
Quiz?
Assuming that a and b are distinct variables, is
it possible to find �-terms M1 to M7 that
make the following pairs �-equivalent?

�a:�b:(M1 b) and �b:�a:(a M1)�a:�b:(M2 b) and �b:�a:(a M3)�a:�b:(b M4) and �b:�a:(a M5)�a:�b:(b M6) and �a:�a:(a M7)

If there is one solution for a pair, can you de-
scribe all its solutions?

Munich, 15. February 2006 – p.1 (1/1)

Nominal Techniques
in Isabelle/HOL (II):

Alpha-Equivalence Classes

based on work by Andy Pitts

joint work with Stefan, Markus,
Alexander. . .

Munich, 15. February 2006 – p.2 (1/1)

Recap (I):�-Equivalence
The following rules define �-equivalence on
lambda-term (syntax-trees):

a � a�-atm

t1 � s1 t2 � s2t1 t2 � s1 s2 �-app

t � s�a:t � �a:s�-lam1 t � (a b)�s a 62fv(s)�a:t � �b:s �-lam2

assuming a 6= b

Munich, 15. February 2006 – p.3 (1/1)

Recap (II): Support and
Freshness

The support of an object x : � is a set of
atoms �:

supp� x def= fa j infinitefb j (a b)�x 6= xgg

An atom is fresh for an x, if it is not in the
support of x:

a # x def= a 62 supp�(x)

I often drop the � in supp�.
Munich, 15. February 2006 – p.4 (1/1)

Nominal Abstractions
We are now going to specify what abstraction
’abstractly’ means: it is an operation[℄:() : �) �) � which has to satisfy:

��([a℄:x) = [��a℄:(��x)[a℄:x = [b℄:y iff(a = b ^ x = y) _(a 6= b ^ x = (a b)�y ^ a # y)

these two properties imply for finitely
supported x

supp([a℄:x) = supp(x)� fag

Munich, 15. February 2006 – p.5 (1/3)

Nominal Abstractions
We are now going to specify what abstraction
’abstractly’ means: it is an operation[℄:() : �) �) � which has to satisfy:

��([a℄:x) = [��a℄:(��x)[a℄:x = [b℄:y iff(a = b ^ x = y) _(a 6= b ^ x = (a b)�y ^ a # y)

these two properties imply for finitely
supported x

supp([a℄:x) = supp(x)� fag
Remember the definition of �-equivalence from
the beginning:t1 � t2�a:t1 � �a:t2 a 6= b t1 � (a b)�t2 a 62fv(t2)�a:t1 � �b:t2

Munich, 15. February 2006 – p.5 (2/3)

Nominal Abstractions
We are now going to specify what abstraction
’abstractly’ means: it is an operation[℄:() : �) �) � which has to satisfy:

��([a℄:x) = [��a℄:(��x)[a℄:x = [b℄:y iff(a = b ^ x = y) _(a 6= b ^ x = (a b)�y ^ a # y)

these two properties imply for finitely
supported x

supp([a℄:x) = supp(x)� fag

Munich, 15. February 2006 – p.5 (3/3)

Freshness and Abstractions
Given pt�;�, finite(supp x) and a 6= b then

a # x iff a # [b℄:x
Proof. There exists a with # (a; b; x; [b℄:x).
(() From a # [b℄:x and # [b℄:x[b℄:x = (a)�([b℄:x) = [b℄:(a)�x

Hence x = (a)�x. Now from # x: # x, (a)� # (a)�x, a # x

Munich, 15. February 2006 – p.6 (1/2)

Freshness and Abstractions
Given pt�;�, finite(supp x) and a 6= b then

a # x iff a # [b℄:x
Proof. There exists a with # (a; b; x; [b℄:x).
()) From # [b℄:x we also have(a)� # (a)�[b℄:x

and a # [b℄:(a)�x

Because a # x and # x, (a)�x = x.
Munich, 15. February 2006 – p.6 (2/2)

Freshness and Abstractions
We also have a # [a℄:x
Again from # (a; x; [a℄:x) we can infer

 # [a℄:x , (a)� # (a)�[a℄:x, a # [℄:(a)�x.
However: [℄:(a)�x = [a℄:x

(since 6= a, [℄:(a)�x = [a℄:x

iff (a)�x = (a)�x ^ # x)
Munich, 15. February 2006 – p.7 (1/2)

Freshness and Abstractions
We also have a # [a℄:x
Again from # (a; x; [a℄:x) we can infer

 # [a℄:x , (a)� # (a)�[a℄:x, a # [℄:(a)�x.
However: [℄:(a)�x = [a℄:x

(since 6= a, [℄:(a)�x = [a℄:x

iff (a)�x = (a)�x ^ # x)

So we have shown thata 6= b a # xa # [b℄:x a # [a℄:x
and a # x def= a 62 supp(x)
therefore

supp([a℄:x) = supp(x)� fag

Munich, 15. February 2006 – p.7 (2/2)

Nominal Abstractions
We have specified what abstraction
’abstractly’ means by an operation[℄:() : �) �) � which satisfies:

��([a℄:x) = [��a℄:(��x)[a℄:x = [b℄:y iff(a = b ^ x = y) _(a 6= b ^ x = (a b)�y ^ a # y)

Are there any structures that satisfy these
properties? Are there any structures that are
“supported” in Isabelle/HOL?

Munich, 15. February 2006 – p.8 (1/1)

Possibilities�-equivalence classes (sets of syntax
trees), e.g.[�a:(a)℄� = [�b:(b)℄�
terms with de-Bruijn indices and named
free variables, like �(1).
(you need a function abs which
“abstracts” a variable:abs(x; t) 7! �(: : :))
a weak HOAS encoding (lambdas as
functions — the function for �a:(a)

will be the same as the one for �b:(b))
Remember the user will only see the “axioms”
from the previous slide.

Munich, 15. February 2006 – p.9 (1/2)

Possibilities�-equivalence classes (sets of syntax
trees), e.g.[�a:(a)℄� = [�b:(b)℄�
terms with de-Bruijn indices and named
free variables, like �(1).
(you need a function abs which
“abstracts” a variable:abs(x; t) 7! �(: : :))
a weak HOAS encoding (lambdas as
functions — the function for �a:(a)

will be the same as the one for �b:(b))
Remember the user will only see the “axioms”
from the previous slide.

I could now stop here (this is all known),
and probably go for �-equivalence
classes (Norrish did this with the help
of a package by Hohmeier for HOL4),
but I do not ;o)

Munich, 15. February 2006 – p.9 (2/2)

Function [a℄:t ‘=’ [�a:t℄�

[a℄:t def=(�b: if a = b

then Some(t)

else if b # t then Some((b a)�t) else None)

type: �! � option

Munich, 15. February 2006 – p.10 (1/9)

Function [a℄:t ‘=’ [�a:t℄�

[a℄:t def=(�b: if a = b

then Some(t)

else if b # t then Some((b a)�t) else None)

This is supposed to stand for the�-equivalence class of �a:t.

Munich, 15. February 2006 – p.10 (2/9)

Function [a℄:t ‘=’ [�a:t℄�

[a℄:(a;) def=(�b:if a = b

then Some(a;)
else if b # (a;)

then Some((b a)�(a;)) else None)

Let’s check this for [a℄:(a;):

Munich, 15. February 2006 – p.10 (3/9)

Function [a℄:t ‘=’ [�a:t℄�

[a℄:(a;) def=(�b:if a = b

then Some(a;)
else if b # (a;)

then Some((b a)�(a;)) else None)

Let’s check this for [a℄:(a;):a ’applied to’ [a℄:(a;) ’gives’ Some(a;)

Munich, 15. February 2006 – p.10 (4/9)

Function [a℄:t ‘=’ [�a:t℄�

[a℄:(a;) def=(�b:if a = b

then Some(a;)
else if b # (a;)

then Some((b a)�(a;)) else None)

Let’s check this for [a℄:(a;):a ’applied to’ [a℄:(a;) ’gives’ Some(a;)b ’applied to’ [a℄:(a;) ’gives’ Some(b;)

Munich, 15. February 2006 – p.10 (5/9)

Function [a℄:t ‘=’ [�a:t℄�

[a℄:(a;) def=(�b:if a = b

then Some(a;)
else if b # (a;)

then Some((b a)�(a;)) else None)

Let’s check this for [a℄:(a;):a ’applied to’ [a℄:(a;) ’gives’ Some(a;)b ’applied to’ [a℄:(a;) ’gives’ Some(b;) ’applied to’ [a℄:(a;) ’gives’ None

Munich, 15. February 2006 – p.10 (6/9)

Function [a℄:t ‘=’ [�a:t℄�

[a℄:(a;) def=(�b:if a = b

then Some(a;)
else if b # (a;)

then Some((b a)�(a;)) else None)

Let’s check this for [a℄:(a;):a ’applied to’ [a℄:(a;) ’gives’ Some(a;)b ’applied to’ [a℄:(a;) ’gives’ Some(b;) ’applied to’ [a℄:(a;) ’gives’ Noned ’applied to’ [a℄:(a;) ’gives’ Some(d;)

...
Munich, 15. February 2006 – p.10 (7/9)

Function [a℄:t ‘=’ [�a:t℄�

[a℄:(a;) def=(�b:if a = b

then Some(a;)
else if b # (a;)

then Some((b a)�(a;)) else None)

Let’s check this for [a℄:(a;):a ’applied to’ [a℄:(a;) ’gives’ Some(a;) ’�a:(a)’b ’applied to’ [a℄:(a;) ’gives’ Some(b;) ’�b:(b)’ ’applied to’ [a℄:(a;) ’gives’ Noned ’applied to’ [a℄:(a;) ’gives’ Some(d;) ’�d:(d)’
...

Munich, 15. February 2006 – p.10 (8/9)

Function [a℄:t ‘=’ [�a:t℄�

[a℄:(a;) def=(�b:if a = b

then Some(a;)
else if b # (a;)

then Some((b a)�(a;)) else None)

Let’s check this for [a℄:(a;): [�a:(a)℄�:

...

a ’applied to’ [a℄:(a;) ’gives’ Some(a;) ’�a:(a)’b ’applied to’ [a℄:(a;) ’gives’ Some(b;) ’�b:(b)’ ’applied to’ [a℄:(a;) ’gives’ Noned ’applied to’ [a℄:(a;) ’gives’ Some(d;) ’�d:(d)’
...

Munich, 15. February 2006 – p.10 (9/9)

Nominal Datatypes
We define inductively �-equivalence classes of
lambda-terms—but they still have names.

Munich, 15. February 2006 – p.11 (1/2)

Nominal Datatypes
We define inductively �-equivalence classes of
lambda-terms—but they still have names.

big-set

small-set
���=� bijection

big set is a standard datatype:trm := Var : �j App : trm� trmj Lam : �! trm option

Munich, 15. February 2006 – p.11 (2/2)

Definition of Small-Set

t ::= Var(a)j App(t1; t2)j Lam [a℄:t
���=� bijection

Munich, 15. February 2006 – p.12 (1/4)

Definition of Small-Set

���=� bijection

Var(a) 2 �� t1 2 �� t2 2 ��

App(t1; t2) 2 ��t 2 ��
Lam [a℄:t 2 ��

Munich, 15. February 2006 – p.12 (2/4)

Definition of Small-Set

���=� bijection

Var(a) 2 �� t1 2 �� t2 2 ��

App(t1; t2) 2 ��t 2 ��
Lam [a℄:t 2 ��

Which also means that we have a
familiar induction principle in
place for �� (in a moment). And
all terms in �� have finite
support.

Munich, 15. February 2006 – p.12 (3/4)

Definition of Small-Set

���=� bijection

Var(a) 2 �� t1 2 �� t2 2 ��

App(t1; t2) 2 ��t 2 ��
Lam [a℄:t 2 ��

Which also means that we have a
familiar induction principle in
place for �� (in a moment). And
all terms in �� have finite
support.

supp(Var(a)) = fag
supp(App(t1; t2)) = supp(t1; t2)
supp(Lam [a℄:t) = supp([a℄:t) = supp(t)� fag

Munich, 15. February 2006 – p.12 (4/4)

Bijection
In order to show that �=� and �� are
bijective we define a function q from � to ��:

q(a) def= Var(a)q(t1 t2) def= App(q(t1); q(t2))q(�a:t) def= Lam [a℄:q(t)
with the propertyt1 � t2 , q(t1) = q(t2)

Munich, 15. February 2006 – p.13 (1/1)

Struct. Induction on ��
Var(a) 2 �� t1 2 �� t2 2 ��

App(t1; t2) 2 ��t 2 ��
Lam [a℄:t 2 ��

Structural Induction Principle:8a: P (Var(a))8t1; t2: P t1) P t2) P (App(t1; t2))8a; t: P t) P (Lam [a℄:t)8t: P t

Munich, 15. February 2006 – p.14 (1/1)

Substitution Lemma: If x 6� y and x 62 FV (L), thenM [x := N ℄[y := L℄ �M [y := L℄[x := N [y := L℄℄.
Proof: By induction on the structure ofM .� Case 1: M is a variable.

Case 1.1. M � x. Then both sides equalN [y := L℄ since x 6� y.
Case 1.2. M � y. Then both sides equal L, for x 62 FV (L)

implies L[x := : : :℄ � L.

Case 1.3. M � z 6� x; y. Then both sides equal z.� Case 2: M � �z:M1. By the variable convention we may assume
that z 6� x; y and z is not free inN;L. Then by induction hypothesis(�z:M1)[x := N ℄[y := L℄� �z:(M1[x := N ℄[y := L℄)� �z:(M1[y := L℄[x := N [y := L℄℄)� (�z:M1)[y := L℄[x := N [y := L℄℄.� Case 3: M �M1M2. The statement follows again from the induc-
tion hypothesis. “� ”

Munich, 15. February 2006 – p.15 (1/1)

Outlook
nominal induction-principles (over nominal
datatypes and inductive definitions)

why the present version of the axiomatic
type-classes are fairly unwieldy for this
work
functions over nominal datatypes (what
are the conditions that allow a definition
by “recursion” over �-equivalence classes)(Var a)[b := s℄ = if a = b then s else (Var a)(App t1 t2)[b := s℄ = App (t1[b := s℄) (t2[b := s℄)(Lam [a℄:t)[b := s℄ = Lam [a℄:(t[b := s℄)

provided a # (b; s)

Munich, 15. February 2006 – p.16 (1/3)

Outlook
nominal induction-principles (over nominal
datatypes and inductive definitions)

why the present version of the axiomatic
type-classes are fairly unwieldy for this
work
functions over nominal datatypes (what
are the conditions that allow a definition
by “recursion” over �-equivalence classes)(Var a)[b := s℄ = if a = b then s else (Var a)(App t1 t2)[b := s℄ = App (t1[b := s℄) (t2[b := s℄)(Lam [a℄:t)[b := s℄ = Lam [a℄:(t[b := s℄)

provided a # (b; s)

Nominal Datatype Package:

http://isabelle.in.tum.de/nominal/

Mailing List:

https://mailbroy.informatik.tu-muenchen.de/cgi-
bin/mailman/listinfo/nominal-isabelle

Munich, 15. February 2006 – p.16 (2/3)

Outlook
nominal induction-principles (over nominal
datatypes and inductive definitions)

why the present version of the axiomatic
type-classes are fairly unwieldy for this
work
functions over nominal datatypes (what
are the conditions that allow a definition
by “recursion” over �-equivalence classes)(Var a)[b := s℄ = if a = b then s else (Var a)(App t1 t2)[b := s℄ = App (t1[b := s℄) (t2[b := s℄)(Lam [a℄:t)[b := s℄ = Lam [a℄:(t[b := s℄)

provided a # (b; s)

The End?U d

Munich, 15. February 2006 – p.16 (3/3)

	mbox {Quiz?}
	�egin {tabular}{c} Nominal Techniques\[1mm] in Isabelle/HOL (II):\[1mm]

ormalsize Alpha-Equivalence Classes end {tabular}
	Recap (I):
$alpha $-Equivalence
	Recap (II):
Support and Freshness
	Nominal Abstractions
	mbox {Freshness and Abstractions}
	mbox {Freshness and Abstractions}
	Nominal Abstractions
	Possibilities
	mbox {Function $[a].t$ `$=$' $[lambda a.t]_{alpha }$}
	Nominal Datatypes
	Definition of Small-Set
	Bijection
	Struct.~Induction on $Lambda _alpha $
	
	Outlook

