-muenchen.de/cgibin/mailman/listinfo/nominal-isabelle

 $\begin{array}{rcl} \hline (\mathsf{App}\,t_1\,t_2)[b:=s] &=& \mathsf{App}\,(t_1[b:=s])\,(t_2[b:=s])\\ (\mathsf{Lam}\,[a].t)[b:=s] &=& \mathsf{Lam}\,[a].(t[b:=s])\\ && \mathsf{provided}\,a\,\#\,(b,s) \end{array}$

25)

(Var a)

Outlook

- nominal induction-principles (over nominal datatypes and inductive definitions)
- why the present version of the axiomatic type-classes are fairly unwieldy for this work
- funct are the by "re
 The End?
 what inition classes
 - $(\operatorname{Var} a)[b := s] = \operatorname{if} a = b \operatorname{then} s \operatorname{else} (\operatorname{Var} a)$ $(\operatorname{App} t_1 t_2)[b := s] = \operatorname{App} (t_1[b := s]) (t_2[b := s])$ $(\operatorname{Lam} [a].t)[b := s] = \operatorname{Lam} [a].(t[b := s])$ provided $a \ \# (b, s)$